A Coevolutionary Framework for Constrained Multiobjective Optimization Problems

Constrained multiobjective optimization problems (CMOPs) are challenging because of the difficulty in handling both multiple objectives and constraints. While some evolutionary algorithms have demonstrated high performance on most CMOPs, they exhibit bad convergence or diversity performance on CMOPs...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 25; číslo 1; s. 102 - 116
Hlavní autoři: Tian, Ye, Zhang, Tao, Xiao, Jianhua, Zhang, Xingyi, Jin, Yaochu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Constrained multiobjective optimization problems (CMOPs) are challenging because of the difficulty in handling both multiple objectives and constraints. While some evolutionary algorithms have demonstrated high performance on most CMOPs, they exhibit bad convergence or diversity performance on CMOPs with small feasible regions. To remedy this issue, this article proposes a coevolutionary framework for constrained multiobjective optimization, which solves a complex CMOP assisted by a simple helper problem. The proposed framework evolves one population to solve the original CMOP and evolves another population to solve a helper problem derived from the original one. While the two populations are evolved by the same optimizer separately, the assistance in solving the original CMOP is achieved by sharing useful information between the two populations. In the experiments, the proposed framework is compared to several state-of-the-art algorithms tailored for CMOPs. High competitiveness of the proposed framework is demonstrated by applying it to 47 benchmark CMOPs and the vehicle routing problem with time windows.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2020.3004012