A subject-specific unsupervised deep learning method for quantitative susceptibility mapping using implicit neural representation

•Subject-specific and unsupervised deep learning for QSM reconstruction.•Integration of implicit continuous signal representation and explicit regularizations.•Phase compensation strategy for an accurate physical model.•Improved accuracy and quality compared with established methods. Quantitative su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis Jg. 95; S. 103173
Hauptverfasser: Zhang, Ming, Feng, Ruimin, Li, Zhenghao, Feng, Jie, Wu, Qing, Zhang, Zhiyong, Ma, Chengxin, Wu, Jinsong, Yan, Fuhua, Liu, Chunlei, Zhang, Yuyao, Wei, Hongjiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.07.2024
Schlagworte:
ISSN:1361-8415, 1361-8423, 1361-8423
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Subject-specific and unsupervised deep learning for QSM reconstruction.•Integration of implicit continuous signal representation and explicit regularizations.•Phase compensation strategy for an accurate physical model.•Improved accuracy and quality compared with established methods. Quantitative susceptibility mapping (QSM) is an MRI-based technique that estimates the underlying tissue magnetic susceptibility based on phase signal. Deep learning (DL)-based methods have shown promise in handling the challenging ill-posed inverse problem for QSM reconstruction. However, they require extensive paired training data that are typically unavailable and suffer from generalization problems. Recent model-incorporated DL approaches also overlook the non-local effect of the tissue phase in applying the source-to-field forward model due to patch-based training constraint, resulting in a discrepancy between the prediction and measurement and subsequently suboptimal QSM reconstruction. This study proposes an unsupervised and subject-specific DL method for QSM reconstruction based on implicit neural representation (INR), referred to as INR-QSM. INR has emerged as a powerful framework for learning a high-quality continuous representation of the signal (image) by exploiting its internal information without training labels. In INR-QSM, the desired susceptibility map is represented as a continuous function of the spatial coordinates, parameterized by a fully-connected neural network. The weights are learned by minimizing a loss function that includes a data fidelity term incorporated by the physical model and regularization terms. Additionally, a novel phase compensation strategy is proposed for the first time to account for the non-local effect of tissue phase in data consistency calculation to make the physical model more accurate. Our experiments show that INR-QSM outperforms traditional established QSM reconstruction methods and the compared unsupervised DL method both qualitatively and quantitatively, and is competitive against supervised DL methods under data perturbations.
AbstractList Quantitative susceptibility mapping (QSM) is an MRI-based technique that estimates the underlying tissue magnetic susceptibility based on phase signal. Deep learning (DL)-based methods have shown promise in handling the challenging ill-posed inverse problem for QSM reconstruction. However, they require extensive paired training data that are typically unavailable and suffer from generalization problems. Recent model-incorporated DL approaches also overlook the non-local effect of the tissue phase in applying the source-to-field forward model due to patch-based training constraint, resulting in a discrepancy between the prediction and measurement and subsequently suboptimal QSM reconstruction. This study proposes an unsupervised and subject-specific DL method for QSM reconstruction based on implicit neural representation (INR), referred to as INR-QSM. INR has emerged as a powerful framework for learning a high-quality continuous representation of the signal (image) by exploiting its internal information without training labels. In INR-QSM, the desired susceptibility map is represented as a continuous function of the spatial coordinates, parameterized by a fully-connected neural network. The weights are learned by minimizing a loss function that includes a data fidelity term incorporated by the physical model and regularization terms. Additionally, a novel phase compensation strategy is proposed for the first time to account for the non-local effect of tissue phase in data consistency calculation to make the physical model more accurate. Our experiments show that INR-QSM outperforms traditional established QSM reconstruction methods and the compared unsupervised DL method both qualitatively and quantitatively, and is competitive against supervised DL methods under data perturbations.Quantitative susceptibility mapping (QSM) is an MRI-based technique that estimates the underlying tissue magnetic susceptibility based on phase signal. Deep learning (DL)-based methods have shown promise in handling the challenging ill-posed inverse problem for QSM reconstruction. However, they require extensive paired training data that are typically unavailable and suffer from generalization problems. Recent model-incorporated DL approaches also overlook the non-local effect of the tissue phase in applying the source-to-field forward model due to patch-based training constraint, resulting in a discrepancy between the prediction and measurement and subsequently suboptimal QSM reconstruction. This study proposes an unsupervised and subject-specific DL method for QSM reconstruction based on implicit neural representation (INR), referred to as INR-QSM. INR has emerged as a powerful framework for learning a high-quality continuous representation of the signal (image) by exploiting its internal information without training labels. In INR-QSM, the desired susceptibility map is represented as a continuous function of the spatial coordinates, parameterized by a fully-connected neural network. The weights are learned by minimizing a loss function that includes a data fidelity term incorporated by the physical model and regularization terms. Additionally, a novel phase compensation strategy is proposed for the first time to account for the non-local effect of tissue phase in data consistency calculation to make the physical model more accurate. Our experiments show that INR-QSM outperforms traditional established QSM reconstruction methods and the compared unsupervised DL method both qualitatively and quantitatively, and is competitive against supervised DL methods under data perturbations.
•Subject-specific and unsupervised deep learning for QSM reconstruction.•Integration of implicit continuous signal representation and explicit regularizations.•Phase compensation strategy for an accurate physical model.•Improved accuracy and quality compared with established methods. Quantitative susceptibility mapping (QSM) is an MRI-based technique that estimates the underlying tissue magnetic susceptibility based on phase signal. Deep learning (DL)-based methods have shown promise in handling the challenging ill-posed inverse problem for QSM reconstruction. However, they require extensive paired training data that are typically unavailable and suffer from generalization problems. Recent model-incorporated DL approaches also overlook the non-local effect of the tissue phase in applying the source-to-field forward model due to patch-based training constraint, resulting in a discrepancy between the prediction and measurement and subsequently suboptimal QSM reconstruction. This study proposes an unsupervised and subject-specific DL method for QSM reconstruction based on implicit neural representation (INR), referred to as INR-QSM. INR has emerged as a powerful framework for learning a high-quality continuous representation of the signal (image) by exploiting its internal information without training labels. In INR-QSM, the desired susceptibility map is represented as a continuous function of the spatial coordinates, parameterized by a fully-connected neural network. The weights are learned by minimizing a loss function that includes a data fidelity term incorporated by the physical model and regularization terms. Additionally, a novel phase compensation strategy is proposed for the first time to account for the non-local effect of tissue phase in data consistency calculation to make the physical model more accurate. Our experiments show that INR-QSM outperforms traditional established QSM reconstruction methods and the compared unsupervised DL method both qualitatively and quantitatively, and is competitive against supervised DL methods under data perturbations.
Quantitative susceptibility mapping (QSM) is an MRI-based technique that estimates the underlying tissue magnetic susceptibility based on phase signal. Deep learning (DL)-based methods have shown promise in handling the challenging ill-posed inverse problem for QSM reconstruction. However, they require extensive paired training data that are typically unavailable and suffer from generalization problems. Recent model-incorporated DL approaches also overlook the non-local effect of the tissue phase in applying the source-to-field forward model due to patch-based training constraint, resulting in a discrepancy between the prediction and measurement and subsequently suboptimal QSM reconstruction. This study proposes an unsupervised and subject-specific DL method for QSM reconstruction based on implicit neural representation (INR), referred to as INR-QSM. INR has emerged as a powerful framework for learning a high-quality continuous representation of the signal (image) by exploiting its internal information without training labels. In INR-QSM, the desired susceptibility map is represented as a continuous function of the spatial coordinates, parameterized by a fully-connected neural network. The weights are learned by minimizing a loss function that includes a data fidelity term incorporated by the physical model and regularization terms. Additionally, a novel phase compensation strategy is proposed for the first time to account for the non-local effect of tissue phase in data consistency calculation to make the physical model more accurate. Our experiments show that INR-QSM outperforms traditional established QSM reconstruction methods and the compared unsupervised DL method both qualitatively and quantitatively, and is competitive against supervised DL methods under data perturbations.
ArticleNumber 103173
Author Zhang, Yuyao
Wu, Jinsong
Feng, Jie
Li, Zhenghao
Feng, Ruimin
Liu, Chunlei
Wei, Hongjiang
Zhang, Zhiyong
Yan, Fuhua
Wu, Qing
Ma, Chengxin
Zhang, Ming
Author_xml – sequence: 1
  givenname: Ming
  orcidid: 0000-0001-8260-0437
  surname: Zhang
  fullname: Zhang, Ming
  organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Ruimin
  orcidid: 0000-0002-4428-2316
  surname: Feng
  fullname: Feng, Ruimin
  organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Zhenghao
  orcidid: 0000-0002-2047-5041
  surname: Li
  fullname: Li, Zhenghao
  organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Jie
  orcidid: 0000-0002-7734-902X
  surname: Feng
  fullname: Feng, Jie
  organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Qing
  surname: Wu
  fullname: Wu, Qing
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 6
  givenname: Zhiyong
  orcidid: 0000-0001-9773-7348
  surname: Zhang
  fullname: Zhang, Zhiyong
  organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 7
  givenname: Chengxin
  orcidid: 0009-0001-7682-0879
  surname: Ma
  fullname: Ma, Chengxin
  organization: Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
– sequence: 8
  givenname: Jinsong
  surname: Wu
  fullname: Wu, Jinsong
  organization: Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
– sequence: 9
  givenname: Fuhua
  orcidid: 0000-0002-5910-1506
  surname: Yan
  fullname: Yan, Fuhua
  organization: Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
– sequence: 10
  givenname: Chunlei
  orcidid: 0000-0001-8816-4832
  surname: Liu
  fullname: Liu, Chunlei
  organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
– sequence: 11
  givenname: Yuyao
  surname: Zhang
  fullname: Zhang, Yuyao
  organization: School of Information Science and Technology, ShanghaiTech University, Shanghai, China
– sequence: 12
  givenname: Hongjiang
  orcidid: 0000-0002-9060-4152
  surname: Wei
  fullname: Wei, Hongjiang
  email: hongjiang.wei@sjtu.edu.cn
  organization: School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38657424$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtv1jAUhi1URC_wC5CQR5Z82LHjJANDVXGTKrHAbDnOCZxPieP68kkd-89xSMvA0MW2rOc5st_3kpy51QEhbzk7cMbVh-NhgRHNoWa1LDeCt-IFueBC8aqTtTj7d-bNObmM8cgYa6Vkr8i56FTTylpekIdrGvNwBJuq6MHihJZmF7OHcMIIIx0BPJ3BBIfuF10g_V5HOq2B3mXjEiaT8ARlRrTgEw44Y7qni_F-w3PcVlz8jBYTdZCDmWkAHyCC29zVvSYvJzNHePO4X5Gfnz_9uPla3X7_8u3m-rayoulT1Y5tb1oGo5XQmckMXEwdG6Tt2VR3RilQslGKC8aGabAdiNHafnOEELbrxBV5v8_1Yb3LEJNesDx6no2DNUctmFQNV7xuC_ruEc1DyVj7gIsJ9_optgL0O2DDGmOASVvcf5OCwVlzpreK9FH_rUhvFem9ouKK_9yn8c9bH3cLSkQnhKCjRXC2gKGUp8cVn_X_AIVervs
CitedBy_id crossref_primary_10_1088_1361_6560_addfa5
crossref_primary_10_1016_j_bspc_2025_108217
crossref_primary_10_1016_j_bspc_2024_107446
crossref_primary_10_1016_j_redox_2025_103561
Cites_doi 10.1145/3503250
10.1148/radiol.2018180136
10.1109/TCI.2021.3097596
10.1002/mrm.29588
10.2214/ajr.145.4.843
10.1016/j.neuroimage.2012.04.042
10.1016/j.neuroimage.2011.08.077
10.1002/hbm.10062
10.1145/3528223.3530127
10.1016/j.neuroimage.2019.116064
10.1016/j.media.2022.102700
10.1016/j.media.2022.102477
10.1016/j.neuroimage.2019.03.060
10.18383/j.tom.2015.00136
10.1002/mrm.25358
10.1016/j.neuroimage.2022.119522
10.1109/TCI.2023.3281196
10.1088/0031-9155/51/24/007
10.1002/mrm.25029
10.1002/mrm.26830
10.1109/TMI.2023.3236216
10.1016/j.neuroimage.2023.120148
10.1002/mrm.28754
10.1002/mrm.22135
10.1002/mrm.28716
10.1002/mrm.29547
10.1002/nbm.3570
10.1016/j.neuroimage.2021.118376
10.1002/nbm.3383
10.1016/j.neuroimage.2014.12.043
10.1093/brain/aww278
10.1002/mrm.21828
10.1016/j.neuroimage.2018.06.036
10.1109/JBHI.2022.3223106
10.1109/MSP.2023.3236483
10.1002/mrm.23000
10.1016/j.neuroimage.2018.10.031
10.1002/mrm.27073
10.1364/OL.28.001194
10.1109/TNNLS.2022.3177134
10.1016/S1361-8415(01)00036-6
10.1002/nbm.4461
10.1016/j.neuroimage.2018.06.030
10.1136/jnnp-2019-322042
10.1109/TCI.2021.3125564
10.1016/j.neuroimage.2010.11.088
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.media.2024.103173
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 38657424
10_1016_j_media_2024_103173
S1361841524000987
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
AGCQF
AGRNS
NPM
7X8
ID FETCH-LOGICAL-c359t-7d79a70edc4e8afab13f80b4c90f28a66e645661300bfbc8e3dcc979a7333c883
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001220917700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Sat Sep 27 19:35:40 EDT 2025
Mon Jul 21 06:02:32 EDT 2025
Sat Nov 29 04:06:12 EST 2025
Tue Nov 18 21:59:47 EST 2025
Sat Jun 01 15:41:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Quantitative susceptibility mapping
Implicit neural representation
Unsupervised learning
Phase compensation
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c359t-7d79a70edc4e8afab13f80b4c90f28a66e645661300bfbc8e3dcc979a7333c883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9060-4152
0000-0002-5910-1506
0000-0001-8260-0437
0000-0001-8816-4832
0000-0002-4428-2316
0000-0002-2047-5041
0009-0001-7682-0879
0000-0001-9773-7348
0000-0002-7734-902X
PMID 38657424
PQID 3046516127
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3046516127
pubmed_primary_38657424
crossref_citationtrail_10_1016_j_media_2024_103173
crossref_primary_10_1016_j_media_2024_103173
elsevier_sciencedirect_doi_10_1016_j_media_2024_103173
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cognolato, O'Brien, Jin, Robinson, Laun, Barth, Bollmann (bib0008) 2023; 84
Li, Wu, Liu (bib0021) 2011; 55
Wu, Li, Sun, Zhou, Wei, Yu, Zhang (bib0053) 2023; 27
Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, Ng (bib0030) 2021; 65
Yoon, Gong, Chatnuntawech, Bilgic, Lee, Jung, Ko, Jung, Setsompop, Zaharchuk, Kim, Pauly, Lee (bib0055) 2018; 179
Li, Vikram, Lim, Jones, Farrell, van Zijl (bib0022) 2012; 62
Shi, Feng, Li, Zhuang, Zhang, Wei (bib0039) 2022; 261
Sun, Ma, MacDonald, Pike (bib0044) 2018; 179
Wang, Liu (bib0048) 2015; 73
Zivadinov, Tavazzi, Bergsland, Hagemeier, Lin, Dwyer, Carl, Kolb, Hojnacki, Ramasamy, Durfee, Weinstock-Guttman, Schweser (bib0059) 2018; 289
Marques, Meineke, Milovic, Bilgic, Chan, Hedouin, van der Zwaag, Langkammer, Schweser (bib0028) 2021; 86
Thomas, Leyland, Schrag, Lees, Acosta-Cabronero, Weil (bib0047) 2020; 91
Bilgic, Pfefferbaum, Rohlfing, Sullivan, Adalsteinsson (bib0004) 2012; 59
Koch, Papademetris, Rothman, de Graaf (bib0017) 2006; 51
Li, Feng, Liu, Feng, Lao, Zhang, Li, Zhang, Wei (bib0023) 2023; 274
Wu, Li, Guidon, Liu (bib0051) 2012; 67
Slavkova, DiCarlo, Wadhwa, Kumar, Wu, Virostko, Yankeelov, Tamir (bib0042) 2022; 89
Micikevicius, Narang, Alben, Diamos, Elsen, Garcia, Ginsburg, Houston, Kuchaiev, Venkatesh (bib0029) 2017
Li, Wang, Yu, Han, Cao, Romero, Tantiwongkosi, Duong, Liu (bib0020) 2015; 108
Shen, Pauly, Xing (bib0038) 2024; 35
Zhang, Shi, Wei, Han, Zhu, Liu (bib0057) 2019; 185
Oh, Bae, Ahn, Park, Moon, Ye (bib0035) 2022; 79
Bilgic, Fan, Polimeni, Cauley, Bianciardi, Adalsteinsson, Wald, Setsompop (bib0003) 2014; 72
Wu, Feng, Wei, Yu, Zhang (bib0052) 2023; 9
Feng, Zhao, Wang, Yang, Feng, Shi, Zhang, Liu, Zhang, Zhuang, Wei (bib0011) 2021; 240
Jung, Bollmann, Lee (bib0015) 2020
Lai, Aggarwal, van Zijl, Li, Sulam (bib0018) 2020
Zhu, Cheng, Cui, Zhu, Ying, Liang (bib0058) 2023; 40
Zalbagi Darestani, Heckel (bib0056) 2021; 7
Smith (bib0043) 2002; 17
Sun, Liu, Xie, Wohlberg, Kamilov (bib0045) 2021; 7
Bollmann, Rasmussen, Kristensen, Blendal, Ostergaard, Plocharski, O'Brien, Langkammer, Janke, Barth (bib0005) 2019; 195
Müller, Evans, Schied, Keller (bib0034) 2022; 41
Acosta-Cabronero, Cardenas-Blanco, Betts, Butryn, Valdes-Herrera, Galazky, Nestor (bib0001) 2017; 140
Langkammer, Schweser, Shmueli, Kames, Li, Guo, Milovic, Kim, Wei, Bredies, Buch, Guo, Liu, Meineke, Rauscher, Marques, Bilgic (bib0019) 2018; 79
Tancik, Srinivasan, Mildenhall, Fridovich-Keil, Raghavan, Singhal, Ramamoorthi, Barron, Ng (bib0046) 2020; 33
Milovic, Bilgic, Zhao, Acosta-Cabronero, Tejos (bib0031) 2018; 80
Xu, Moyer, Gagoski, Iglesias, Ellen Grant, Adalsteinsson (bib0054) 2023; 42
Wei, Cao, Zhang, Guan, Yan, Yeom, Liu (bib0049) 2019; 202
Sitzmann, Martel, Bergman, Lindell, Wetzstein (bib0041) 2020; 33
Liu, Wei, Gong, Cronin, Dibb, Decker (bib0024) 2015; 1
Liu, Spincemaille, de Rochefort, Kressler, Wang (bib0026) 2009; 61
Milovic, Tejos, Irarrazaval (bib0032) 2019
Fang, Lai, van Zijl, Li, Sulam (bib0010) 2023; 87, 102829
Shmueli, de Zwart, van Gelderen, Li, Dodd, Duyn (bib0040) 2009; 62
Chen, Liu, Wang (bib0007) 2021
Huber, Mueller, Heubes (bib0013) 1985; 145
Marques, Bowtell (bib0027) 2005
Bilgic, Langkammer, Marques, Meineke, Milovic, Schweser (bib0009) 2021; 86
Schofield, Zhu (bib0037) 2003; 28
Wei, Dibb, Zhou, Sun, Xu, Wang, Liu (bib0050) 2015; 28
Milovic, Tejos, Irarrazaval, Shmueli (bib0033) 2022
Kames, Doucette, Rauscher (bib0016) 2023; 89
Bao, Xiong, Wei, Chen, van Zijl, Li (bib0002) 2020; 67
Salomir, de Senneville, Moonen (bib0036) 2003
Liu, Koch (bib0025) 2019
Gao, Zhu, Moffat, Glarin, Wilman, Pike, Crozier, Liu, Sun (bib0012) 2021; 34
Chatnuntawech, McDaniel, Cauley, Gagoski, Langkammer, Martin, Grant, Wald, Setsompop, Adalsteinsson, Bilgic (bib0006) 2017; 30
Jenkinson, Smith (bib0014) 2001; 5
Jung (10.1016/j.media.2024.103173_bib0015) 2020
Milovic (10.1016/j.media.2024.103173_bib0031) 2018; 80
Bilgic (10.1016/j.media.2024.103173_bib0003) 2014; 72
Chen (10.1016/j.media.2024.103173_bib0007) 2021
Li (10.1016/j.media.2024.103173_bib0023) 2023; 274
Liu (10.1016/j.media.2024.103173_bib0025) 2019
Wu (10.1016/j.media.2024.103173_bib0053) 2023; 27
Sitzmann (10.1016/j.media.2024.103173_bib0041) 2020; 33
Liu (10.1016/j.media.2024.103173_bib0024) 2015; 1
Marques (10.1016/j.media.2024.103173_bib0027) 2005
Wu (10.1016/j.media.2024.103173_bib0051) 2012; 67
Acosta-Cabronero (10.1016/j.media.2024.103173_bib0001) 2017; 140
Zhang (10.1016/j.media.2024.103173_bib0057) 2019; 185
Shi (10.1016/j.media.2024.103173_bib0039) 2022; 261
Slavkova (10.1016/j.media.2024.103173_bib0042) 2022; 89
Feng (10.1016/j.media.2024.103173_bib0011) 2021; 240
Wang (10.1016/j.media.2024.103173_bib0048) 2015; 73
Schofield (10.1016/j.media.2024.103173_bib0037) 2003; 28
Zalbagi Darestani (10.1016/j.media.2024.103173_bib0056) 2021; 7
Cognolato (10.1016/j.media.2024.103173_bib0008) 2023; 84
Gao (10.1016/j.media.2024.103173_bib0012) 2021; 34
Milovic (10.1016/j.media.2024.103173_bib0032) 2019
Müller (10.1016/j.media.2024.103173_bib0034) 2022; 41
Sun (10.1016/j.media.2024.103173_bib0045) 2021; 7
Zivadinov (10.1016/j.media.2024.103173_bib0059) 2018; 289
Liu (10.1016/j.media.2024.103173_bib0026) 2009; 61
Bilgic (10.1016/j.media.2024.103173_bib0004) 2012; 59
Zhu (10.1016/j.media.2024.103173_bib0058) 2023; 40
Wei (10.1016/j.media.2024.103173_bib0050) 2015; 28
Langkammer (10.1016/j.media.2024.103173_bib0019) 2018; 79
Marques (10.1016/j.media.2024.103173_bib0028) 2021; 86
Salomir (10.1016/j.media.2024.103173_bib0036) 2003
Wu (10.1016/j.media.2024.103173_bib0052) 2023; 9
Jenkinson (10.1016/j.media.2024.103173_bib0014) 2001; 5
Li (10.1016/j.media.2024.103173_bib0021) 2011; 55
Kames (10.1016/j.media.2024.103173_bib0016) 2023; 89
Sun (10.1016/j.media.2024.103173_bib0044) 2018; 179
Li (10.1016/j.media.2024.103173_bib0022) 2012; 62
Mildenhall (10.1016/j.media.2024.103173_bib0030) 2021; 65
Bilgic (10.1016/j.media.2024.103173_bib0009) 2021; 86
Yoon (10.1016/j.media.2024.103173_bib0055) 2018; 179
Oh (10.1016/j.media.2024.103173_bib0035) 2022; 79
Lai (10.1016/j.media.2024.103173_bib0018) 2020
Smith (10.1016/j.media.2024.103173_bib0043) 2002; 17
Xu (10.1016/j.media.2024.103173_bib0054) 2023; 42
Wei (10.1016/j.media.2024.103173_bib0049) 2019; 202
Milovic (10.1016/j.media.2024.103173_bib0033) 2022
Bollmann (10.1016/j.media.2024.103173_bib0005) 2019; 195
Bao (10.1016/j.media.2024.103173_bib0002) 2020; 67
Li (10.1016/j.media.2024.103173_bib0020) 2015; 108
Tancik (10.1016/j.media.2024.103173_bib0046) 2020; 33
Koch (10.1016/j.media.2024.103173_bib0017) 2006; 51
Huber (10.1016/j.media.2024.103173_bib0013) 1985; 145
Thomas (10.1016/j.media.2024.103173_bib0047) 2020; 91
Shmueli (10.1016/j.media.2024.103173_bib0040) 2009; 62
Micikevicius (10.1016/j.media.2024.103173_bib0029) 2017
Shen (10.1016/j.media.2024.103173_bib0038) 2024; 35
Fang (10.1016/j.media.2024.103173_bib0010) 2023; 87, 102829
Chatnuntawech (10.1016/j.media.2024.103173_bib0006) 2017; 30
References_xml – volume: 5
  start-page: 143
  year: 2001
  end-page: 156
  ident: bib0014
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
– volume: 195
  start-page: 373
  year: 2019
  end-page: 383
  ident: bib0005
  article-title: DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping
  publication-title: Neuroimage
– volume: 108
  start-page: 111
  year: 2015
  end-page: 122
  ident: bib0020
  article-title: A method for estimating and removing streaking artifacts in quantitative susceptibility mapping
  publication-title: Neuroimage
– volume: 67
  year: 2020
  ident: bib0002
  article-title: Diffusion-regularized susceptibility tensor imaging (DRSTI) of tissue microstructures in the human brain
  publication-title: Med. Image Anal.
– volume: 261
  year: 2022
  ident: bib0039
  article-title: Towards
  publication-title: Neuroimage
– volume: 33
  start-page: 7537
  year: 2020
  end-page: 7547
  ident: bib0046
  article-title: Fourier features let networks learn high frequency functions in low dimensional domains
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2017
  ident: bib0029
  article-title: Mixed Precision Training
– volume: 145
  start-page: 843
  year: 1985
  end-page: 846
  ident: bib0013
  article-title: Oblique magnetic resonance imaging of normal structures
  publication-title: Am. J. Roentgenol.
– volume: 62
  start-page: 1510
  year: 2009
  end-page: 1522
  ident: bib0040
  article-title: Magnetic susceptibility mapping of brain tissue
  publication-title: Magn. Reson. Med.
– year: 2019
  ident: bib0025
  article-title: Meta-QSM: an image-resolution-arbitrary network for QSM reconstruction. arXiv preprint arXiv:1908.00206
– volume: 72
  start-page: 1444
  year: 2014
  end-page: 1459
  ident: bib0003
  article-title: Fast quantitative susceptibility mapping with L1-regularization and automatic parameter selection
  publication-title: Magn. Reson. Med.
– volume: 89
  start-page: 2391
  year: 2023
  end-page: 2401
  ident: bib0016
  article-title: Multi-echo dipole inversion for magnetic susceptibility mapping
  publication-title: Magn. Reson. Med.
– volume: 33
  start-page: 7462
  year: 2020
  end-page: 7473
  ident: bib0041
  article-title: Implicit neural representations with periodic activation functions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 62
  start-page: 314
  year: 2012
  end-page: 330
  ident: bib0022
  article-title: Mapping magnetic susceptibility anisotropies of white matter
  publication-title: Neuroimage
– volume: 67
  start-page: 137
  year: 2012
  end-page: 147
  ident: bib0051
  article-title: Whole brain susceptibility mapping using compressed sensing
  publication-title: Magn. Reson. Med.
– start-page: 65
  year: 2005
  end-page: 78
  ident: bib0027
  article-title: Application of a Fourier-based method For Rapid Calculation of Field Inhomogeneity Due to Spatial Variation of Magnetic Susceptibility
– volume: 84
  year: 2023
  ident: bib0008
  article-title: NeXtQSM-A complete deep learning pipeline for data-consistent quantitative susceptibility mapping trained with hybrid data
  publication-title: Med. Image Anal.
– volume: 42
  start-page: 1707
  year: 2023
  end-page: 1719
  ident: bib0054
  article-title: NeSVoR: implicit neural representation for slice-to-volume reconstruction in MRI
  publication-title: IEEE Trans. Med. Imaging
– volume: 202
  year: 2019
  ident: bib0049
  article-title: Learning-based single-step quantitative susceptibility mapping reconstruction without brain extraction
  publication-title: Neuroimage
– volume: 289
  start-page: 487
  year: 2018
  end-page: 496
  ident: bib0059
  article-title: Brain iron at quantitative mri is associated with disability in multiple sclerosis
  publication-title: Radiology
– volume: 86
  start-page: 1241
  year: 2021
  end-page: 1255
  ident: bib0009
  article-title: QSM reconstruction challenge 2.0: design and report of results
  publication-title: Magn. Reson. Med.
– volume: 40
  start-page: 116
  year: 2023
  end-page: 128
  ident: bib0058
  article-title: Physics-driven deep learning methods for fast quantitative magnetic resonance imaging: performance improvements through integration with deep neural networks
  publication-title: IEEE Signal. Process. Mag.
– volume: 87, 102829
  year: 2023
  ident: bib0010
  article-title: DeepSTI: towards tensor reconstruction using fewer orientations in susceptibility tensor imaging
  publication-title: Med. Image Anal.
– volume: 86
  start-page: 526
  year: 2021
  end-page: 542
  ident: bib0028
  article-title: QSM reconstruction challenge 2.0: a realistic in silico head phantom for MRI data simulation and evaluation of susceptibility mapping procedures
  publication-title: Magn. Reson. Med.
– volume: 79
  year: 2022
  ident: bib0035
  article-title: Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization
  publication-title: Med. Image Anal.
– volume: 7
  start-page: 724
  year: 2021
  end-page: 733
  ident: bib0056
  article-title: Accelerated MRI with un-trained neural networks
  publication-title: IEEE Trans. Comput. Imaging
– volume: 185
  start-page: 349
  year: 2019
  end-page: 360
  ident: bib0057
  article-title: Neonate and infant brain development from birth to 2 years assessed using MRI-based quantitative susceptibility mapping
  publication-title: Neuroimage
– year: 2022
  ident: bib0033
  publication-title: XSIM, a Susceptibility-Optimised Similarity Index Metric: Validation with 2016 and 2019 QSM Reconstruction Challenge Datasets, In: Joint Annual Meeting ISMRM-ESMRMB & ISMRT 31st Annual Meeting
– volume: 28
  start-page: 1194
  year: 2003
  end-page: 1196
  ident: bib0037
  article-title: Fast phase unwrapping algorithm for interferometric applications
  publication-title: Opt. Lett.
– volume: 73
  start-page: 82
  year: 2015
  end-page: 101
  ident: bib0048
  article-title: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker
  publication-title: Magn. Reson. Med.
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bib0043
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– volume: 28
  start-page: 1294
  year: 2015
  end-page: 1303
  ident: bib0050
  article-title: Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range
  publication-title: NMR Biomed.
– volume: 274
  year: 2023
  ident: bib0023
  article-title: APART-QSM: an improved sub-voxel quantitative susceptibility mapping for susceptibility source separation using an iterative data fitting method
  publication-title: Neuroimage
– volume: 7
  start-page: 1400
  year: 2021
  end-page: 1412
  ident: bib0045
  article-title: CoIL: coordinate-based internal learning for tomographic imaging
  publication-title: IEEE Trans. Comput. Imaging
– volume: 30
  start-page: e3570
  year: 2017
  ident: bib0006
  article-title: Single-step quantitative susceptibility mapping with variational penalties
  publication-title: NMR Biomed.
– start-page: 8628
  year: 2021
  end-page: 8638
  ident: bib0007
  article-title: Learning continuous image representation with local implicit image function
  publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
– volume: 89
  start-page: 1617
  year: 2022
  end-page: 1633
  ident: bib0042
  article-title: An untrained deep learning method for reconstructing dynamic MR images from accelerated model-based data
  publication-title: Magn. Reson. Med.
– volume: 140
  start-page: 118
  year: 2017
  end-page: 131
  ident: bib0001
  article-title: The whole-brain pattern of magnetic susceptibility perturbations in Parkinson's disease
  publication-title: Brain
– volume: 179
  start-page: 199
  year: 2018
  end-page: 206
  ident: bib0055
  article-title: Quantitative susceptibility mapping using deep neural network: QSMnet
  publication-title: Neuroimage
– volume: 34
  start-page: e4461
  year: 2021
  ident: bib0012
  article-title: xQSM: quantitative susceptibility mapping with octave convolutional and noise-regularized neural networks
  publication-title: NMR Biomed.
– volume: 35
  start-page: 770
  year: 2024
  end-page: 782
  ident: bib0038
  article-title: NeRP: implicit neural representation learning with prior embedding for sparsely sampled image reconstruction
  publication-title: IEEE Trans. Neural Netw. Learn.
– start-page: pp 125
  year: 2020
  end-page: 135
  ident: bib0018
  article-title: Learned proximal networks for quantitative susceptibility mapping
  publication-title: In: International Conference on Medical Image Computing and Computer-Assisted Intervention.
– volume: 27
  start-page: 1004
  year: 2023
  end-page: 1015
  ident: bib0053
  article-title: An arbitrary scale super-resolution approach for 3D MR images via implicit neural representation
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 9
  start-page: 517
  year: 2023
  end-page: 529
  ident: bib0052
  article-title: Self-supervised coordinate projection network for sparse-view computed tomography
  publication-title: IEEE Trans. Comput. Imaging
– start-page: 26
  year: 2003
  end-page: 34
  ident: bib0036
  article-title: A Fast Calculation Method For Magnetic Field Inhomogeneity Due to an Arbitrary Distribution of Bulk Susceptibility
– volume: 41
  start-page: 1
  year: 2022
  end-page: 15
  ident: bib0034
  article-title: Instant neural graphics primitives with a multiresolution hash encoding
  publication-title: ACM Trans. Graph.
– volume: 1
  start-page: 3
  year: 2015
  end-page: 17
  ident: bib0024
  article-title: Quantitative susceptibility mapping: contrast mechanisms and clinical applications
  publication-title: Tomography
– volume: 179
  start-page: 166
  year: 2018
  end-page: 175
  ident: bib0044
  article-title: Whole head quantitative susceptibility mapping using a least-norm direct dipole inversion method
  publication-title: Neuroimage
– volume: 65
  start-page: 99
  year: 2021
  end-page: 106
  ident: bib0030
  article-title: NeRF: representing scenes as neural radiance fields for view synthesis
  publication-title: Commun. ACM
– volume: 79
  start-page: 1661
  year: 2018
  end-page: 1673
  ident: bib0019
  article-title: Quantitative susceptibility mapping: report from the 2016 reconstruction challenge
  publication-title: Magn. Reson. Med.
– year: 2019
  ident: bib0032
  article-title: Structural similarity index metric setup for QSM applications (XSIM)
  publication-title: 5th International Workshop on MRI Phase Contrast & Quantitative Susceptibility Mapping
– volume: 80
  start-page: 814
  year: 2018
  end-page: 821
  ident: bib0031
  article-title: Fast nonlinear susceptibility inversion with variational regularization
  publication-title: Magn. Reson. Med.
– volume: 61
  start-page: 196
  year: 2009
  end-page: 204
  ident: bib0026
  article-title: Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI
  publication-title: Magn. Reson. Med.
– volume: 91
  start-page: 418
  year: 2020
  end-page: 425
  ident: bib0047
  article-title: Brain iron deposition is linked with cognitive severity in Parkinson's disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 59
  start-page: 2625
  year: 2012
  end-page: 2635
  ident: bib0004
  article-title: MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping
  publication-title: Neuroimage
– start-page: e4292
  year: 2020
  ident: bib0015
  article-title: Overview of quantitative susceptibility mapping using deep learning: current status, challenges and opportunities
  publication-title: NMR Biomed.
– volume: 240
  year: 2021
  ident: bib0011
  article-title: MoDL-QSM: model-based deep learning for quantitative susceptibility mapping
  publication-title: Neuroimage
– volume: 51
  start-page: 6381
  year: 2006
  end-page: 6402
  ident: bib0017
  article-title: Rapid calculations of susceptibility-induced magnetostatic field perturbations for
  publication-title: Phys. Med. Biol.
– volume: 55
  start-page: 1645
  year: 2011
  end-page: 1656
  ident: bib0021
  article-title: Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition
  publication-title: Neuroimage
– volume: 65
  start-page: 99
  year: 2021
  ident: 10.1016/j.media.2024.103173_bib0030
  article-title: NeRF: representing scenes as neural radiance fields for view synthesis
  publication-title: Commun. ACM
  doi: 10.1145/3503250
– volume: 289
  start-page: 487
  year: 2018
  ident: 10.1016/j.media.2024.103173_bib0059
  article-title: Brain iron at quantitative mri is associated with disability in multiple sclerosis
  publication-title: Radiology
  doi: 10.1148/radiol.2018180136
– volume: 7
  start-page: 724
  year: 2021
  ident: 10.1016/j.media.2024.103173_bib0056
  article-title: Accelerated MRI with un-trained neural networks
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2021.3097596
– volume: 89
  start-page: 2391
  year: 2023
  ident: 10.1016/j.media.2024.103173_bib0016
  article-title: Multi-echo dipole inversion for magnetic susceptibility mapping
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.29588
– volume: 145
  start-page: 843
  year: 1985
  ident: 10.1016/j.media.2024.103173_bib0013
  article-title: Oblique magnetic resonance imaging of normal structures
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/ajr.145.4.843
– volume: 62
  start-page: 314
  year: 2012
  ident: 10.1016/j.media.2024.103173_bib0022
  article-title: Mapping magnetic susceptibility anisotropies of white matter in vivo in the human brain at 7 T
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.04.042
– volume: 59
  start-page: 2625
  year: 2012
  ident: 10.1016/j.media.2024.103173_bib0004
  article-title: MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.08.077
– volume: 17
  start-page: 143
  year: 2002
  ident: 10.1016/j.media.2024.103173_bib0043
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– start-page: 26
  year: 2003
  ident: 10.1016/j.media.2024.103173_bib0036
– volume: 41
  start-page: 1
  year: 2022
  ident: 10.1016/j.media.2024.103173_bib0034
  article-title: Instant neural graphics primitives with a multiresolution hash encoding
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3528223.3530127
– volume: 202
  year: 2019
  ident: 10.1016/j.media.2024.103173_bib0049
  article-title: Learning-based single-step quantitative susceptibility mapping reconstruction without brain extraction
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116064
– volume: 84
  year: 2023
  ident: 10.1016/j.media.2024.103173_bib0008
  article-title: NeXtQSM-A complete deep learning pipeline for data-consistent quantitative susceptibility mapping trained with hybrid data
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102700
– volume: 79
  year: 2022
  ident: 10.1016/j.media.2024.103173_bib0035
  article-title: Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102477
– volume: 195
  start-page: 373
  year: 2019
  ident: 10.1016/j.media.2024.103173_bib0005
  article-title: DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.03.060
– volume: 1
  start-page: 3
  year: 2015
  ident: 10.1016/j.media.2024.103173_bib0024
  article-title: Quantitative susceptibility mapping: contrast mechanisms and clinical applications
  publication-title: Tomography
  doi: 10.18383/j.tom.2015.00136
– volume: 73
  start-page: 82
  year: 2015
  ident: 10.1016/j.media.2024.103173_bib0048
  article-title: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25358
– volume: 87, 102829
  year: 2023
  ident: 10.1016/j.media.2024.103173_bib0010
  article-title: DeepSTI: towards tensor reconstruction using fewer orientations in susceptibility tensor imaging
  publication-title: Med. Image Anal.
– start-page: pp 125
  year: 2020
  ident: 10.1016/j.media.2024.103173_bib0018
  article-title: Learned proximal networks for quantitative susceptibility mapping
  publication-title: In: International Conference on Medical Image Computing and Computer-Assisted Intervention.
– volume: 261
  year: 2022
  ident: 10.1016/j.media.2024.103173_bib0039
  article-title: Towards in vivo ground truth susceptibility for single-orientation deep learning QSM: a multi-orientation gradient-echo MRI dataset
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.119522
– volume: 33
  start-page: 7462
  year: 2020
  ident: 10.1016/j.media.2024.103173_bib0041
  article-title: Implicit neural representations with periodic activation functions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 517
  year: 2023
  ident: 10.1016/j.media.2024.103173_bib0052
  article-title: Self-supervised coordinate projection network for sparse-view computed tomography
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2023.3281196
– start-page: 8628
  year: 2021
  ident: 10.1016/j.media.2024.103173_bib0007
  article-title: Learning continuous image representation with local implicit image function
– start-page: e4292
  year: 2020
  ident: 10.1016/j.media.2024.103173_bib0015
  article-title: Overview of quantitative susceptibility mapping using deep learning: current status, challenges and opportunities
  publication-title: NMR Biomed.
– volume: 51
  start-page: 6381
  year: 2006
  ident: 10.1016/j.media.2024.103173_bib0017
  article-title: Rapid calculations of susceptibility-induced magnetostatic field perturbations for in vivo magnetic resonance
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/24/007
– volume: 72
  start-page: 1444
  year: 2014
  ident: 10.1016/j.media.2024.103173_bib0003
  article-title: Fast quantitative susceptibility mapping with L1-regularization and automatic parameter selection
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25029
– volume: 79
  start-page: 1661
  year: 2018
  ident: 10.1016/j.media.2024.103173_bib0019
  article-title: Quantitative susceptibility mapping: report from the 2016 reconstruction challenge
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26830
– start-page: 65
  year: 2005
  ident: 10.1016/j.media.2024.103173_bib0027
– volume: 42
  start-page: 1707
  year: 2023
  ident: 10.1016/j.media.2024.103173_bib0054
  article-title: NeSVoR: implicit neural representation for slice-to-volume reconstruction in MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2023.3236216
– volume: 274
  year: 2023
  ident: 10.1016/j.media.2024.103173_bib0023
  article-title: APART-QSM: an improved sub-voxel quantitative susceptibility mapping for susceptibility source separation using an iterative data fitting method
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2023.120148
– volume: 86
  start-page: 1241
  year: 2021
  ident: 10.1016/j.media.2024.103173_bib0009
  article-title: QSM reconstruction challenge 2.0: design and report of results
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28754
– volume: 62
  start-page: 1510
  year: 2009
  ident: 10.1016/j.media.2024.103173_bib0040
  article-title: Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22135
– volume: 86
  start-page: 526
  year: 2021
  ident: 10.1016/j.media.2024.103173_bib0028
  article-title: QSM reconstruction challenge 2.0: a realistic in silico head phantom for MRI data simulation and evaluation of susceptibility mapping procedures
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28716
– volume: 89
  start-page: 1617
  year: 2022
  ident: 10.1016/j.media.2024.103173_bib0042
  article-title: An untrained deep learning method for reconstructing dynamic MR images from accelerated model-based data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.29547
– volume: 33
  start-page: 7537
  year: 2020
  ident: 10.1016/j.media.2024.103173_bib0046
  article-title: Fourier features let networks learn high frequency functions in low dimensional domains
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 67
  year: 2020
  ident: 10.1016/j.media.2024.103173_bib0002
  article-title: Diffusion-regularized susceptibility tensor imaging (DRSTI) of tissue microstructures in the human brain
  publication-title: Med. Image Anal.
– volume: 30
  start-page: e3570
  year: 2017
  ident: 10.1016/j.media.2024.103173_bib0006
  article-title: Single-step quantitative susceptibility mapping with variational penalties
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3570
– volume: 240
  year: 2021
  ident: 10.1016/j.media.2024.103173_bib0011
  article-title: MoDL-QSM: model-based deep learning for quantitative susceptibility mapping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118376
– volume: 28
  start-page: 1294
  year: 2015
  ident: 10.1016/j.media.2024.103173_bib0050
  article-title: Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3383
– volume: 108
  start-page: 111
  year: 2015
  ident: 10.1016/j.media.2024.103173_bib0020
  article-title: A method for estimating and removing streaking artifacts in quantitative susceptibility mapping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.12.043
– volume: 140
  start-page: 118
  year: 2017
  ident: 10.1016/j.media.2024.103173_bib0001
  article-title: The whole-brain pattern of magnetic susceptibility perturbations in Parkinson's disease
  publication-title: Brain
  doi: 10.1093/brain/aww278
– volume: 61
  start-page: 196
  year: 2009
  ident: 10.1016/j.media.2024.103173_bib0026
  article-title: Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21828
– volume: 179
  start-page: 166
  year: 2018
  ident: 10.1016/j.media.2024.103173_bib0044
  article-title: Whole head quantitative susceptibility mapping using a least-norm direct dipole inversion method
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.06.036
– volume: 27
  start-page: 1004
  year: 2023
  ident: 10.1016/j.media.2024.103173_bib0053
  article-title: An arbitrary scale super-resolution approach for 3D MR images via implicit neural representation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3223106
– volume: 40
  start-page: 116
  year: 2023
  ident: 10.1016/j.media.2024.103173_bib0058
  article-title: Physics-driven deep learning methods for fast quantitative magnetic resonance imaging: performance improvements through integration with deep neural networks
  publication-title: IEEE Signal. Process. Mag.
  doi: 10.1109/MSP.2023.3236483
– volume: 67
  start-page: 137
  year: 2012
  ident: 10.1016/j.media.2024.103173_bib0051
  article-title: Whole brain susceptibility mapping using compressed sensing
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23000
– volume: 185
  start-page: 349
  year: 2019
  ident: 10.1016/j.media.2024.103173_bib0057
  article-title: Neonate and infant brain development from birth to 2 years assessed using MRI-based quantitative susceptibility mapping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.10.031
– volume: 80
  start-page: 814
  year: 2018
  ident: 10.1016/j.media.2024.103173_bib0031
  article-title: Fast nonlinear susceptibility inversion with variational regularization
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27073
– year: 2019
  ident: 10.1016/j.media.2024.103173_bib0032
  article-title: Structural similarity index metric setup for QSM applications (XSIM)
– year: 2019
  ident: 10.1016/j.media.2024.103173_bib0025
– volume: 28
  start-page: 1194
  year: 2003
  ident: 10.1016/j.media.2024.103173_bib0037
  article-title: Fast phase unwrapping algorithm for interferometric applications
  publication-title: Opt. Lett.
  doi: 10.1364/OL.28.001194
– volume: 35
  start-page: 770
  year: 2024
  ident: 10.1016/j.media.2024.103173_bib0038
  article-title: NeRP: implicit neural representation learning with prior embedding for sparsely sampled image reconstruction
  publication-title: IEEE Trans. Neural Netw. Learn.
  doi: 10.1109/TNNLS.2022.3177134
– volume: 5
  start-page: 143
  year: 2001
  ident: 10.1016/j.media.2024.103173_bib0014
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(01)00036-6
– volume: 34
  start-page: e4461
  year: 2021
  ident: 10.1016/j.media.2024.103173_bib0012
  article-title: xQSM: quantitative susceptibility mapping with octave convolutional and noise-regularized neural networks
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.4461
– volume: 179
  start-page: 199
  year: 2018
  ident: 10.1016/j.media.2024.103173_bib0055
  article-title: Quantitative susceptibility mapping using deep neural network: QSMnet
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.06.030
– volume: 91
  start-page: 418
  year: 2020
  ident: 10.1016/j.media.2024.103173_bib0047
  article-title: Brain iron deposition is linked with cognitive severity in Parkinson's disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2019-322042
– volume: 7
  start-page: 1400
  year: 2021
  ident: 10.1016/j.media.2024.103173_bib0045
  article-title: CoIL: coordinate-based internal learning for tomographic imaging
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2021.3125564
– volume: 55
  start-page: 1645
  year: 2011
  ident: 10.1016/j.media.2024.103173_bib0021
  article-title: Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.088
– year: 2022
  ident: 10.1016/j.media.2024.103173_bib0033
– year: 2017
  ident: 10.1016/j.media.2024.103173_bib0029
SSID ssj0007440
Score 2.4540868
Snippet •Subject-specific and unsupervised deep learning for QSM reconstruction.•Integration of implicit continuous signal representation and explicit...
Quantitative susceptibility mapping (QSM) is an MRI-based technique that estimates the underlying tissue magnetic susceptibility based on phase signal. Deep...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103173
SubjectTerms Implicit neural representation
Phase compensation
Quantitative susceptibility mapping
Unsupervised learning
Title A subject-specific unsupervised deep learning method for quantitative susceptibility mapping using implicit neural representation
URI https://dx.doi.org/10.1016/j.media.2024.103173
https://www.ncbi.nlm.nih.gov/pubmed/38657424
https://www.proquest.com/docview/3046516127
Volume 95
WOSCitedRecordID wos001220917700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DSF4QDA-Vj4mI_FWUqWxE9uPFRqCiU0IDaniJbIdh3Xa0mxppvHI_8AfjD_iNG21ij3wElWufbJ6v96dnd_dAfBOMk4lymWgYn02wYKrgONcBNpZh0IhljNpq-t_IcfHdDJhX3u9Pz4X5vqcFAW9uWHlf1W1HtPKNqmzd1B3K1QP6M9a6fqp1a6f_6T48aCqhbldCUwWpWECDeqiqktjFCodXmZKlb5ZxM-mg7QlG17WvLApZ4ZMVNWVJbxY7uyvwQUvbWJVba8WppaGPp0PTDVM2xmgXGQxFd14178Hml4YbhBvKqCs3VYfeQdqg1I39q02DcdawpBlHfw41V-e8tnq3MOp6l5fRLilunqLi5JRQLHL6fQmmcUdm2oaUbh2J2vm3t08nA1tls3QiB8uZi8X115xei0V0bPczlIrJDVCUidkC-xEJGbaVu6MPx9MDlsPb4oqunw-t3VfzcryBtf2clvEc9uJxkY2J4_Bo-ZIAscOSk9ATxW74GGnUOUuuH_UUDCegt9juIov2MUXNPiCHl_Q4QtqfMEuvuAyvmCDL2jxBT2-oMMXXMbXM_D948HJh09B08cjkChm84BkhHESqkxiRXnOxQjlNBRYsjCPKE8Slegw3hxkQ5ELSRXKpGRmDUJIUoqeg-1iVqg9AGORk1BkgoyiDMdEiTgLY8FjzHjCtf_pg8j_1qlsitybXivn6QY998H7dlHparxsnp54JaZNmOrCz1TDcvPCt17lqTbi5s0cL9SsrlJDT4j12SsiffDCYaHdiWnKS3CEX95tl6_Ag8Xf7TXYnl_V6g24J6_n0-pqH2yRCd1vcP0XMhjRAA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+subject-specific+unsupervised+deep+learning+method+for+quantitative+susceptibility+mapping+using+implicit+neural+representation&rft.jtitle=Medical+image+analysis&rft.au=Zhang%2C+Ming&rft.au=Feng%2C+Ruimin&rft.au=Li%2C+Zhenghao&rft.au=Feng%2C+Jie&rft.date=2024-07-01&rft.issn=1361-8415&rft.volume=95&rft.spage=103173&rft_id=info:doi/10.1016%2Fj.media.2024.103173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2024_103173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon