Transfer Learning-Based Dynamic Multiobjective Optimization Algorithms

One of the major distinguishing features of the dynamic multiobjective optimization problems (DMOPs) is that optimization objectives will change over time, thus tracking the varying Pareto-optimal front becomes a challenge. One of the promising solutions is reusing "experiences" to constru...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 22; no. 4; pp. 501 - 514
Main Authors: Jiang, Min, Huang, Zhongqiang, Qiu, Liming, Huang, Wenzhen, Yen, Gary G.
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract One of the major distinguishing features of the dynamic multiobjective optimization problems (DMOPs) is that optimization objectives will change over time, thus tracking the varying Pareto-optimal front becomes a challenge. One of the promising solutions is reusing "experiences" to construct a prediction model via statistical machine learning approaches. However, most existing methods neglect the nonindependent and identically distributed nature of data to construct the prediction model. In this paper, we propose an algorithmic framework, called transfer learning-based dynamic multiobjective evolutionary algorithm (EA), which integrates transfer learning and population-based EAs to solve the DMOPs. This approach exploits the transfer learning technique as a tool to generate an effective initial population pool via reusing past experience to speed up the evolutionary process, and at the same time any population-based multiobjective algorithms can benefit from this integration without any extensive modifications. To verify this idea, we incorporate the proposed approach into the development of three well-known EAs, nondominated sorting genetic algorithm II, multiobjective particle swarm optimization, and the regularity model-based multiobjective estimation of distribution algorithm. We employ 12 benchmark functions to test these algorithms as well as compare them with some chosen state-of-the-art designs. The experimental results confirm the effectiveness of the proposed design for DMOPs.
AbstractList One of the major distinguishing features of the dynamic multiobjective optimization problems (DMOPs) is that optimization objectives will change over time, thus tracking the varying Pareto-optimal front becomes a challenge. One of the promising solutions is reusing “experiences” to construct a prediction model via statistical machine learning approaches. However, most existing methods neglect the nonindependent and identically distributed nature of data to construct the prediction model. In this paper, we propose an algorithmic framework, called transfer learning-based dynamic multiobjective evolutionary algorithm (EA), which integrates transfer learning and population-based EAs to solve the DMOPs. This approach exploits the transfer learning technique as a tool to generate an effective initial population pool via reusing past experience to speed up the evolutionary process, and at the same time any population-based multiobjective algorithms can benefit from this integration without any extensive modifications. To verify this idea, we incorporate the proposed approach into the development of three well-known EAs, nondominated sorting genetic algorithm II, multiobjective particle swarm optimization, and the regularity model-based multiobjective estimation of distribution algorithm. We employ 12 benchmark functions to test these algorithms as well as compare them with some chosen state-of-the-art designs. The experimental results confirm the effectiveness of the proposed design for DMOPs.
Author Jiang, Min
Yen, Gary G.
Huang, Zhongqiang
Qiu, Liming
Huang, Wenzhen
Author_xml – sequence: 1
  givenname: Min
  orcidid: 0000-0003-2946-6974
  surname: Jiang
  fullname: Jiang, Min
  organization: Department of Cognitive Science and Technology, Fujian Key Laboratory of Machine Intelligence and Robotics, Xiamen University, Xiamen, China
– sequence: 2
  givenname: Zhongqiang
  surname: Huang
  fullname: Huang, Zhongqiang
  organization: Institute of Innovation Research, Sangfor Technologies, Shenzhen, China
– sequence: 3
  givenname: Liming
  surname: Qiu
  fullname: Qiu, Liming
  organization: Department of Cognitive Science and Technology, Fujian Key Laboratory of Machine Intelligence and Robotics, Xiamen University, Xiamen, China
– sequence: 4
  givenname: Wenzhen
  surname: Huang
  fullname: Huang, Wenzhen
  email: minjiang@xmu.edu.cn
  organization: Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Gary G.
  orcidid: 0000-0001-8851-5348
  surname: Yen
  fullname: Yen, Gary G.
  email: gyen@okstate.edu
  organization: School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA
BookMark eNp9kE9PAjEQxRujiYB-AONlE8-L_bPd0iMiqAmGCxpvTVtaLNntYltM8NO7K8SDB08zmbzfvJnXB6e-8QaAKwSHCEF-u5y-ToYYIjbEjKGCohPQQ7xAOYS4PG17OOI5Y6O3c9CPcQNhp-E9MFsG6aM1IZsbGbzz6_xORrPK7vde1k5nz7squUZtjE7u02SLbXK1-5LtzGfjat0El97reAHOrKyiuTzWAXiZTZeTx3y-eHiajOe5JpSnnGGIOZTKIEO1VbLAiHLJrOKqlNRCRgrFV6bQlllZrCznWFpKlCIF1yWiZABuDnu3ofnYmZjEptkF31oKjBBDEJIStyp0UOnQxBiMFdvgahn2AkHRxSW6uEQXlzjG1TLsD6Nd-nkzBemqf8nrA-mMMb9Oo_YWTij5BgBYepw
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_knosys_2023_111227
crossref_primary_10_1016_j_future_2024_07_028
crossref_primary_10_1109_TCYB_2020_2989465
crossref_primary_10_1016_j_knosys_2022_108691
crossref_primary_10_1109_TCYB_2020_3017049
crossref_primary_10_1109_TEVC_2023_3257563
crossref_primary_10_1007_s12293_021_00347_4
crossref_primary_10_1016_j_swevo_2025_101918
crossref_primary_10_1016_j_asoc_2025_112732
crossref_primary_10_1109_TEVC_2022_3222844
crossref_primary_10_2118_212870_PA
crossref_primary_10_1109_ACCESS_2019_2961980
crossref_primary_10_1007_s40747_024_01369_4
crossref_primary_10_1016_j_swevo_2020_100786
crossref_primary_10_1016_j_ins_2024_120922
crossref_primary_10_1016_j_swevo_2022_101075
crossref_primary_10_1109_TEVC_2024_3417978
crossref_primary_10_1109_TCYB_2022_3168839
crossref_primary_10_1109_TEVC_2024_3412049
crossref_primary_10_1109_TNNLS_2023_3295461
crossref_primary_10_1016_j_ins_2023_03_094
crossref_primary_10_1109_TCYB_2021_3062949
crossref_primary_10_1016_j_knosys_2019_105175
crossref_primary_10_1109_TCYB_2023_3338266
crossref_primary_10_1109_TNNLS_2019_2927320
crossref_primary_10_1016_j_ins_2025_122018
crossref_primary_10_1016_j_swevo_2024_101621
crossref_primary_10_1016_j_eswa_2025_129325
crossref_primary_10_3390_app12199627
crossref_primary_10_1016_j_ins_2023_119867
crossref_primary_10_1016_j_knosys_2020_106612
crossref_primary_10_1109_TNNLS_2021_3059529
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1016_j_ins_2023_119627
crossref_primary_10_1007_s00158_020_02707_z
crossref_primary_10_1007_s00500_019_04365_w
crossref_primary_10_1109_TEVC_2019_2922834
crossref_primary_10_1109_TEVC_2023_3241762
crossref_primary_10_1016_j_ins_2020_07_009
crossref_primary_10_1109_TEVC_2024_3367747
crossref_primary_10_1016_j_swevo_2023_101254
crossref_primary_10_1016_j_ins_2019_08_069
crossref_primary_10_1016_j_asoc_2021_107258
crossref_primary_10_1109_TCYB_2022_3164399
crossref_primary_10_1109_TCYB_2020_2986600
crossref_primary_10_1007_s11071_021_07180_x
crossref_primary_10_1109_TEVC_2023_3253850
crossref_primary_10_1007_s10044_021_01002_x
crossref_primary_10_1109_TEVC_2022_3233642
crossref_primary_10_1016_j_engappai_2023_105944
crossref_primary_10_1109_TEVC_2023_3235196
crossref_primary_10_3390_math10091587
crossref_primary_10_1016_j_ins_2019_01_066
crossref_primary_10_1080_03036758_2019_1609052
crossref_primary_10_1016_j_isatra_2022_03_015
crossref_primary_10_3389_fnbot_2019_00113
crossref_primary_10_1016_j_asoc_2022_109622
crossref_primary_10_1109_TFUZZ_2021_3070156
crossref_primary_10_1007_s40747_021_00631_3
crossref_primary_10_1016_j_swevo_2023_101385
crossref_primary_10_1007_s10479_021_04255_1
crossref_primary_10_1016_j_swevo_2023_101281
crossref_primary_10_1080_1206212X_2023_2300221
crossref_primary_10_1016_j_ins_2021_08_027
crossref_primary_10_1016_j_apm_2019_05_009
crossref_primary_10_1109_TEVC_2019_2906927
crossref_primary_10_1109_TNNLS_2022_3151646
crossref_primary_10_1016_j_asoc_2025_113113
crossref_primary_10_1016_j_swevo_2021_100987
crossref_primary_10_1016_j_swevo_2024_101713
crossref_primary_10_1016_j_swevo_2021_100867
crossref_primary_10_1093_jcde_qwac039
crossref_primary_10_1016_j_asoc_2022_109892
crossref_primary_10_1145_3571072
crossref_primary_10_3233_JIFS_189811
crossref_primary_10_1109_TII_2024_3435539
crossref_primary_10_1016_j_ins_2020_03_035
crossref_primary_10_1109_TEVC_2020_3004027
crossref_primary_10_1016_j_swevo_2020_100695
crossref_primary_10_1109_TCYB_2019_2962865
crossref_primary_10_1016_j_asoc_2024_111317
crossref_primary_10_1109_ACCESS_2018_2881538
crossref_primary_10_3390_pr13030744
crossref_primary_10_1007_s40747_022_00745_2
crossref_primary_10_1007_s00521_023_08633_7
crossref_primary_10_1016_j_neucom_2024_129291
crossref_primary_10_29328_journal_jairi_1001003
crossref_primary_10_3390_rs11192289
crossref_primary_10_1007_s11227_024_06480_4
crossref_primary_10_1016_j_future_2019_07_069
crossref_primary_10_1016_j_eswa_2023_120529
crossref_primary_10_1109_TCYB_2021_3070434
crossref_primary_10_1109_TETCI_2024_3389769
crossref_primary_10_1016_j_asoc_2021_107172
crossref_primary_10_1016_j_ins_2022_05_114
crossref_primary_10_1109_TEVC_2024_3393151
crossref_primary_10_1016_j_asoc_2024_112071
crossref_primary_10_1109_JAS_2022_105803
crossref_primary_10_1016_j_engstruct_2022_114607
crossref_primary_10_1109_MCI_2020_3039066
crossref_primary_10_1109_TEVC_2018_2880458
crossref_primary_10_1109_TEVC_2024_3424393
crossref_primary_10_1007_s11227_024_06832_0
crossref_primary_10_3390_app122111008
crossref_primary_10_1016_j_asoc_2023_111114
crossref_primary_10_1016_j_swevo_2021_100975
crossref_primary_10_1016_j_knosys_2021_107190
crossref_primary_10_1109_TCYB_2021_3128584
crossref_primary_10_1007_s40747_021_00570_z
crossref_primary_10_1109_TEVC_2021_3115036
crossref_primary_10_1016_j_ins_2024_120398
crossref_primary_10_1016_j_asoc_2019_105988
crossref_primary_10_1016_j_asoc_2020_106592
crossref_primary_10_1109_TITS_2024_3434561
crossref_primary_10_1016_j_asoc_2020_107027
crossref_primary_10_1016_j_ins_2021_08_065
crossref_primary_10_3390_app13084795
crossref_primary_10_1016_j_swevo_2020_100829
crossref_primary_10_1016_j_ins_2020_08_101
crossref_primary_10_1016_j_ins_2019_09_016
crossref_primary_10_1109_TNNLS_2019_2920887
crossref_primary_10_1007_s10489_022_04429_9
crossref_primary_10_1109_TNNLS_2022_3186671
crossref_primary_10_1016_j_neucom_2023_126761
crossref_primary_10_1109_TETCI_2023_3306351
crossref_primary_10_1109_TEVC_2022_3144180
crossref_primary_10_32604_cmc_2023_027448
crossref_primary_10_1016_j_swevo_2025_102067
crossref_primary_10_1007_s12293_022_00358_9
crossref_primary_10_1016_j_ins_2023_119256
crossref_primary_10_1109_TEVC_2024_3375751
crossref_primary_10_3390_pr11020613
crossref_primary_10_1016_j_asoc_2024_111756
crossref_primary_10_1016_j_ins_2023_119495
crossref_primary_10_1007_s00158_024_03800_3
crossref_primary_10_1016_j_swevo_2024_101468
crossref_primary_10_1016_j_apenergy_2019_113476
crossref_primary_10_1016_j_swevo_2025_101883
crossref_primary_10_1109_TCYB_2020_2983860
crossref_primary_10_1145_3524495
crossref_primary_10_1109_MCI_2022_3155332
crossref_primary_10_1016_j_measurement_2022_110966
crossref_primary_10_1016_j_ejor_2021_01_028
crossref_primary_10_1016_j_engappai_2025_111696
crossref_primary_10_1145_3459664
crossref_primary_10_1109_TCSS_2023_3293331
crossref_primary_10_1109_MCI_2022_3155325
crossref_primary_10_1016_j_eswa_2023_121532
crossref_primary_10_1088_1742_6596_2562_1_012070
crossref_primary_10_3390_ma16175927
crossref_primary_10_1007_s12065_025_01059_1
crossref_primary_10_1109_ACCESS_2020_3028064
crossref_primary_10_3390_math10122117
crossref_primary_10_1016_j_eswa_2024_123344
crossref_primary_10_1016_j_swevo_2024_101693
crossref_primary_10_1051_e3sconf_202340604021
crossref_primary_10_1371_journal_pone_0254839
crossref_primary_10_1016_j_ins_2023_03_111
crossref_primary_10_1109_TCYB_2024_3364375
crossref_primary_10_1109_TPWRS_2022_3179372
crossref_primary_10_1109_TEVC_2021_3068157
crossref_primary_10_1109_ACCESS_2020_3029968
crossref_primary_10_1016_j_ins_2022_09_022
crossref_primary_10_1145_3604812
crossref_primary_10_1016_j_asoc_2019_105783
crossref_primary_10_1007_s00158_019_02475_5
crossref_primary_10_1007_s10489_022_04444_w
crossref_primary_10_1016_j_neucom_2024_127241
crossref_primary_10_1016_j_swevo_2025_101987
crossref_primary_10_1109_TEVC_2019_2926107
crossref_primary_10_1016_j_swevo_2025_101865
crossref_primary_10_1016_j_asoc_2020_106276
crossref_primary_10_1016_j_geoen_2023_211446
crossref_primary_10_1016_j_swevo_2025_101981
crossref_primary_10_1016_j_swevo_2022_101125
crossref_primary_10_1016_j_swevo_2025_102012
crossref_primary_10_1109_TETCI_2023_3336918
crossref_primary_10_1007_s00521_024_10610_7
crossref_primary_10_1016_j_ins_2022_05_050
crossref_primary_10_1016_j_swevo_2025_102011
crossref_primary_10_1016_j_asoc_2025_113072
crossref_primary_10_1007_s11431_024_2923_8
crossref_primary_10_1109_TEVC_2021_3082112
crossref_primary_10_1109_TEVC_2022_3159000
crossref_primary_10_1016_j_ins_2023_04_006
crossref_primary_10_1016_j_asoc_2024_112022
crossref_primary_10_1016_j_measurement_2019_107155
crossref_primary_10_1016_j_swevo_2023_101317
crossref_primary_10_1109_TEVC_2019_2925722
crossref_primary_10_1016_j_asoc_2020_107077
crossref_primary_10_1016_j_ins_2020_02_071
crossref_primary_10_1016_j_ins_2022_08_020
crossref_primary_10_1016_j_bspc_2020_101926
crossref_primary_10_1088_1742_6596_2795_1_012004
crossref_primary_10_1016_j_ins_2021_01_021
crossref_primary_10_1109_TCYB_2020_3017017
crossref_primary_10_1016_j_ins_2020_08_015
crossref_primary_10_1007_s40747_024_01656_0
crossref_primary_10_1109_TEVC_2020_2985323
crossref_primary_10_1016_j_biosystems_2022_104686
crossref_primary_10_1109_TEVC_2022_3147526
crossref_primary_10_1109_ACCESS_2020_2974324
crossref_primary_10_1016_j_knosys_2022_109173
crossref_primary_10_1016_j_eswa_2023_120951
crossref_primary_10_1016_j_neucom_2023_03_073
crossref_primary_10_1016_j_patcog_2024_110581
crossref_primary_10_1109_TSMC_2023_3322718
crossref_primary_10_1109_TDSC_2023_3302284
crossref_primary_10_1007_s12293_021_00348_3
crossref_primary_10_1016_j_eswa_2021_114594
crossref_primary_10_3390_ai5040107
crossref_primary_10_1016_j_engappai_2024_109741
crossref_primary_10_1007_s40815_023_01477_2
crossref_primary_10_1109_TEVC_2023_3234113
crossref_primary_10_1007_s10878_022_00860_3
crossref_primary_10_1016_j_asoc_2022_108742
crossref_primary_10_1007_s41060_025_00801_3
crossref_primary_10_1109_TCYB_2021_3090769
crossref_primary_10_1016_j_swevo_2024_101773
crossref_primary_10_1016_j_swevo_2025_102103
crossref_primary_10_1109_TEVC_2022_3193287
crossref_primary_10_1109_TEVC_2022_3166482
crossref_primary_10_1109_ACCESS_2021_3124028
crossref_primary_10_1109_TCYB_2021_3059252
crossref_primary_10_1109_TEVC_2021_3135020
crossref_primary_10_1109_TEVC_2023_3291697
crossref_primary_10_1016_j_powtec_2025_121142
crossref_primary_10_1109_TNNLS_2022_3160173
crossref_primary_10_1109_TEVC_2023_3290485
crossref_primary_10_1016_j_neucom_2024_127601
crossref_primary_10_1016_j_asoc_2023_110661
crossref_primary_10_3390_pr12010189
crossref_primary_10_1111_exsy_13241
crossref_primary_10_1109_TEVC_2019_2958075
crossref_primary_10_1016_j_ins_2024_120794
crossref_primary_10_12677_CES_2018_64047
crossref_primary_10_1016_j_swevo_2022_101164
Cites_doi 10.1109/NNSP.1999.788121
10.1007/978-1-4471-0519-0_24
10.1109/TCYB.2015.2502483
10.1109/TEVC.2007.894202
10.1109/TCYB.2013.2245892
10.1109/TEVC.2013.2281537
10.1109/TEVC.2005.851275
10.1109/4235.910466
10.1109/TKDE.2009.191
10.1007/s12293-009-0012-0
10.21236/ADA229159
10.1007/978-3-540-75225-7_5
10.1109/TPWRS.2006.879272
10.1007/s00500-010-0681-0
10.1109/CEC.1999.785502
10.1109/ICNC.2008.313
10.1016/j.knosys.2017.06.021
10.1109/CEC.2013.6557821
10.1007/978-3-540-95976-2_5
10.1080/00207721.2011.605965
10.1162/evco.2008.16.1.1
10.1109/4235.996017
10.1109/CEC.2002.1004388
10.1109/TEVC.2004.831456
10.1007/3-540-61723-X_1002
10.1109/MSP.2014.2347059
10.1109/TCYB.2015.2490738
10.1109/TEVC.2008.2009031
10.1007/s10994-009-5152-4
10.1109/TEVC.2007.913109
10.1007/s00500-013-1154-z
10.1109/TEVC.2008.920671
10.1145/2739480.2754808
10.1016/j.swevo.2012.05.001
10.1109/TEVC.2017.2657556
10.1007/978-3-540-70928-2_60
10.1007/s00500-015-1820-4
10.1007/s11633-007-0243-9
10.1007/978-3-540-31880-4_35
10.1162/evco.2008.16.3.385
10.1017/CBO9780511809682
10.1109/TEVC.2013.2281524
10.1109/TNN.2010.2091281
10.1007/s00453-016-0187-y
10.1109/TEVC.2010.2046667
10.1109/TEVC.2014.2362558
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2017.2771451
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 514
ExternalDocumentID 10_1109_TEVC_2017_2771451
8100935
Genre orig-research
GrantInformation_xml – fundername: Oklahoma State University
  funderid: 10.13039/100007069
– fundername: National Natural Science Foundation of China
  grantid: 61003014; 61673328
  funderid: 10.13039/501100001809
– fundername: Foundation of Xiamen University’s President
  grantid: 20720150150
  funderid: 10.13039/501100008865
– fundername: China Scholarship Council
  grantid: 20150631505
  funderid: 10.13039/501100004543
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-720290abe1e5cfba42159a7fb9b6a5f0734b9de4cf7fa4df992af53bb349c6153
IEDL.DBID RIE
ISICitedReferencesCount 289
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441400200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 30 05:40:16 EST 2025
Sat Nov 29 03:13:47 EST 2025
Tue Nov 18 22:24:33 EST 2025
Wed Aug 27 02:48:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-720290abe1e5cfba42159a7fb9b6a5f0734b9de4cf7fa4df992af53bb349c6153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8851-5348
0000-0003-2946-6974
PQID 2117100362
PQPubID 85418
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TEVC_2017_2771451
proquest_journals_2117100362
ieee_primary_8100935
crossref_primary_10_1109_TEVC_2017_2771451
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref12
ref15
bosman (ref32) 2007
raquel (ref13) 2013
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref18
ref50
ref45
ref48
ref47
grefenstette (ref19) 1992
ref44
ben-david (ref40) 2007; 19
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
sola (ref53) 2010
ref37
ref36
muruganantham (ref51) 2015
ref31
ref30
ref33
goh (ref25) 2009; 13
ref2
ref1
ref39
ref38
helbig (ref46) 2015
azzouz (ref14) 2016
ref24
ref23
ref26
ref20
ref22
ref21
smola (ref42) 2007
gretton (ref41) 2006
ref28
ref27
ref29
steinwart (ref43) 2002; 2
References_xml – volume: 2
  start-page: 67
  year: 2002
  ident: ref43
  article-title: On the influence of the kernel on the consistency of support vector machines
  publication-title: J Mach Learn Res
– start-page: 239
  year: 2015
  ident: ref51
  article-title: Solving the IEEE CEC 2015 dynamic benchmark problems using Kalman filter based dynamic multiobjective evolutionary algorithm
  publication-title: Proc Adaptation Learn Optim
– ident: ref45
  doi: 10.1109/NNSP.1999.788121
– ident: ref29
  doi: 10.1007/978-1-4471-0519-0_24
– ident: ref39
  doi: 10.1109/TCYB.2015.2502483
– ident: ref49
  doi: 10.1109/TEVC.2007.894202
– ident: ref33
  doi: 10.1109/TCYB.2013.2245892
– ident: ref35
  doi: 10.1109/TEVC.2013.2281537
– ident: ref27
  doi: 10.1109/TEVC.2005.851275
– ident: ref8
  doi: 10.1109/4235.910466
– start-page: 513
  year: 2006
  ident: ref41
  article-title: A kernel method for the two-sample-problem
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref9
  doi: 10.1109/TKDE.2009.191
– ident: ref26
  doi: 10.1007/s12293-009-0012-0
– ident: ref16
  doi: 10.21236/ADA229159
– start-page: 31
  year: 2016
  ident: ref14
  article-title: Dynamic multi-objective optimization using evolutionary algorithms: A survey
  publication-title: Recent Advances in Evolutionary Multi-objective Optimization
– start-page: 13
  year: 2007
  ident: ref42
  article-title: A Hilbert space embedding for distributions
  publication-title: Algorithmic Learning Theory
  doi: 10.1007/978-3-540-75225-7_5
– ident: ref3
  doi: 10.1109/TPWRS.2006.879272
– ident: ref2
  doi: 10.1007/s00500-010-0681-0
– year: 2010
  ident: ref53
  article-title: Parallel processing for dynamic multi-objective optimization
– ident: ref24
  doi: 10.1109/CEC.1999.785502
– ident: ref30
  doi: 10.1109/ICNC.2008.313
– ident: ref56
  doi: 10.1016/j.knosys.2017.06.021
– ident: ref21
  doi: 10.1109/CEC.2013.6557821
– ident: ref15
  doi: 10.1007/978-3-540-95976-2_5
– ident: ref5
  doi: 10.1080/00207721.2011.605965
– ident: ref7
  doi: 10.1162/evco.2008.16.1.1
– ident: ref47
  doi: 10.1109/4235.996017
– ident: ref48
  doi: 10.1109/CEC.2002.1004388
– start-page: 129
  year: 2007
  ident: ref32
  publication-title: Learning and Anticipation in Online Dynamic Optimization
– ident: ref1
  doi: 10.1109/TEVC.2004.831456
– ident: ref17
  doi: 10.1007/3-540-61723-X_1002
– ident: ref38
  doi: 10.1109/MSP.2014.2347059
– ident: ref52
  doi: 10.1109/TCYB.2015.2490738
– ident: ref18
  doi: 10.1109/TEVC.2008.2009031
– ident: ref37
  doi: 10.1007/s10994-009-5152-4
– ident: ref54
  doi: 10.1109/TEVC.2007.913109
– ident: ref6
  doi: 10.1007/s00500-013-1154-z
– volume: 13
  start-page: 103
  year: 2009
  ident: ref25
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.920671
– ident: ref11
  doi: 10.1145/2739480.2754808
– ident: ref4
  doi: 10.1016/j.swevo.2012.05.001
– ident: ref34
  doi: 10.1109/TEVC.2017.2657556
– ident: ref23
  doi: 10.1007/978-3-540-70928-2_60
– start-page: 137
  year: 1992
  ident: ref19
  article-title: Genetic algorithms for changing environments
  publication-title: Parallel Problem Solving from Nature 2
– ident: ref28
  doi: 10.1007/s00500-015-1820-4
– ident: ref20
  doi: 10.1007/s11633-007-0243-9
– ident: ref50
  doi: 10.1007/978-3-540-31880-4_35
– ident: ref22
  doi: 10.1162/evco.2008.16.3.385
– ident: ref44
  doi: 10.1017/CBO9780511809682
– start-page: 85
  year: 2013
  ident: ref13
  publication-title: Dynamic Multi-Objective Optimization A Survey of the State-of-the-Art
– volume: 19
  start-page: 137
  year: 2007
  ident: ref40
  article-title: Analysis of representations for domain adaptation
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2015
  ident: ref46
  article-title: Benchmark functions for CEC 2015 special session and competition on dynamic multi-objective optimization
– ident: ref55
  doi: 10.1109/TEVC.2013.2281524
– ident: ref10
  doi: 10.1109/TNN.2010.2091281
– ident: ref12
  doi: 10.1007/s00453-016-0187-y
– ident: ref31
  doi: 10.1109/TEVC.2010.2046667
– ident: ref36
  doi: 10.1109/TEVC.2014.2362558
SSID ssj0014519
Score 2.6712039
Snippet One of the major distinguishing features of the dynamic multiobjective optimization problems (DMOPs) is that optimization objectives will change over time,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 501
SubjectTerms Algorithm design and analysis
Algorithms
Classification
Dimensionality reduction
domain adaption
dynamic multiobjective optimization
evolutionary algorithm (EA)
Evolutionary algorithms
Genetic algorithms
Heuristic algorithms
Machine learning
Mathematical models
Multiple objective analysis
Optimization
Pareto optimization
Particle swarm optimization
Population (statistical)
Prediction algorithms
Predictive models
Sociology
Sorting algorithms
Statistics
transfer learning
Title Transfer Learning-Based Dynamic Multiobjective Optimization Algorithms
URI https://ieeexplore.ieee.org/document/8100935
https://www.proquest.com/docview/2117100362
Volume 22
WOSCitedRecordID wos000441400200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4g8YAHUdCIotmDJ-PCPlq6PSJCPBj0gIbbZtttUQOs4eHvty-IRmPibQ_TZrNf59GdmW8ALmlEVNTNsJ_oFnedePOZwIGf8zCUSJ2oyJK43pPhMBmP6WMJrre9MEIIU3wmWvrR5PLzgq_1r7J2EuoLON6BHUKI7dXaZgw0TYotpqcqYkzGLoMZBrQ96j_3dBEXaUWEaMFvPsgMVflhiY17GVT_92IHsO_CSK9rcT-EkpjXoLoZ0eA5ja3B3he-wRpUdGhpmZnrMDBuSippx7E68W-US8u9Wzuk3jO9uQV7sybRe1DGZea6Nr3udFIsXlcvs-URPA36o96d76Yq-DzGdOWTKIhokDERCswly5By-jQjklHWybBUKo8YzQXiksgM5ZLSKJM4ZixGlOvw8BjK82IuTsCjIVcGgUVIdBjSvO5xLJM8FjnpoIwh3IBg851T7ijH9eSLaWquHgFNNTSphiZ10DTgarvk3fJt_CVc11hsBR0MDWhuwEydRi5TddHVREbKX5_-vuoMKmrvxBb3NaG8WqzFOezyD4XL4sIctk88xtCP
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH_Bj0Q8iKJGFHUHT8bJ1rV0PSpCMCJ6QMNtWbsWNXwYRP9-27UQjcbE2w6v2dJf30f33vs9gBOGqI66OfFj0-JuEm8-lyTwMxGGCusThSyJa4d2u3G_z-4LcLbohZFS5sVn8tw85rn8bCLeza-yWhyaCzhZghWCMQptt9YiZ2CIUmw5PdMxY9x3OcwwYLVe87FhyrjoOaLUCH7zQvlYlR-2OHcwrdL_Pm0TNlwg6V1Y5LegIMdlKM2HNHhOZ8uw_oVxsAxFE1xabuZtaOWOSmlpx7I68C-1U8u8Kzum3su7cyf8xRpF706bl5Hr2_QuhoPJ9Hn2NHrbgYdWs9do-26ugi8iwmY-RQFiQcplKIlQPNVbSVhKFWe8nhKllR5zlkksFFUpzhRjKFUk4jzCTJgAcReWx5Ox3AOPhUKbBI6wrHNsmN2jSMVZJDNaxynHpALBfJ8T4UjHzeyLYZJfPgKWGGgSA03ioKnA6WLJq2Xc-Et422CxEHQwVKA6BzNxOvmW6KuuoTLSHnv_91XHsNbu3XaSznX35gCK-j2xLfWrwvJs-i4PYVV8aIymR_nB-wQ9btPW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transfer+Learning-Based+Dynamic+Multiobjective+Optimization+Algorithms&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Jiang%2C+Min&rft.au=Huang%2C+Zhongqiang&rft.au=Qiu%2C+Liming&rft.au=Huang%2C+Wenzhen&rft.date=2018-08-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=22&rft.issue=4&rft.spage=501&rft.epage=514&rft_id=info:doi/10.1109%2FTEVC.2017.2771451&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2017_2771451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon