Stability Analysis of Optimal Control Problems with a Second-Order State Constraint

This paper gives stability results for nonlinear optimal control problems subject to a regular state constraint of second-order. The strengthened Legendre-Clebsch condition is assumed to hold, and no assumption on the structure of the contact set is made. Under a weak secondorder sufficient conditio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on optimization Ročník 20; číslo 1; s. 104 - 129
Hlavní autor: Hermant, Audrey
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2009
Témata:
ISSN:1052-6234, 1095-7189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper gives stability results for nonlinear optimal control problems subject to a regular state constraint of second-order. The strengthened Legendre-Clebsch condition is assumed to hold, and no assumption on the structure of the contact set is made. Under a weak secondorder sufficient condition (taking into account the active constraints), we show that the solutions are Lipschitz continuous w.r.t. the perturbation parameter in the L^sup 2^ norm, and Holder continuous in the L∞ norm. We use a generalized implicit function theorem in metric spaces by Dontchev and Hager [SIAM J. Control Optim., 36 (1998), pp. 698-718]. The difficulty is that multipliers associated with second-order state constraints have a low regularity (they are only bounded measures). We obtain Lipschitz stability of a "primitive" of the state constraint multiplier. [PUBLICATION ABSTRACT]
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1052-6234
1095-7189
DOI:10.1137/070707993