Matrix-Vector Nonnegative Tensor Factorization for Blind Unmixing of Hyperspectral Imagery

Many spectral unmixing approaches ranging from geometry, algebra to statistics have been proposed, in which nonnegative matrix factorization (NMF)-based ones form an important family. The original NMF-based unmixing algorithm loses the spectral and spatial information between mixed pixels when stack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing Jg. 55; H. 3; S. 1776 - 1792
Hauptverfasser: Qian, Yuntao, Xiong, Fengchao, Zeng, Shan, Zhou, Jun, Tang, Yuan Yan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0196-2892, 1558-0644
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Many spectral unmixing approaches ranging from geometry, algebra to statistics have been proposed, in which nonnegative matrix factorization (NMF)-based ones form an important family. The original NMF-based unmixing algorithm loses the spectral and spatial information between mixed pixels when stacking the spectral responses of the pixels into an observed matrix. Therefore, various constrained NMF methods are developed to impose spectral structure, spatial structure, and spectral-spatial joint structure into NMF to enforce the estimated endmembers and abundances preserve these structures. Compared with matrix format, the third-order tensor is more natural to represent a hyperspectral data cube as a whole, by which the intrinsic structure of hyperspectral imagery can be losslessly retained. Extended from NMF-based methods, a matrix-vector nonnegative tensor factorization (NTF) model is proposed in this paper for spectral unmixing. Different from widely used tensor factorization models, such as canonical polyadic decomposition CPD) and Tucker decomposition, the proposed method is derived from block term decomposition, which is a combination of CPD and Tucker decomposition. This leads to a more flexible frame to model various application-dependent problems. The matrix-vector NTF decomposes a third-order tensor into the sum of several component tensors, with each component tensor being the outer product of a vector (endmember) and a matrix (corresponding abundances). From a formal perspective, this tensor decomposition is consistent with linear spectral mixture model. From an informative perspective, the structures within spatial domain, within spectral domain, and cross spectral-spatial domain are retreated interdependently. Experiments demonstrate that the proposed method has outperformed several state-of-the-art NMF-based unmixing methods.
AbstractList Many spectral unmixing approaches ranging from geometry, algebra to statistics have been proposed, in which nonnegative matrix factorization (NMF)-based ones form an important family. The original NMF-based unmixing algorithm loses the spectral and spatial information between mixed pixels when stacking the spectral responses of the pixels into an observed matrix. Therefore, various constrained NMF methods are developed to impose spectral structure, spatial structure, and spectral-spatial joint structure into NMF to enforce the estimated endmembers and abundances preserve these structures. Compared with matrix format, the third-order tensor is more natural to represent a hyperspectral data cube as a whole, by which the intrinsic structure of hyperspectral imagery can be losslessly retained. Extended from NMF-based methods, a matrix-vector nonnegative tensor factorization (NTF) model is proposed in this paper for spectral unmixing. Different from widely used tensor factorization models, such as canonical polyadic decomposition CPD) and Tucker decomposition, the proposed method is derived from block term decomposition, which is a combination of CPD and Tucker decomposition. This leads to a more flexible frame to model various application-dependent problems. The matrix-vector NTF decomposes a third-order tensor into the sum of several component tensors, with each component tensor being the outer product of a vector (endmember) and a matrix (corresponding abundances). From a formal perspective, this tensor decomposition is consistent with linear spectral mixture model. From an informative perspective, the structures within spatial domain, within spectral domain, and cross spectral-spatial domain are retreated interdependently. Experiments demonstrate that the proposed method has outperformed several state-of-the-art NMF-based unmixing methods.
Author Yuan Yan Tang
Jun Zhou
Shan Zeng
Yuntao Qian
Fengchao Xiong
Author_xml – sequence: 1
  givenname: Yuntao
  orcidid: 0000-0002-7418-5891
  surname: Qian
  fullname: Qian, Yuntao
– sequence: 2
  givenname: Fengchao
  surname: Xiong
  fullname: Xiong, Fengchao
– sequence: 3
  givenname: Shan
  surname: Zeng
  fullname: Zeng, Shan
– sequence: 4
  givenname: Jun
  orcidid: 0000-0001-5822-8233
  surname: Zhou
  fullname: Zhou, Jun
– sequence: 5
  givenname: Yuan Yan
  surname: Tang
  fullname: Tang, Yuan Yan
BookMark eNp9UE1Lw0AUXKSCbfUHiJeA59T9TLJHLfYDqoK2HryEzealbEk3cROl9de7scWDB08P5s3MezMD1LOVBYQuCR4RguXNcvr8MqKYRCMaMUZjeYL6RIgkxBHnPdTHREYhTSQ9Q4Om2WBMuCBxH709qNaZXfgKuq1c8FhZC2vVmk8IlmAbD01UtzFfHqxsUHjkrjQ2D1Z2a3bGroOqCGb7GlxTew-nymC-VWtw-3N0WqiygYvjHKLV5H45noWLp-l8fLsINROyDROWaSojqfJMEMIo44IViZCgSFQkGriEHOcUCiwLTbTimYdplgkRCc3znA3R9cG3dtX7BzRtuqk-nPUnU0pizrGIOPOs-MDSrmoaB0WqTfuTyf9sypTgtCsy7YpMuyLTY5FeSf4oa2e2yu3_1VwdNAYAfvlxnPDYZ_wGjNGB9g
CODEN IGRSD2
CitedBy_id crossref_primary_10_1080_01431161_2023_2295836
crossref_primary_10_1109_TGRS_2021_3081177
crossref_primary_10_1109_TGRS_2020_2982490
crossref_primary_10_1109_TGRS_2020_3017709
crossref_primary_10_1137_19M1294708
crossref_primary_10_1016_j_cam_2025_116787
crossref_primary_10_1109_JSTARS_2024_3392497
crossref_primary_10_1016_j_sigpro_2024_109799
crossref_primary_10_1109_TGRS_2021_3069845
crossref_primary_10_3390_s20195684
crossref_primary_10_3390_rs15061679
crossref_primary_10_3390_rs15184610
crossref_primary_10_1016_j_sigpro_2023_109033
crossref_primary_10_1109_JSTARS_2025_3541257
crossref_primary_10_1109_LSP_2025_3546893
crossref_primary_10_1109_TGRS_2020_3030233
crossref_primary_10_3390_rs14184520
crossref_primary_10_1109_TGRS_2024_3393570
crossref_primary_10_1109_JSTARS_2022_3175257
crossref_primary_10_1137_21M1409354
crossref_primary_10_1145_3550311
crossref_primary_10_3390_rs11171959
crossref_primary_10_1007_s10489_022_04121_y
crossref_primary_10_1007_s11045_018_0590_4
crossref_primary_10_1002_nla_2574
crossref_primary_10_1016_j_eswa_2019_113089
crossref_primary_10_1109_TSP_2022_3164837
crossref_primary_10_1109_JSEN_2023_3326251
crossref_primary_10_3390_rs16050766
crossref_primary_10_3390_computers10060078
crossref_primary_10_1109_JSTARS_2021_3081984
crossref_primary_10_1016_j_apm_2023_10_009
crossref_primary_10_1080_01431161_2025_2522945
crossref_primary_10_1109_ACCESS_2021_3076786
crossref_primary_10_1109_TGRS_2023_3241115
crossref_primary_10_1080_01431161_2020_1782507
crossref_primary_10_1109_LGRS_2023_3255413
crossref_primary_10_1109_JSTSP_2020_3045965
crossref_primary_10_1109_ACCESS_2019_2933845
crossref_primary_10_3390_rs14020383
crossref_primary_10_1109_TCI_2023_3321985
crossref_primary_10_1109_LGRS_2019_2963114
crossref_primary_10_3390_app10010237
crossref_primary_10_1109_TGRS_2020_2994260
crossref_primary_10_1109_TSP_2024_3406714
crossref_primary_10_1137_23M1557246
crossref_primary_10_1109_TGRS_2021_3082255
crossref_primary_10_1109_TGRS_2019_2935150
crossref_primary_10_1109_TGRS_2019_2936486
crossref_primary_10_1016_j_eswa_2023_122908
crossref_primary_10_1109_TGRS_2023_3314902
crossref_primary_10_1007_s10994_025_06793_2
crossref_primary_10_1016_j_ijleo_2023_170859
crossref_primary_10_1109_JSTARS_2021_3115172
crossref_primary_10_1109_JSEN_2024_3373477
crossref_primary_10_1109_TGRS_2025_3602210
crossref_primary_10_1016_j_neunet_2020_05_022
crossref_primary_10_1109_TGRS_2019_2949543
crossref_primary_10_3390_rs17172968
crossref_primary_10_1109_JSTARS_2020_3020541
crossref_primary_10_1109_TCI_2023_3346301
crossref_primary_10_1109_TGRS_2023_3275740
crossref_primary_10_1016_j_sigpro_2025_110191
crossref_primary_10_1109_TGRS_2021_3136336
crossref_primary_10_1109_TGRS_2021_3101504
crossref_primary_10_3390_app12031609
crossref_primary_10_1109_JSTARS_2023_3242048
crossref_primary_10_1109_JSTARS_2022_3223115
crossref_primary_10_3390_s24020327
crossref_primary_10_1109_TGRS_2019_2944989
crossref_primary_10_3390_rs13081473
crossref_primary_10_1186_s13673_020_00215_z
crossref_primary_10_1109_JSTARS_2020_3048820
crossref_primary_10_1109_TIP_2020_2965302
crossref_primary_10_1109_TGRS_2018_2872888
crossref_primary_10_1109_JSTARS_2025_3549515
crossref_primary_10_1016_j_sigpro_2023_109126
crossref_primary_10_1109_TIP_2020_2984849
crossref_primary_10_1109_TIP_2024_3390582
crossref_primary_10_1080_01431161_2023_2195572
crossref_primary_10_1109_JSTARS_2022_3214653
crossref_primary_10_3390_rs17142517
crossref_primary_10_3390_sym16111414
crossref_primary_10_1016_j_neucom_2025_130401
crossref_primary_10_1109_JSTARS_2020_2980576
crossref_primary_10_3390_sym12020277
crossref_primary_10_1109_TGRS_2019_2946751
crossref_primary_10_3390_rs10020339
crossref_primary_10_1007_s10851_024_01208_8
crossref_primary_10_1109_JSTARS_2024_3392833
crossref_primary_10_1109_TSP_2025_3589059
crossref_primary_10_1109_ACCESS_2019_2961240
crossref_primary_10_1016_j_asoc_2025_113176
crossref_primary_10_1016_j_knosys_2020_106657
crossref_primary_10_1109_JSTSP_2021_3051488
crossref_primary_10_1016_j_infrared_2021_103631
crossref_primary_10_3390_rs13152930
crossref_primary_10_1109_TSP_2018_2876362
crossref_primary_10_1109_MGRS_2021_3064051
crossref_primary_10_1109_MSP_2020_3003544
crossref_primary_10_1080_01431161_2024_2357841
crossref_primary_10_1109_TIP_2018_2836307
crossref_primary_10_1109_TGRS_2021_3065990
crossref_primary_10_1109_TGRS_2022_3177636
crossref_primary_10_3390_rs9101074
crossref_primary_10_1016_j_neucom_2025_131202
crossref_primary_10_1109_TGRS_2021_3106380
crossref_primary_10_1109_TSP_2022_3159029
crossref_primary_10_1109_JSTARS_2023_3238653
crossref_primary_10_1109_LGRS_2018_2877734
crossref_primary_10_1016_j_jneumeth_2018_12_007
crossref_primary_10_3390_rs9121218
crossref_primary_10_1109_JSTARS_2021_3126664
crossref_primary_10_3390_rs11060651
crossref_primary_10_3390_rs12244117
crossref_primary_10_1109_JSTARS_2020_3019706
crossref_primary_10_1016_j_isprsjprs_2019_10_005
crossref_primary_10_1109_TGRS_2021_3134682
crossref_primary_10_1016_j_apm_2021_09_043
crossref_primary_10_1109_TGRS_2021_3095488
crossref_primary_10_1109_JSTARS_2021_3079210
crossref_primary_10_1080_01431161_2021_1941388
crossref_primary_10_1109_TGRS_2022_3228231
crossref_primary_10_1016_j_sigpro_2024_109483
crossref_primary_10_1109_JSTARS_2023_3341583
crossref_primary_10_1109_JSTARS_2019_2896031
crossref_primary_10_1109_TMC_2022_3186473
crossref_primary_10_1007_s11760_021_02062_6
crossref_primary_10_3390_rs10060816
Cites_doi 10.1007/978-3-540-72395-0_97
10.1109/TGRS.2008.2002882
10.1145/1233341.1233449
10.1109/TGRS.2007.898443
10.1109/TGRS.2015.2453915
10.1109/TGRS.2010.2068053
10.1109/JSTARS.2012.2194696
10.1109/MSP.2013.2297439
10.1364/JOSAA.25.003001
10.1364/JOSAA.32.001604
10.1109/ICIP.2015.7351663
10.1109/IGARSS.2015.7326105
10.1109/IGARSS.2013.6721352
10.1109/TGRS.2016.2514404
10.1109/ICCV.2005.228
10.1109/TGRS.2015.2417162
10.1109/TGRS.2010.2098413
10.1109/TGRS.2006.888466
10.1109/TGRS.2005.844293
10.1109/LGRS.2010.2048696
10.1137/07070111X
10.1109/TGRS.2015.2503737
10.1007/978-3-662-44848-9_42
10.1109/TGRS.2012.2207905
10.1137/060661685
10.1016/j.isprsjprs.2013.06.001
10.1109/MSP.2013.2279731
10.1137/070690729
10.1109/ICASSP.2009.4959825
10.1109/TGRS.2012.2197860
10.1016/j.neucom.2014.06.052
10.1109/TGRS.2011.2144605
10.1186/1687-6180-2014-142
10.1109/IGARSS.2013.6723348
10.1109/EUSIPCO.2015.7362482
10.1117/12.366289
10.1109/36.911111
10.1109/TIT.2016.2532906
10.1109/TGRS.2016.2586110
10.1109/JSTARS.2012.2189200
10.1109/TGRS.2010.2062190
10.1109/TGRS.2012.2213825
10.1109/TSP.2007.910469
10.1109/JSTARS.2015.2508448
10.1109/JSTARS.2015.2401603
10.1109/WHISPERS.2009.5289045
10.1007/978-3-319-22482-4_2
10.1109/TGRS.2003.820314
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2016.2633279
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1792
ExternalDocumentID 10_1109_TGRS_2016_2633279
7784711
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Development Fund of Macau
  grantid: 026-2013-A
– fundername: Australian Research Councils DECRA Projects
  grantid: DE120102948
– fundername: Research Grants of the University of Macau
  grantid: MYRG2015-00049-FST; MYRG2015-00050-FST
– fundername: National Natural Science Foundation of China
  grantid: 61571393; 61303116; 61273244
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c359t-83bc2969adb511323453f859ea16f8ce49ed0d2ef09fc1ca4b6f82bb5565c4dd3
IEDL.DBID RIE
ISICitedReferencesCount 168
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396106700046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:07:42 EDT 2025
Tue Nov 18 22:37:15 EST 2025
Sat Nov 29 02:49:50 EST 2025
Tue Aug 26 16:43:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-83bc2969adb511323453f859ea16f8ce49ed0d2ef09fc1ca4b6f82bb5565c4dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7418-5891
0000-0001-5822-8233
PQID 2174405643
PQPubID 85465
PageCount 17
ParticipantIDs crossref_primary_10_1109_TGRS_2016_2633279
proquest_journals_2174405643
crossref_citationtrail_10_1109_TGRS_2016_2633279
ieee_primary_7784711
PublicationCentury 2000
PublicationDate 2017-March
2017-3-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-March
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref53
ref11
jia (ref10) 2007; 45
ref17
ref16
ref19
ref18
swayze (ref54) 1992; 1
ref51
ref50
ref46
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
li (ref6) 2015; 53
ref5
ref40
cichocki (ref14) 2009
ref35
ref34
ref37
schaechtle (ref26) 2013
ref36
ref31
lee (ref52) 2001; 13
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref25
ref20
ref22
ref21
winter (ref4) 1999; 3753
ref28
ref27
de lathauwer (ref45) 2012
ref29
boardman (ref3) 1993; 1
References_xml – ident: ref48
  doi: 10.1007/978-3-540-72395-0_97
– ident: ref13
  doi: 10.1109/TGRS.2008.2002882
– ident: ref37
  doi: 10.1145/1233341.1233449
– volume: 45
  start-page: 3867
  year: 2007
  ident: ref10
  article-title: Spectral and spatial complexity-based hyperspectral unmixing
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2007.898443
– ident: ref42
  doi: 10.1109/TGRS.2015.2453915
– ident: ref18
  doi: 10.1109/TGRS.2010.2068053
– ident: ref1
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref25
  doi: 10.1109/MSP.2013.2297439
– ident: ref38
  doi: 10.1364/JOSAA.25.003001
– ident: ref31
  doi: 10.1364/JOSAA.32.001604
– ident: ref34
  doi: 10.1109/ICIP.2015.7351663
– ident: ref33
  doi: 10.1109/IGARSS.2015.7326105
– ident: ref29
  doi: 10.1109/IGARSS.2013.6721352
– start-page: 1
  year: 2012
  ident: ref45
  article-title: Block component analysis, a new concept for blind source separation
  publication-title: Proc Int Conf Latent Variable Anal Signal Separat
– ident: ref36
  doi: 10.1109/TGRS.2016.2514404
– ident: ref23
  doi: 10.1109/ICCV.2005.228
– volume: 53
  start-page: 5067
  year: 2015
  ident: ref6
  article-title: Minimum volume simplex analysis: A fast algorithm for linear hyperspectral unmixing
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2015.2417162
– volume: 13
  start-page: 556
  year: 2001
  ident: ref52
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Proc NIPS
– ident: ref8
  doi: 10.1109/TGRS.2010.2098413
– volume: 1
  start-page: 47
  year: 1992
  ident: ref54
  article-title: Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada
  publication-title: Proc Summaries 3rd Annu JPL Airborne Geosci Workshop
– ident: ref12
  doi: 10.1109/TGRS.2006.888466
– ident: ref5
  doi: 10.1109/TGRS.2005.844293
– ident: ref35
  doi: 10.1109/LGRS.2010.2048696
– ident: ref22
  doi: 10.1137/07070111X
– ident: ref41
  doi: 10.1109/TGRS.2015.2503737
– ident: ref24
  doi: 10.1007/978-3-662-44848-9_42
– ident: ref51
  doi: 10.1109/TGRS.2012.2207905
– ident: ref43
  doi: 10.1137/060661685
– ident: ref30
  doi: 10.1016/j.isprsjprs.2013.06.001
– start-page: 1
  year: 2013
  ident: ref26
  article-title: Multi-dimensional causal discovery
  publication-title: Proc Int Conf Artif Intell (IJCAI)
– ident: ref2
  doi: 10.1109/MSP.2013.2279731
– ident: ref49
  doi: 10.1137/070690729
– ident: ref39
  doi: 10.1109/ICASSP.2009.4959825
– ident: ref32
  doi: 10.1109/TGRS.2012.2197860
– ident: ref28
  doi: 10.1016/j.neucom.2014.06.052
– ident: ref16
  doi: 10.1109/TGRS.2011.2144605
– year: 2009
  ident: ref14
  publication-title: Nonnegative Matrix and Tensor Factorizations Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation
– ident: ref44
  doi: 10.1186/1687-6180-2014-142
– ident: ref19
  doi: 10.1109/IGARSS.2013.6723348
– ident: ref40
  doi: 10.1109/EUSIPCO.2015.7362482
– volume: 3753
  start-page: 266
  year: 1999
  ident: ref4
  article-title: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
  publication-title: Proc SPIE
  doi: 10.1117/12.366289
– ident: ref7
  doi: 10.1109/36.911111
– ident: ref53
  doi: 10.1109/TIT.2016.2532906
– ident: ref11
  doi: 10.1109/TGRS.2016.2586110
– ident: ref27
  doi: 10.1109/JSTARS.2012.2189200
– ident: ref9
  doi: 10.1109/TGRS.2010.2062190
– ident: ref20
  doi: 10.1109/TGRS.2012.2213825
– ident: ref47
  doi: 10.1109/TSP.2007.910469
– ident: ref21
  doi: 10.1109/JSTARS.2015.2508448
– volume: 1
  start-page: 11
  year: 1993
  ident: ref3
  article-title: Automating spectral unmixing of AVIRIS data using convegeometry concepts
  publication-title: Proc AVIRIS Workshop
– ident: ref17
  doi: 10.1109/JSTARS.2015.2401603
– ident: ref15
  doi: 10.1109/WHISPERS.2009.5289045
– ident: ref46
  doi: 10.1007/978-3-319-22482-4_2
– ident: ref50
  doi: 10.1109/TGRS.2003.820314
SSID ssj0014517
Score 2.603985
Snippet Many spectral unmixing approaches ranging from geometry, algebra to statistics have been proposed, in which nonnegative matrix factorization (NMF)-based ones...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1776
SubjectTerms Data processing
Decomposition
Distance measurement
Factorization
Feature extraction
Hyperspectral imagery (HSI)
Hyperspectral imaging
Imagery
Mathematical analysis
Mathematical models
Matrix algebra
Matrix decomposition
Matrix methods
Mixture models
Pixels
Spatial data
Spectra
spectral unmixing
spectral-spatial structure
State of the art
Statistical methods
Tensile stress
tensor factorization
Tensors
Title Matrix-Vector Nonnegative Tensor Factorization for Blind Unmixing of Hyperspectral Imagery
URI https://ieeexplore.ieee.org/document/7784711
https://www.proquest.com/docview/2174405643
Volume 55
WOSCitedRecordID wos000396106700046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-mKOiD3-L8Ig8-idE2aZrmUcWpoEN0E_GltEkqA7fJNkX_e3NZHIIi-FZC0pb82vvI3f0OYC_lOkbFR2UlJU14EdOSi4Jqza20EvmQfaHwlWw2s4cHdVODg0ktjLXWJ5_ZQ7z0sXzT1694VHYkJcpS5-tMSZmOa7UmEYNExKE0OqXOiWAhghlH6qh1fnuHSVzpIUs5Z5i19U0H-aYqPySxVy-Nxf-92BIsBDOSHI9xX4aa7a3A_DdywRWY9cmdergKj9fIw_9O7_0JPWlibsuTJ_wmLefFuqGG77oTSjKJs2PJiTM_DWn3up13dzfSr8iF81jHhZkD9-TLLpJffKxBu3HWOr2goacC1VyoEc14qZlKVWFKgU3meSJ4lQllizitMm0TZU1kmK0iVelYF0nphllZCmf46cQYvg7TvX7PbgBxsqI0Mqt4oeNEOh3HYiMEMzZNKic1ijpEX7uc60A4jn0vnnPveEQqR2ByBCYPwNRhf7LkZcy28dfkVURiMjGAUIftLyjz8D8Oc3S8nGnqzK_N31dtwRxDhe2zy7ZhejR4tTswo99GneFg139qnxLe0RA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9VhWnsAbYytPI1P-wJYZrYcRw_AqIUrUTTFqZqL1FiOxPSaKe2IPjv8bmmQhpC2ltk2UnkX3IfvrvfAXxJuY5R8VHZSEkTXsW05qKiWnMrrUQ-ZF8oPJR5no1G6lsLDpe1MNZan3xmj_DSx_LNRN_iUVlPSpSlztdZwc5ZoVprGTNIRByKo1Pq3AgWYphxpHrF-fcfmMaVHrGUc4Z5W8-0kG-r8o8s9gqmv_F_r_Ye1oMhSY4XyH-Alh134N0zesEOvPHpnXq2Cb8ukYn_nv70Z_Qkx-yW357ymxTOj3VDfd93JxRlEmfJkhNngBpyNb65vnd3I5OGDJzPuijNnLonX9wg_cXDR7jqnxWnAxq6KlDNhZrTjNeaqVRVphbYZp4ngjeZULaK0ybTNlHWRIbZJlKNjnWV1G6Y1bVwpp9OjOFb0B5PxvYTECctaiOzhlc6TqTTciw2QjBj06RxcqPqQvS0y6UOlOPY-eJP6V2PSJUITInAlAGYLhwsl_xd8G28NnkTkVhODCB0YfcJyjL8kbMSXS9nnDoDbPvlVZ_h7aC4HJbDi_zrDqwxVN8-12wX2vPprd2DVX03v55N9_1n9wgfsdRZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matrix-Vector+Nonnegative+Tensor+Factorization+for+Blind+Unmixing+of+Hyperspectral+Imagery&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Qian%2C+Yuntao&rft.au=Xiong%2C+Fengchao&rft.au=Zeng%2C+Shan&rft.au=Zhou%2C+Jun&rft.date=2017-03-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=55&rft.issue=3&rft.spage=1776&rft.epage=1792&rft_id=info:doi/10.1109%2FTGRS.2016.2633279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2016_2633279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon