Matrix-Vector Nonnegative Tensor Factorization for Blind Unmixing of Hyperspectral Imagery
Many spectral unmixing approaches ranging from geometry, algebra to statistics have been proposed, in which nonnegative matrix factorization (NMF)-based ones form an important family. The original NMF-based unmixing algorithm loses the spectral and spatial information between mixed pixels when stack...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on geoscience and remote sensing Jg. 55; H. 3; S. 1776 - 1792 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Many spectral unmixing approaches ranging from geometry, algebra to statistics have been proposed, in which nonnegative matrix factorization (NMF)-based ones form an important family. The original NMF-based unmixing algorithm loses the spectral and spatial information between mixed pixels when stacking the spectral responses of the pixels into an observed matrix. Therefore, various constrained NMF methods are developed to impose spectral structure, spatial structure, and spectral-spatial joint structure into NMF to enforce the estimated endmembers and abundances preserve these structures. Compared with matrix format, the third-order tensor is more natural to represent a hyperspectral data cube as a whole, by which the intrinsic structure of hyperspectral imagery can be losslessly retained. Extended from NMF-based methods, a matrix-vector nonnegative tensor factorization (NTF) model is proposed in this paper for spectral unmixing. Different from widely used tensor factorization models, such as canonical polyadic decomposition CPD) and Tucker decomposition, the proposed method is derived from block term decomposition, which is a combination of CPD and Tucker decomposition. This leads to a more flexible frame to model various application-dependent problems. The matrix-vector NTF decomposes a third-order tensor into the sum of several component tensors, with each component tensor being the outer product of a vector (endmember) and a matrix (corresponding abundances). From a formal perspective, this tensor decomposition is consistent with linear spectral mixture model. From an informative perspective, the structures within spatial domain, within spectral domain, and cross spectral-spatial domain are retreated interdependently. Experiments demonstrate that the proposed method has outperformed several state-of-the-art NMF-based unmixing methods. |
|---|---|
| AbstractList | Many spectral unmixing approaches ranging from geometry, algebra to statistics have been proposed, in which nonnegative matrix factorization (NMF)-based ones form an important family. The original NMF-based unmixing algorithm loses the spectral and spatial information between mixed pixels when stacking the spectral responses of the pixels into an observed matrix. Therefore, various constrained NMF methods are developed to impose spectral structure, spatial structure, and spectral-spatial joint structure into NMF to enforce the estimated endmembers and abundances preserve these structures. Compared with matrix format, the third-order tensor is more natural to represent a hyperspectral data cube as a whole, by which the intrinsic structure of hyperspectral imagery can be losslessly retained. Extended from NMF-based methods, a matrix-vector nonnegative tensor factorization (NTF) model is proposed in this paper for spectral unmixing. Different from widely used tensor factorization models, such as canonical polyadic decomposition CPD) and Tucker decomposition, the proposed method is derived from block term decomposition, which is a combination of CPD and Tucker decomposition. This leads to a more flexible frame to model various application-dependent problems. The matrix-vector NTF decomposes a third-order tensor into the sum of several component tensors, with each component tensor being the outer product of a vector (endmember) and a matrix (corresponding abundances). From a formal perspective, this tensor decomposition is consistent with linear spectral mixture model. From an informative perspective, the structures within spatial domain, within spectral domain, and cross spectral-spatial domain are retreated interdependently. Experiments demonstrate that the proposed method has outperformed several state-of-the-art NMF-based unmixing methods. |
| Author | Yuan Yan Tang Jun Zhou Shan Zeng Yuntao Qian Fengchao Xiong |
| Author_xml | – sequence: 1 givenname: Yuntao orcidid: 0000-0002-7418-5891 surname: Qian fullname: Qian, Yuntao – sequence: 2 givenname: Fengchao surname: Xiong fullname: Xiong, Fengchao – sequence: 3 givenname: Shan surname: Zeng fullname: Zeng, Shan – sequence: 4 givenname: Jun orcidid: 0000-0001-5822-8233 surname: Zhou fullname: Zhou, Jun – sequence: 5 givenname: Yuan Yan surname: Tang fullname: Tang, Yuan Yan |
| BookMark | eNp9UE1Lw0AUXKSCbfUHiJeA59T9TLJHLfYDqoK2HryEzealbEk3cROl9de7scWDB08P5s3MezMD1LOVBYQuCR4RguXNcvr8MqKYRCMaMUZjeYL6RIgkxBHnPdTHREYhTSQ9Q4Om2WBMuCBxH709qNaZXfgKuq1c8FhZC2vVmk8IlmAbD01UtzFfHqxsUHjkrjQ2D1Z2a3bGroOqCGb7GlxTew-nymC-VWtw-3N0WqiygYvjHKLV5H45noWLp-l8fLsINROyDROWaSojqfJMEMIo44IViZCgSFQkGriEHOcUCiwLTbTimYdplgkRCc3znA3R9cG3dtX7BzRtuqk-nPUnU0pizrGIOPOs-MDSrmoaB0WqTfuTyf9sypTgtCsy7YpMuyLTY5FeSf4oa2e2yu3_1VwdNAYAfvlxnPDYZ_wGjNGB9g |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1080_01431161_2023_2295836 crossref_primary_10_1109_TGRS_2021_3081177 crossref_primary_10_1109_TGRS_2020_2982490 crossref_primary_10_1109_TGRS_2020_3017709 crossref_primary_10_1137_19M1294708 crossref_primary_10_1016_j_cam_2025_116787 crossref_primary_10_1109_JSTARS_2024_3392497 crossref_primary_10_1016_j_sigpro_2024_109799 crossref_primary_10_1109_TGRS_2021_3069845 crossref_primary_10_3390_s20195684 crossref_primary_10_3390_rs15061679 crossref_primary_10_3390_rs15184610 crossref_primary_10_1016_j_sigpro_2023_109033 crossref_primary_10_1109_JSTARS_2025_3541257 crossref_primary_10_1109_LSP_2025_3546893 crossref_primary_10_1109_TGRS_2020_3030233 crossref_primary_10_3390_rs14184520 crossref_primary_10_1109_TGRS_2024_3393570 crossref_primary_10_1109_JSTARS_2022_3175257 crossref_primary_10_1137_21M1409354 crossref_primary_10_1145_3550311 crossref_primary_10_3390_rs11171959 crossref_primary_10_1007_s10489_022_04121_y crossref_primary_10_1007_s11045_018_0590_4 crossref_primary_10_1002_nla_2574 crossref_primary_10_1016_j_eswa_2019_113089 crossref_primary_10_1109_TSP_2022_3164837 crossref_primary_10_1109_JSEN_2023_3326251 crossref_primary_10_3390_rs16050766 crossref_primary_10_3390_computers10060078 crossref_primary_10_1109_JSTARS_2021_3081984 crossref_primary_10_1016_j_apm_2023_10_009 crossref_primary_10_1080_01431161_2025_2522945 crossref_primary_10_1109_ACCESS_2021_3076786 crossref_primary_10_1109_TGRS_2023_3241115 crossref_primary_10_1080_01431161_2020_1782507 crossref_primary_10_1109_LGRS_2023_3255413 crossref_primary_10_1109_JSTSP_2020_3045965 crossref_primary_10_1109_ACCESS_2019_2933845 crossref_primary_10_3390_rs14020383 crossref_primary_10_1109_TCI_2023_3321985 crossref_primary_10_1109_LGRS_2019_2963114 crossref_primary_10_3390_app10010237 crossref_primary_10_1109_TGRS_2020_2994260 crossref_primary_10_1109_TSP_2024_3406714 crossref_primary_10_1137_23M1557246 crossref_primary_10_1109_TGRS_2021_3082255 crossref_primary_10_1109_TGRS_2019_2935150 crossref_primary_10_1109_TGRS_2019_2936486 crossref_primary_10_1016_j_eswa_2023_122908 crossref_primary_10_1109_TGRS_2023_3314902 crossref_primary_10_1007_s10994_025_06793_2 crossref_primary_10_1016_j_ijleo_2023_170859 crossref_primary_10_1109_JSTARS_2021_3115172 crossref_primary_10_1109_JSEN_2024_3373477 crossref_primary_10_1109_TGRS_2025_3602210 crossref_primary_10_1016_j_neunet_2020_05_022 crossref_primary_10_1109_TGRS_2019_2949543 crossref_primary_10_3390_rs17172968 crossref_primary_10_1109_JSTARS_2020_3020541 crossref_primary_10_1109_TCI_2023_3346301 crossref_primary_10_1109_TGRS_2023_3275740 crossref_primary_10_1016_j_sigpro_2025_110191 crossref_primary_10_1109_TGRS_2021_3136336 crossref_primary_10_1109_TGRS_2021_3101504 crossref_primary_10_3390_app12031609 crossref_primary_10_1109_JSTARS_2023_3242048 crossref_primary_10_1109_JSTARS_2022_3223115 crossref_primary_10_3390_s24020327 crossref_primary_10_1109_TGRS_2019_2944989 crossref_primary_10_3390_rs13081473 crossref_primary_10_1186_s13673_020_00215_z crossref_primary_10_1109_JSTARS_2020_3048820 crossref_primary_10_1109_TIP_2020_2965302 crossref_primary_10_1109_TGRS_2018_2872888 crossref_primary_10_1109_JSTARS_2025_3549515 crossref_primary_10_1016_j_sigpro_2023_109126 crossref_primary_10_1109_TIP_2020_2984849 crossref_primary_10_1109_TIP_2024_3390582 crossref_primary_10_1080_01431161_2023_2195572 crossref_primary_10_1109_JSTARS_2022_3214653 crossref_primary_10_3390_rs17142517 crossref_primary_10_3390_sym16111414 crossref_primary_10_1016_j_neucom_2025_130401 crossref_primary_10_1109_JSTARS_2020_2980576 crossref_primary_10_3390_sym12020277 crossref_primary_10_1109_TGRS_2019_2946751 crossref_primary_10_3390_rs10020339 crossref_primary_10_1007_s10851_024_01208_8 crossref_primary_10_1109_JSTARS_2024_3392833 crossref_primary_10_1109_TSP_2025_3589059 crossref_primary_10_1109_ACCESS_2019_2961240 crossref_primary_10_1016_j_asoc_2025_113176 crossref_primary_10_1016_j_knosys_2020_106657 crossref_primary_10_1109_JSTSP_2021_3051488 crossref_primary_10_1016_j_infrared_2021_103631 crossref_primary_10_3390_rs13152930 crossref_primary_10_1109_TSP_2018_2876362 crossref_primary_10_1109_MGRS_2021_3064051 crossref_primary_10_1109_MSP_2020_3003544 crossref_primary_10_1080_01431161_2024_2357841 crossref_primary_10_1109_TIP_2018_2836307 crossref_primary_10_1109_TGRS_2021_3065990 crossref_primary_10_1109_TGRS_2022_3177636 crossref_primary_10_3390_rs9101074 crossref_primary_10_1016_j_neucom_2025_131202 crossref_primary_10_1109_TGRS_2021_3106380 crossref_primary_10_1109_TSP_2022_3159029 crossref_primary_10_1109_JSTARS_2023_3238653 crossref_primary_10_1109_LGRS_2018_2877734 crossref_primary_10_1016_j_jneumeth_2018_12_007 crossref_primary_10_3390_rs9121218 crossref_primary_10_1109_JSTARS_2021_3126664 crossref_primary_10_3390_rs11060651 crossref_primary_10_3390_rs12244117 crossref_primary_10_1109_JSTARS_2020_3019706 crossref_primary_10_1016_j_isprsjprs_2019_10_005 crossref_primary_10_1109_TGRS_2021_3134682 crossref_primary_10_1016_j_apm_2021_09_043 crossref_primary_10_1109_TGRS_2021_3095488 crossref_primary_10_1109_JSTARS_2021_3079210 crossref_primary_10_1080_01431161_2021_1941388 crossref_primary_10_1109_TGRS_2022_3228231 crossref_primary_10_1016_j_sigpro_2024_109483 crossref_primary_10_1109_JSTARS_2023_3341583 crossref_primary_10_1109_JSTARS_2019_2896031 crossref_primary_10_1109_TMC_2022_3186473 crossref_primary_10_1007_s11760_021_02062_6 crossref_primary_10_3390_rs10060816 |
| Cites_doi | 10.1007/978-3-540-72395-0_97 10.1109/TGRS.2008.2002882 10.1145/1233341.1233449 10.1109/TGRS.2007.898443 10.1109/TGRS.2015.2453915 10.1109/TGRS.2010.2068053 10.1109/JSTARS.2012.2194696 10.1109/MSP.2013.2297439 10.1364/JOSAA.25.003001 10.1364/JOSAA.32.001604 10.1109/ICIP.2015.7351663 10.1109/IGARSS.2015.7326105 10.1109/IGARSS.2013.6721352 10.1109/TGRS.2016.2514404 10.1109/ICCV.2005.228 10.1109/TGRS.2015.2417162 10.1109/TGRS.2010.2098413 10.1109/TGRS.2006.888466 10.1109/TGRS.2005.844293 10.1109/LGRS.2010.2048696 10.1137/07070111X 10.1109/TGRS.2015.2503737 10.1007/978-3-662-44848-9_42 10.1109/TGRS.2012.2207905 10.1137/060661685 10.1016/j.isprsjprs.2013.06.001 10.1109/MSP.2013.2279731 10.1137/070690729 10.1109/ICASSP.2009.4959825 10.1109/TGRS.2012.2197860 10.1016/j.neucom.2014.06.052 10.1109/TGRS.2011.2144605 10.1186/1687-6180-2014-142 10.1109/IGARSS.2013.6723348 10.1109/EUSIPCO.2015.7362482 10.1117/12.366289 10.1109/36.911111 10.1109/TIT.2016.2532906 10.1109/TGRS.2016.2586110 10.1109/JSTARS.2012.2189200 10.1109/TGRS.2010.2062190 10.1109/TGRS.2012.2213825 10.1109/TSP.2007.910469 10.1109/JSTARS.2015.2508448 10.1109/JSTARS.2015.2401603 10.1109/WHISPERS.2009.5289045 10.1007/978-3-319-22482-4_2 10.1109/TGRS.2003.820314 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2016.2633279 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 1792 |
| ExternalDocumentID | 10_1109_TGRS_2016_2633279 7784711 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Science and Technology Development Fund of Macau grantid: 026-2013-A – fundername: Australian Research Councils DECRA Projects grantid: DE120102948 – fundername: Research Grants of the University of Macau grantid: MYRG2015-00049-FST; MYRG2015-00050-FST – fundername: National Natural Science Foundation of China grantid: 61571393; 61303116; 61273244 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M RIG |
| ID | FETCH-LOGICAL-c359t-83bc2969adb511323453f859ea16f8ce49ed0d2ef09fc1ca4b6f82bb5565c4dd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 168 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396106700046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:07:42 EDT 2025 Tue Nov 18 22:37:15 EST 2025 Sat Nov 29 02:49:50 EST 2025 Tue Aug 26 16:43:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-83bc2969adb511323453f859ea16f8ce49ed0d2ef09fc1ca4b6f82bb5565c4dd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7418-5891 0000-0001-5822-8233 |
| PQID | 2174405643 |
| PQPubID | 85465 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1109_TGRS_2016_2633279 proquest_journals_2174405643 crossref_citationtrail_10_1109_TGRS_2016_2633279 ieee_primary_7784711 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-March 2017-3-00 20170301 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-March |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref53 ref11 jia (ref10) 2007; 45 ref17 ref16 ref19 ref18 swayze (ref54) 1992; 1 ref51 ref50 ref46 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 li (ref6) 2015; 53 ref5 ref40 cichocki (ref14) 2009 ref35 ref34 ref37 schaechtle (ref26) 2013 ref36 ref31 lee (ref52) 2001; 13 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref25 ref20 ref22 ref21 winter (ref4) 1999; 3753 ref28 ref27 de lathauwer (ref45) 2012 ref29 boardman (ref3) 1993; 1 |
| References_xml | – ident: ref48 doi: 10.1007/978-3-540-72395-0_97 – ident: ref13 doi: 10.1109/TGRS.2008.2002882 – ident: ref37 doi: 10.1145/1233341.1233449 – volume: 45 start-page: 3867 year: 2007 ident: ref10 article-title: Spectral and spatial complexity-based hyperspectral unmixing publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2007.898443 – ident: ref42 doi: 10.1109/TGRS.2015.2453915 – ident: ref18 doi: 10.1109/TGRS.2010.2068053 – ident: ref1 doi: 10.1109/JSTARS.2012.2194696 – ident: ref25 doi: 10.1109/MSP.2013.2297439 – ident: ref38 doi: 10.1364/JOSAA.25.003001 – ident: ref31 doi: 10.1364/JOSAA.32.001604 – ident: ref34 doi: 10.1109/ICIP.2015.7351663 – ident: ref33 doi: 10.1109/IGARSS.2015.7326105 – ident: ref29 doi: 10.1109/IGARSS.2013.6721352 – start-page: 1 year: 2012 ident: ref45 article-title: Block component analysis, a new concept for blind source separation publication-title: Proc Int Conf Latent Variable Anal Signal Separat – ident: ref36 doi: 10.1109/TGRS.2016.2514404 – ident: ref23 doi: 10.1109/ICCV.2005.228 – volume: 53 start-page: 5067 year: 2015 ident: ref6 article-title: Minimum volume simplex analysis: A fast algorithm for linear hyperspectral unmixing publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2015.2417162 – volume: 13 start-page: 556 year: 2001 ident: ref52 article-title: Algorithms for non-negative matrix factorization publication-title: Proc NIPS – ident: ref8 doi: 10.1109/TGRS.2010.2098413 – volume: 1 start-page: 47 year: 1992 ident: ref54 article-title: Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada publication-title: Proc Summaries 3rd Annu JPL Airborne Geosci Workshop – ident: ref12 doi: 10.1109/TGRS.2006.888466 – ident: ref5 doi: 10.1109/TGRS.2005.844293 – ident: ref35 doi: 10.1109/LGRS.2010.2048696 – ident: ref22 doi: 10.1137/07070111X – ident: ref41 doi: 10.1109/TGRS.2015.2503737 – ident: ref24 doi: 10.1007/978-3-662-44848-9_42 – ident: ref51 doi: 10.1109/TGRS.2012.2207905 – ident: ref43 doi: 10.1137/060661685 – ident: ref30 doi: 10.1016/j.isprsjprs.2013.06.001 – start-page: 1 year: 2013 ident: ref26 article-title: Multi-dimensional causal discovery publication-title: Proc Int Conf Artif Intell (IJCAI) – ident: ref2 doi: 10.1109/MSP.2013.2279731 – ident: ref49 doi: 10.1137/070690729 – ident: ref39 doi: 10.1109/ICASSP.2009.4959825 – ident: ref32 doi: 10.1109/TGRS.2012.2197860 – ident: ref28 doi: 10.1016/j.neucom.2014.06.052 – ident: ref16 doi: 10.1109/TGRS.2011.2144605 – year: 2009 ident: ref14 publication-title: Nonnegative Matrix and Tensor Factorizations Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation – ident: ref44 doi: 10.1186/1687-6180-2014-142 – ident: ref19 doi: 10.1109/IGARSS.2013.6723348 – ident: ref40 doi: 10.1109/EUSIPCO.2015.7362482 – volume: 3753 start-page: 266 year: 1999 ident: ref4 article-title: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data publication-title: Proc SPIE doi: 10.1117/12.366289 – ident: ref7 doi: 10.1109/36.911111 – ident: ref53 doi: 10.1109/TIT.2016.2532906 – ident: ref11 doi: 10.1109/TGRS.2016.2586110 – ident: ref27 doi: 10.1109/JSTARS.2012.2189200 – ident: ref9 doi: 10.1109/TGRS.2010.2062190 – ident: ref20 doi: 10.1109/TGRS.2012.2213825 – ident: ref47 doi: 10.1109/TSP.2007.910469 – ident: ref21 doi: 10.1109/JSTARS.2015.2508448 – volume: 1 start-page: 11 year: 1993 ident: ref3 article-title: Automating spectral unmixing of AVIRIS data using convegeometry concepts publication-title: Proc AVIRIS Workshop – ident: ref17 doi: 10.1109/JSTARS.2015.2401603 – ident: ref15 doi: 10.1109/WHISPERS.2009.5289045 – ident: ref46 doi: 10.1007/978-3-319-22482-4_2 – ident: ref50 doi: 10.1109/TGRS.2003.820314 |
| SSID | ssj0014517 |
| Score | 2.603985 |
| Snippet | Many spectral unmixing approaches ranging from geometry, algebra to statistics have been proposed, in which nonnegative matrix factorization (NMF)-based ones... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1776 |
| SubjectTerms | Data processing Decomposition Distance measurement Factorization Feature extraction Hyperspectral imagery (HSI) Hyperspectral imaging Imagery Mathematical analysis Mathematical models Matrix algebra Matrix decomposition Matrix methods Mixture models Pixels Spatial data Spectra spectral unmixing spectral-spatial structure State of the art Statistical methods Tensile stress tensor factorization Tensors |
| Title | Matrix-Vector Nonnegative Tensor Factorization for Blind Unmixing of Hyperspectral Imagery |
| URI | https://ieeexplore.ieee.org/document/7784711 https://www.proquest.com/docview/2174405643 |
| Volume | 55 |
| WOSCitedRecordID | wos000396106700046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-mKOiD3-L8Ig8-idE2aZrmUcWpoEN0E_GltEkqA7fJNkX_e3NZHIIi-FZC0pb82vvI3f0OYC_lOkbFR2UlJU14EdOSi4Jqza20EvmQfaHwlWw2s4cHdVODg0ktjLXWJ5_ZQ7z0sXzT1694VHYkJcpS5-tMSZmOa7UmEYNExKE0OqXOiWAhghlH6qh1fnuHSVzpIUs5Z5i19U0H-aYqPySxVy-Nxf-92BIsBDOSHI9xX4aa7a3A_DdywRWY9cmdergKj9fIw_9O7_0JPWlibsuTJ_wmLefFuqGG77oTSjKJs2PJiTM_DWn3up13dzfSr8iF81jHhZkD9-TLLpJffKxBu3HWOr2goacC1VyoEc14qZlKVWFKgU3meSJ4lQllizitMm0TZU1kmK0iVelYF0nphllZCmf46cQYvg7TvX7PbgBxsqI0Mqt4oeNEOh3HYiMEMzZNKic1ijpEX7uc60A4jn0vnnPveEQqR2ByBCYPwNRhf7LkZcy28dfkVURiMjGAUIftLyjz8D8Oc3S8nGnqzK_N31dtwRxDhe2zy7ZhejR4tTswo99GneFg139qnxLe0RA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9VhWnsAbYytPI1P-wJYZrYcRw_AqIUrUTTFqZqL1FiOxPSaKe2IPjv8bmmQhpC2ltk2UnkX3IfvrvfAXxJuY5R8VHZSEkTXsW05qKiWnMrrUQ-ZF8oPJR5no1G6lsLDpe1MNZan3xmj_DSx_LNRN_iUVlPSpSlztdZwc5ZoVprGTNIRByKo1Pq3AgWYphxpHrF-fcfmMaVHrGUc4Z5W8-0kG-r8o8s9gqmv_F_r_Ye1oMhSY4XyH-Alh134N0zesEOvPHpnXq2Cb8ukYn_nv70Z_Qkx-yW357ymxTOj3VDfd93JxRlEmfJkhNngBpyNb65vnd3I5OGDJzPuijNnLonX9wg_cXDR7jqnxWnAxq6KlDNhZrTjNeaqVRVphbYZp4ngjeZULaK0ybTNlHWRIbZJlKNjnWV1G6Y1bVwpp9OjOFb0B5PxvYTECctaiOzhlc6TqTTciw2QjBj06RxcqPqQvS0y6UOlOPY-eJP6V2PSJUITInAlAGYLhwsl_xd8G28NnkTkVhODCB0YfcJyjL8kbMSXS9nnDoDbPvlVZ_h7aC4HJbDi_zrDqwxVN8-12wX2vPprd2DVX03v55N9_1n9wgfsdRZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matrix-Vector+Nonnegative+Tensor+Factorization+for+Blind+Unmixing+of+Hyperspectral+Imagery&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Qian%2C+Yuntao&rft.au=Xiong%2C+Fengchao&rft.au=Zeng%2C+Shan&rft.au=Zhou%2C+Jun&rft.date=2017-03-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=55&rft.issue=3&rft.spage=1776&rft.epage=1792&rft_id=info:doi/10.1109%2FTGRS.2016.2633279&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2016_2633279 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |