Stability Analysis of Optimal Control Problems with a Second-Order State Constraint
This paper gives stability results for nonlinear optimal control problems subject to a regular state constraint of second-order. The strengthened Legendre-Clebsch condition is assumed to hold, and no assumption on the structure of the contact set is made. Under a weak secondorder sufficient conditio...
Gespeichert in:
| Veröffentlicht in: | SIAM journal on optimization Jg. 20; H. 1; S. 104 - 129 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2009
|
| Schlagworte: | |
| ISSN: | 1052-6234, 1095-7189 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper gives stability results for nonlinear optimal control problems subject to a regular state constraint of second-order. The strengthened Legendre-Clebsch condition is assumed to hold, and no assumption on the structure of the contact set is made. Under a weak secondorder sufficient condition (taking into account the active constraints), we show that the solutions are Lipschitz continuous w.r.t. the perturbation parameter in the L^sup 2^ norm, and Holder continuous in the L∞ norm. We use a generalized implicit function theorem in metric spaces by Dontchev and Hager [SIAM J. Control Optim., 36 (1998), pp. 698-718]. The difficulty is that multipliers associated with second-order state constraints have a low regularity (they are only bounded measures). We obtain Lipschitz stability of a "primitive" of the state constraint multiplier. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 1052-6234 1095-7189 |
| DOI: | 10.1137/070707993 |