A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective Optimization

Taking both convergence and diversity into consideration, this paper suggests a vector angle-based evolutionary algorithm for unconstrained (with box constraints only) many-objective optimization problems. In the proposed algorithm, the maximum-vector-angle-first principle is used in the environment...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation Ročník 21; číslo 1; s. 131 - 152
Hlavní autori: Xiang, Yi, Zhou, Yuren, Li, Miqing, Chen, Zefeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.02.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Taking both convergence and diversity into consideration, this paper suggests a vector angle-based evolutionary algorithm for unconstrained (with box constraints only) many-objective optimization problems. In the proposed algorithm, the maximum-vector-angle-first principle is used in the environmental selection to guarantee the wideness and uniformity of the solution set. With the help of the worse-elimination principle, worse solutions in terms of the convergence (measured by the sum of normalized objectives) are allowed to be conditionally replaced by other individuals. Therefore, the selection pressure toward the Pareto-optimal front is strengthened. The proposed method is compared with other four state-of-the-art many-objective evolutionary algorithms on a number of unconstrained test problems with up to 15 objectives. The experimental results have shown the competitiveness and effectiveness of our proposed algorithm in keeping a good balance between convergence and diversity. Furthermore, it was shown by the results on two problems from practice (with irregular Pareto fronts) that our method significantly outperforms its competitors in terms of both the convergence and diversity of the obtained solution sets. Notably, the new algorithm has the following good properties: 1) it is free from a set of supplied reference points or weight vectors; 2) it has less algorithmic parameters; and 3) the time complexity of the algorithm is low. Given both good performance and nice properties, the suggested algorithm could be an alternative tool when handling optimization problems with more than three objectives.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2016.2587808