Hamiltonian Finite Element Discretization for Nonlinear Free Surface Water Waves

A novel finite element discretization for nonlinear potential flow water waves is presented. Starting from Luke’s Lagrangian formulation we prove that an appropriate finite element discretization preserves the Hamiltonian structure of the potential flow water wave equations, even on general time-dep...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing Vol. 73; no. 1; pp. 366 - 394
Main Authors: Brink, Freekjan, Izsák, Ferenc, van der Vegt, J. J. W.
Format: Journal Article
Language:English
Published: New York Springer US 01.10.2017
Springer Nature B.V
Subjects:
ISSN:0885-7474, 1573-7691
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel finite element discretization for nonlinear potential flow water waves is presented. Starting from Luke’s Lagrangian formulation we prove that an appropriate finite element discretization preserves the Hamiltonian structure of the potential flow water wave equations, even on general time-dependent, deforming and unstructured meshes. For the time-integration we use a modified Störmer–Verlet method, since the Hamiltonian system is non-autonomous due to boundary surfaces with a prescribed motion, such as a wave maker. This results in a stable and accurate numerical discretization, even for large amplitude nonlinear water waves. The numerical algorithm is tested on various wave problems, including a comparison with experiments containing wave interactions resulting in a large amplitude splash.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-017-0416-9