Stability Analysis of Optimal Control Problems with a Second-Order State Constraint
This paper gives stability results for nonlinear optimal control problems subject to a regular state constraint of second-order. The strengthened Legendre-Clebsch condition is assumed to hold, and no assumption on the structure of the contact set is made. Under a weak secondorder sufficient conditio...
Uložené v:
| Vydané v: | SIAM journal on optimization Ročník 20; číslo 1; s. 104 - 129 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2009
|
| Predmet: | |
| ISSN: | 1052-6234, 1095-7189 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper gives stability results for nonlinear optimal control problems subject to a regular state constraint of second-order. The strengthened Legendre-Clebsch condition is assumed to hold, and no assumption on the structure of the contact set is made. Under a weak secondorder sufficient condition (taking into account the active constraints), we show that the solutions are Lipschitz continuous w.r.t. the perturbation parameter in the L^sup 2^ norm, and Holder continuous in the L∞ norm. We use a generalized implicit function theorem in metric spaces by Dontchev and Hager [SIAM J. Control Optim., 36 (1998), pp. 698-718]. The difficulty is that multipliers associated with second-order state constraints have a low regularity (they are only bounded measures). We obtain Lipschitz stability of a "primitive" of the state constraint multiplier. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 1052-6234 1095-7189 |
| DOI: | 10.1137/070707993 |