Transfer Learning-Based Dynamic Multiobjective Optimization Algorithms
One of the major distinguishing features of the dynamic multiobjective optimization problems (DMOPs) is that optimization objectives will change over time, thus tracking the varying Pareto-optimal front becomes a challenge. One of the promising solutions is reusing "experiences" to constru...
Saved in:
| Published in: | IEEE transactions on evolutionary computation Vol. 22; no. 4; pp. 501 - 514 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | One of the major distinguishing features of the dynamic multiobjective optimization problems (DMOPs) is that optimization objectives will change over time, thus tracking the varying Pareto-optimal front becomes a challenge. One of the promising solutions is reusing "experiences" to construct a prediction model via statistical machine learning approaches. However, most existing methods neglect the nonindependent and identically distributed nature of data to construct the prediction model. In this paper, we propose an algorithmic framework, called transfer learning-based dynamic multiobjective evolutionary algorithm (EA), which integrates transfer learning and population-based EAs to solve the DMOPs. This approach exploits the transfer learning technique as a tool to generate an effective initial population pool via reusing past experience to speed up the evolutionary process, and at the same time any population-based multiobjective algorithms can benefit from this integration without any extensive modifications. To verify this idea, we incorporate the proposed approach into the development of three well-known EAs, nondominated sorting genetic algorithm II, multiobjective particle swarm optimization, and the regularity model-based multiobjective estimation of distribution algorithm. We employ 12 benchmark functions to test these algorithms as well as compare them with some chosen state-of-the-art designs. The experimental results confirm the effectiveness of the proposed design for DMOPs. |
|---|---|
| AbstractList | One of the major distinguishing features of the dynamic multiobjective optimization problems (DMOPs) is that optimization objectives will change over time, thus tracking the varying Pareto-optimal front becomes a challenge. One of the promising solutions is reusing “experiences” to construct a prediction model via statistical machine learning approaches. However, most existing methods neglect the nonindependent and identically distributed nature of data to construct the prediction model. In this paper, we propose an algorithmic framework, called transfer learning-based dynamic multiobjective evolutionary algorithm (EA), which integrates transfer learning and population-based EAs to solve the DMOPs. This approach exploits the transfer learning technique as a tool to generate an effective initial population pool via reusing past experience to speed up the evolutionary process, and at the same time any population-based multiobjective algorithms can benefit from this integration without any extensive modifications. To verify this idea, we incorporate the proposed approach into the development of three well-known EAs, nondominated sorting genetic algorithm II, multiobjective particle swarm optimization, and the regularity model-based multiobjective estimation of distribution algorithm. We employ 12 benchmark functions to test these algorithms as well as compare them with some chosen state-of-the-art designs. The experimental results confirm the effectiveness of the proposed design for DMOPs. |
| Author | Jiang, Min Yen, Gary G. Huang, Zhongqiang Qiu, Liming Huang, Wenzhen |
| Author_xml | – sequence: 1 givenname: Min orcidid: 0000-0003-2946-6974 surname: Jiang fullname: Jiang, Min organization: Department of Cognitive Science and Technology, Fujian Key Laboratory of Machine Intelligence and Robotics, Xiamen University, Xiamen, China – sequence: 2 givenname: Zhongqiang surname: Huang fullname: Huang, Zhongqiang organization: Institute of Innovation Research, Sangfor Technologies, Shenzhen, China – sequence: 3 givenname: Liming surname: Qiu fullname: Qiu, Liming organization: Department of Cognitive Science and Technology, Fujian Key Laboratory of Machine Intelligence and Robotics, Xiamen University, Xiamen, China – sequence: 4 givenname: Wenzhen surname: Huang fullname: Huang, Wenzhen email: minjiang@xmu.edu.cn organization: Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Gary G. orcidid: 0000-0001-8851-5348 surname: Yen fullname: Yen, Gary G. email: gyen@okstate.edu organization: School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA |
| BookMark | eNp9kE9PAjEQxRujiYB-AONlE8-L_bPd0iMiqAmGCxpvTVtaLNntYltM8NO7K8SDB08zmbzfvJnXB6e-8QaAKwSHCEF-u5y-ToYYIjbEjKGCohPQQ7xAOYS4PG17OOI5Y6O3c9CPcQNhp-E9MFsG6aM1IZsbGbzz6_xORrPK7vde1k5nz7squUZtjE7u02SLbXK1-5LtzGfjat0El97reAHOrKyiuTzWAXiZTZeTx3y-eHiajOe5JpSnnGGIOZTKIEO1VbLAiHLJrOKqlNRCRgrFV6bQlllZrCznWFpKlCIF1yWiZABuDnu3ofnYmZjEptkF31oKjBBDEJIStyp0UOnQxBiMFdvgahn2AkHRxSW6uEQXlzjG1TLsD6Nd-nkzBemqf8nrA-mMMb9Oo_YWTij5BgBYepw |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2023_111227 crossref_primary_10_1016_j_future_2024_07_028 crossref_primary_10_1109_TCYB_2020_2989465 crossref_primary_10_1016_j_knosys_2022_108691 crossref_primary_10_1109_TCYB_2020_3017049 crossref_primary_10_1109_TEVC_2023_3257563 crossref_primary_10_1007_s12293_021_00347_4 crossref_primary_10_1016_j_swevo_2025_101918 crossref_primary_10_1016_j_asoc_2025_112732 crossref_primary_10_1109_TEVC_2022_3222844 crossref_primary_10_2118_212870_PA crossref_primary_10_1109_ACCESS_2019_2961980 crossref_primary_10_1007_s40747_024_01369_4 crossref_primary_10_1016_j_swevo_2020_100786 crossref_primary_10_1016_j_ins_2024_120922 crossref_primary_10_1016_j_swevo_2022_101075 crossref_primary_10_1109_TEVC_2024_3417978 crossref_primary_10_1109_TCYB_2022_3168839 crossref_primary_10_1109_TEVC_2024_3412049 crossref_primary_10_1109_TNNLS_2023_3295461 crossref_primary_10_1016_j_ins_2023_03_094 crossref_primary_10_1109_TCYB_2021_3062949 crossref_primary_10_1016_j_knosys_2019_105175 crossref_primary_10_1109_TCYB_2023_3338266 crossref_primary_10_1109_TNNLS_2019_2927320 crossref_primary_10_1016_j_ins_2025_122018 crossref_primary_10_1016_j_swevo_2024_101621 crossref_primary_10_1016_j_eswa_2025_129325 crossref_primary_10_3390_app12199627 crossref_primary_10_1016_j_ins_2023_119867 crossref_primary_10_1016_j_knosys_2020_106612 crossref_primary_10_1109_TNNLS_2021_3059529 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1016_j_ins_2023_119627 crossref_primary_10_1007_s00158_020_02707_z crossref_primary_10_1007_s00500_019_04365_w crossref_primary_10_1109_TEVC_2019_2922834 crossref_primary_10_1109_TEVC_2023_3241762 crossref_primary_10_1016_j_ins_2020_07_009 crossref_primary_10_1109_TEVC_2024_3367747 crossref_primary_10_1016_j_swevo_2023_101254 crossref_primary_10_1016_j_ins_2019_08_069 crossref_primary_10_1016_j_asoc_2021_107258 crossref_primary_10_1109_TCYB_2022_3164399 crossref_primary_10_1109_TCYB_2020_2986600 crossref_primary_10_1007_s11071_021_07180_x crossref_primary_10_1109_TEVC_2023_3253850 crossref_primary_10_1007_s10044_021_01002_x crossref_primary_10_1109_TEVC_2022_3233642 crossref_primary_10_1016_j_engappai_2023_105944 crossref_primary_10_1109_TEVC_2023_3235196 crossref_primary_10_3390_math10091587 crossref_primary_10_1016_j_ins_2019_01_066 crossref_primary_10_1080_03036758_2019_1609052 crossref_primary_10_1016_j_isatra_2022_03_015 crossref_primary_10_3389_fnbot_2019_00113 crossref_primary_10_1016_j_asoc_2022_109622 crossref_primary_10_1109_TFUZZ_2021_3070156 crossref_primary_10_1007_s40747_021_00631_3 crossref_primary_10_1016_j_swevo_2023_101385 crossref_primary_10_1007_s10479_021_04255_1 crossref_primary_10_1016_j_swevo_2023_101281 crossref_primary_10_1080_1206212X_2023_2300221 crossref_primary_10_1016_j_ins_2021_08_027 crossref_primary_10_1016_j_apm_2019_05_009 crossref_primary_10_1109_TEVC_2019_2906927 crossref_primary_10_1109_TNNLS_2022_3151646 crossref_primary_10_1016_j_asoc_2025_113113 crossref_primary_10_1016_j_swevo_2021_100987 crossref_primary_10_1016_j_swevo_2024_101713 crossref_primary_10_1016_j_swevo_2021_100867 crossref_primary_10_1093_jcde_qwac039 crossref_primary_10_1016_j_asoc_2022_109892 crossref_primary_10_1145_3571072 crossref_primary_10_3233_JIFS_189811 crossref_primary_10_1109_TII_2024_3435539 crossref_primary_10_1016_j_ins_2020_03_035 crossref_primary_10_1109_TEVC_2020_3004027 crossref_primary_10_1016_j_swevo_2020_100695 crossref_primary_10_1109_TCYB_2019_2962865 crossref_primary_10_1016_j_asoc_2024_111317 crossref_primary_10_1109_ACCESS_2018_2881538 crossref_primary_10_3390_pr13030744 crossref_primary_10_1007_s40747_022_00745_2 crossref_primary_10_1007_s00521_023_08633_7 crossref_primary_10_1016_j_neucom_2024_129291 crossref_primary_10_29328_journal_jairi_1001003 crossref_primary_10_3390_rs11192289 crossref_primary_10_1007_s11227_024_06480_4 crossref_primary_10_1016_j_future_2019_07_069 crossref_primary_10_1016_j_eswa_2023_120529 crossref_primary_10_1109_TCYB_2021_3070434 crossref_primary_10_1109_TETCI_2024_3389769 crossref_primary_10_1016_j_asoc_2021_107172 crossref_primary_10_1016_j_ins_2022_05_114 crossref_primary_10_1109_TEVC_2024_3393151 crossref_primary_10_1016_j_asoc_2024_112071 crossref_primary_10_1109_JAS_2022_105803 crossref_primary_10_1016_j_engstruct_2022_114607 crossref_primary_10_1109_MCI_2020_3039066 crossref_primary_10_1109_TEVC_2018_2880458 crossref_primary_10_1109_TEVC_2024_3424393 crossref_primary_10_1007_s11227_024_06832_0 crossref_primary_10_3390_app122111008 crossref_primary_10_1016_j_asoc_2023_111114 crossref_primary_10_1016_j_swevo_2021_100975 crossref_primary_10_1016_j_knosys_2021_107190 crossref_primary_10_1109_TCYB_2021_3128584 crossref_primary_10_1007_s40747_021_00570_z crossref_primary_10_1109_TEVC_2021_3115036 crossref_primary_10_1016_j_ins_2024_120398 crossref_primary_10_1016_j_asoc_2019_105988 crossref_primary_10_1016_j_asoc_2020_106592 crossref_primary_10_1109_TITS_2024_3434561 crossref_primary_10_1016_j_asoc_2020_107027 crossref_primary_10_1016_j_ins_2021_08_065 crossref_primary_10_3390_app13084795 crossref_primary_10_1016_j_swevo_2020_100829 crossref_primary_10_1016_j_ins_2020_08_101 crossref_primary_10_1016_j_ins_2019_09_016 crossref_primary_10_1109_TNNLS_2019_2920887 crossref_primary_10_1007_s10489_022_04429_9 crossref_primary_10_1109_TNNLS_2022_3186671 crossref_primary_10_1016_j_neucom_2023_126761 crossref_primary_10_1109_TETCI_2023_3306351 crossref_primary_10_1109_TEVC_2022_3144180 crossref_primary_10_32604_cmc_2023_027448 crossref_primary_10_1016_j_swevo_2025_102067 crossref_primary_10_1007_s12293_022_00358_9 crossref_primary_10_1016_j_ins_2023_119256 crossref_primary_10_1109_TEVC_2024_3375751 crossref_primary_10_3390_pr11020613 crossref_primary_10_1016_j_asoc_2024_111756 crossref_primary_10_1016_j_ins_2023_119495 crossref_primary_10_1007_s00158_024_03800_3 crossref_primary_10_1016_j_swevo_2024_101468 crossref_primary_10_1016_j_apenergy_2019_113476 crossref_primary_10_1016_j_swevo_2025_101883 crossref_primary_10_1109_TCYB_2020_2983860 crossref_primary_10_1145_3524495 crossref_primary_10_1109_MCI_2022_3155332 crossref_primary_10_1016_j_measurement_2022_110966 crossref_primary_10_1016_j_ejor_2021_01_028 crossref_primary_10_1016_j_engappai_2025_111696 crossref_primary_10_1145_3459664 crossref_primary_10_1109_TCSS_2023_3293331 crossref_primary_10_1109_MCI_2022_3155325 crossref_primary_10_1016_j_eswa_2023_121532 crossref_primary_10_1088_1742_6596_2562_1_012070 crossref_primary_10_3390_ma16175927 crossref_primary_10_1007_s12065_025_01059_1 crossref_primary_10_1109_ACCESS_2020_3028064 crossref_primary_10_3390_math10122117 crossref_primary_10_1016_j_eswa_2024_123344 crossref_primary_10_1016_j_swevo_2024_101693 crossref_primary_10_1051_e3sconf_202340604021 crossref_primary_10_1371_journal_pone_0254839 crossref_primary_10_1016_j_ins_2023_03_111 crossref_primary_10_1109_TCYB_2024_3364375 crossref_primary_10_1109_TPWRS_2022_3179372 crossref_primary_10_1109_TEVC_2021_3068157 crossref_primary_10_1109_ACCESS_2020_3029968 crossref_primary_10_1016_j_ins_2022_09_022 crossref_primary_10_1145_3604812 crossref_primary_10_1016_j_asoc_2019_105783 crossref_primary_10_1007_s00158_019_02475_5 crossref_primary_10_1007_s10489_022_04444_w crossref_primary_10_1016_j_neucom_2024_127241 crossref_primary_10_1016_j_swevo_2025_101987 crossref_primary_10_1109_TEVC_2019_2926107 crossref_primary_10_1016_j_swevo_2025_101865 crossref_primary_10_1016_j_asoc_2020_106276 crossref_primary_10_1016_j_geoen_2023_211446 crossref_primary_10_1016_j_swevo_2025_101981 crossref_primary_10_1016_j_swevo_2022_101125 crossref_primary_10_1016_j_swevo_2025_102012 crossref_primary_10_1109_TETCI_2023_3336918 crossref_primary_10_1007_s00521_024_10610_7 crossref_primary_10_1016_j_ins_2022_05_050 crossref_primary_10_1016_j_swevo_2025_102011 crossref_primary_10_1016_j_asoc_2025_113072 crossref_primary_10_1007_s11431_024_2923_8 crossref_primary_10_1109_TEVC_2021_3082112 crossref_primary_10_1109_TEVC_2022_3159000 crossref_primary_10_1016_j_ins_2023_04_006 crossref_primary_10_1016_j_asoc_2024_112022 crossref_primary_10_1016_j_measurement_2019_107155 crossref_primary_10_1016_j_swevo_2023_101317 crossref_primary_10_1109_TEVC_2019_2925722 crossref_primary_10_1016_j_asoc_2020_107077 crossref_primary_10_1016_j_ins_2020_02_071 crossref_primary_10_1016_j_ins_2022_08_020 crossref_primary_10_1016_j_bspc_2020_101926 crossref_primary_10_1088_1742_6596_2795_1_012004 crossref_primary_10_1016_j_ins_2021_01_021 crossref_primary_10_1109_TCYB_2020_3017017 crossref_primary_10_1016_j_ins_2020_08_015 crossref_primary_10_1007_s40747_024_01656_0 crossref_primary_10_1109_TEVC_2020_2985323 crossref_primary_10_1016_j_biosystems_2022_104686 crossref_primary_10_1109_TEVC_2022_3147526 crossref_primary_10_1109_ACCESS_2020_2974324 crossref_primary_10_1016_j_knosys_2022_109173 crossref_primary_10_1016_j_eswa_2023_120951 crossref_primary_10_1016_j_neucom_2023_03_073 crossref_primary_10_1016_j_patcog_2024_110581 crossref_primary_10_1109_TSMC_2023_3322718 crossref_primary_10_1109_TDSC_2023_3302284 crossref_primary_10_1007_s12293_021_00348_3 crossref_primary_10_1016_j_eswa_2021_114594 crossref_primary_10_3390_ai5040107 crossref_primary_10_1016_j_engappai_2024_109741 crossref_primary_10_1007_s40815_023_01477_2 crossref_primary_10_1109_TEVC_2023_3234113 crossref_primary_10_1007_s10878_022_00860_3 crossref_primary_10_1016_j_asoc_2022_108742 crossref_primary_10_1007_s41060_025_00801_3 crossref_primary_10_1109_TCYB_2021_3090769 crossref_primary_10_1016_j_swevo_2024_101773 crossref_primary_10_1016_j_swevo_2025_102103 crossref_primary_10_1109_TEVC_2022_3193287 crossref_primary_10_1109_TEVC_2022_3166482 crossref_primary_10_1109_ACCESS_2021_3124028 crossref_primary_10_1109_TCYB_2021_3059252 crossref_primary_10_1109_TEVC_2021_3135020 crossref_primary_10_1109_TEVC_2023_3291697 crossref_primary_10_1016_j_powtec_2025_121142 crossref_primary_10_1109_TNNLS_2022_3160173 crossref_primary_10_1109_TEVC_2023_3290485 crossref_primary_10_1016_j_neucom_2024_127601 crossref_primary_10_1016_j_asoc_2023_110661 crossref_primary_10_3390_pr12010189 crossref_primary_10_1111_exsy_13241 crossref_primary_10_1109_TEVC_2019_2958075 crossref_primary_10_1016_j_ins_2024_120794 crossref_primary_10_12677_CES_2018_64047 crossref_primary_10_1016_j_swevo_2022_101164 |
| Cites_doi | 10.1109/NNSP.1999.788121 10.1007/978-1-4471-0519-0_24 10.1109/TCYB.2015.2502483 10.1109/TEVC.2007.894202 10.1109/TCYB.2013.2245892 10.1109/TEVC.2013.2281537 10.1109/TEVC.2005.851275 10.1109/4235.910466 10.1109/TKDE.2009.191 10.1007/s12293-009-0012-0 10.21236/ADA229159 10.1007/978-3-540-75225-7_5 10.1109/TPWRS.2006.879272 10.1007/s00500-010-0681-0 10.1109/CEC.1999.785502 10.1109/ICNC.2008.313 10.1016/j.knosys.2017.06.021 10.1109/CEC.2013.6557821 10.1007/978-3-540-95976-2_5 10.1080/00207721.2011.605965 10.1162/evco.2008.16.1.1 10.1109/4235.996017 10.1109/CEC.2002.1004388 10.1109/TEVC.2004.831456 10.1007/3-540-61723-X_1002 10.1109/MSP.2014.2347059 10.1109/TCYB.2015.2490738 10.1109/TEVC.2008.2009031 10.1007/s10994-009-5152-4 10.1109/TEVC.2007.913109 10.1007/s00500-013-1154-z 10.1109/TEVC.2008.920671 10.1145/2739480.2754808 10.1016/j.swevo.2012.05.001 10.1109/TEVC.2017.2657556 10.1007/978-3-540-70928-2_60 10.1007/s00500-015-1820-4 10.1007/s11633-007-0243-9 10.1007/978-3-540-31880-4_35 10.1162/evco.2008.16.3.385 10.1017/CBO9780511809682 10.1109/TEVC.2013.2281524 10.1109/TNN.2010.2091281 10.1007/s00453-016-0187-y 10.1109/TEVC.2010.2046667 10.1109/TEVC.2014.2362558 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2017.2771451 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 514 |
| ExternalDocumentID | 10_1109_TEVC_2017_2771451 8100935 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Oklahoma State University funderid: 10.13039/100007069 – fundername: National Natural Science Foundation of China grantid: 61003014; 61673328 funderid: 10.13039/501100001809 – fundername: Foundation of Xiamen University’s President grantid: 20720150150 funderid: 10.13039/501100008865 – fundername: China Scholarship Council grantid: 20150631505 funderid: 10.13039/501100004543 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-720290abe1e5cfba42159a7fb9b6a5f0734b9de4cf7fa4df992af53bb349c6153 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 289 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441400200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Nov 30 05:40:16 EST 2025 Sat Nov 29 03:13:47 EST 2025 Tue Nov 18 22:24:33 EST 2025 Wed Aug 27 02:48:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-720290abe1e5cfba42159a7fb9b6a5f0734b9de4cf7fa4df992af53bb349c6153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8851-5348 0000-0003-2946-6974 |
| PQID | 2117100362 |
| PQPubID | 85418 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TEVC_2017_2771451 proquest_journals_2117100362 ieee_primary_8100935 crossref_primary_10_1109_TEVC_2017_2771451 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-08-01 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref56 ref12 ref15 bosman (ref32) 2007 raquel (ref13) 2013 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref18 ref50 ref45 ref48 ref47 grefenstette (ref19) 1992 ref44 ben-david (ref40) 2007; 19 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 sola (ref53) 2010 ref37 ref36 muruganantham (ref51) 2015 ref31 ref30 ref33 goh (ref25) 2009; 13 ref2 ref1 ref39 ref38 helbig (ref46) 2015 azzouz (ref14) 2016 ref24 ref23 ref26 ref20 ref22 ref21 smola (ref42) 2007 gretton (ref41) 2006 ref28 ref27 ref29 steinwart (ref43) 2002; 2 |
| References_xml | – volume: 2 start-page: 67 year: 2002 ident: ref43 article-title: On the influence of the kernel on the consistency of support vector machines publication-title: J Mach Learn Res – start-page: 239 year: 2015 ident: ref51 article-title: Solving the IEEE CEC 2015 dynamic benchmark problems using Kalman filter based dynamic multiobjective evolutionary algorithm publication-title: Proc Adaptation Learn Optim – ident: ref45 doi: 10.1109/NNSP.1999.788121 – ident: ref29 doi: 10.1007/978-1-4471-0519-0_24 – ident: ref39 doi: 10.1109/TCYB.2015.2502483 – ident: ref49 doi: 10.1109/TEVC.2007.894202 – ident: ref33 doi: 10.1109/TCYB.2013.2245892 – ident: ref35 doi: 10.1109/TEVC.2013.2281537 – ident: ref27 doi: 10.1109/TEVC.2005.851275 – ident: ref8 doi: 10.1109/4235.910466 – start-page: 513 year: 2006 ident: ref41 article-title: A kernel method for the two-sample-problem publication-title: Proc Adv Neural Inf Process Syst – ident: ref9 doi: 10.1109/TKDE.2009.191 – ident: ref26 doi: 10.1007/s12293-009-0012-0 – ident: ref16 doi: 10.21236/ADA229159 – start-page: 31 year: 2016 ident: ref14 article-title: Dynamic multi-objective optimization using evolutionary algorithms: A survey publication-title: Recent Advances in Evolutionary Multi-objective Optimization – start-page: 13 year: 2007 ident: ref42 article-title: A Hilbert space embedding for distributions publication-title: Algorithmic Learning Theory doi: 10.1007/978-3-540-75225-7_5 – ident: ref3 doi: 10.1109/TPWRS.2006.879272 – ident: ref2 doi: 10.1007/s00500-010-0681-0 – year: 2010 ident: ref53 article-title: Parallel processing for dynamic multi-objective optimization – ident: ref24 doi: 10.1109/CEC.1999.785502 – ident: ref30 doi: 10.1109/ICNC.2008.313 – ident: ref56 doi: 10.1016/j.knosys.2017.06.021 – ident: ref21 doi: 10.1109/CEC.2013.6557821 – ident: ref15 doi: 10.1007/978-3-540-95976-2_5 – ident: ref5 doi: 10.1080/00207721.2011.605965 – ident: ref7 doi: 10.1162/evco.2008.16.1.1 – ident: ref47 doi: 10.1109/4235.996017 – ident: ref48 doi: 10.1109/CEC.2002.1004388 – start-page: 129 year: 2007 ident: ref32 publication-title: Learning and Anticipation in Online Dynamic Optimization – ident: ref1 doi: 10.1109/TEVC.2004.831456 – ident: ref17 doi: 10.1007/3-540-61723-X_1002 – ident: ref38 doi: 10.1109/MSP.2014.2347059 – ident: ref52 doi: 10.1109/TCYB.2015.2490738 – ident: ref18 doi: 10.1109/TEVC.2008.2009031 – ident: ref37 doi: 10.1007/s10994-009-5152-4 – ident: ref54 doi: 10.1109/TEVC.2007.913109 – ident: ref6 doi: 10.1007/s00500-013-1154-z – volume: 13 start-page: 103 year: 2009 ident: ref25 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2008.920671 – ident: ref11 doi: 10.1145/2739480.2754808 – ident: ref4 doi: 10.1016/j.swevo.2012.05.001 – ident: ref34 doi: 10.1109/TEVC.2017.2657556 – ident: ref23 doi: 10.1007/978-3-540-70928-2_60 – start-page: 137 year: 1992 ident: ref19 article-title: Genetic algorithms for changing environments publication-title: Parallel Problem Solving from Nature 2 – ident: ref28 doi: 10.1007/s00500-015-1820-4 – ident: ref20 doi: 10.1007/s11633-007-0243-9 – ident: ref50 doi: 10.1007/978-3-540-31880-4_35 – ident: ref22 doi: 10.1162/evco.2008.16.3.385 – ident: ref44 doi: 10.1017/CBO9780511809682 – start-page: 85 year: 2013 ident: ref13 publication-title: Dynamic Multi-Objective Optimization A Survey of the State-of-the-Art – volume: 19 start-page: 137 year: 2007 ident: ref40 article-title: Analysis of representations for domain adaptation publication-title: Proc Adv Neural Inf Process Syst – year: 2015 ident: ref46 article-title: Benchmark functions for CEC 2015 special session and competition on dynamic multi-objective optimization – ident: ref55 doi: 10.1109/TEVC.2013.2281524 – ident: ref10 doi: 10.1109/TNN.2010.2091281 – ident: ref12 doi: 10.1007/s00453-016-0187-y – ident: ref31 doi: 10.1109/TEVC.2010.2046667 – ident: ref36 doi: 10.1109/TEVC.2014.2362558 |
| SSID | ssj0014519 |
| Score | 2.6712039 |
| Snippet | One of the major distinguishing features of the dynamic multiobjective optimization problems (DMOPs) is that optimization objectives will change over time,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 501 |
| SubjectTerms | Algorithm design and analysis Algorithms Classification Dimensionality reduction domain adaption dynamic multiobjective optimization evolutionary algorithm (EA) Evolutionary algorithms Genetic algorithms Heuristic algorithms Machine learning Mathematical models Multiple objective analysis Optimization Pareto optimization Particle swarm optimization Population (statistical) Prediction algorithms Predictive models Sociology Sorting algorithms Statistics transfer learning |
| Title | Transfer Learning-Based Dynamic Multiobjective Optimization Algorithms |
| URI | https://ieeexplore.ieee.org/document/8100935 https://www.proquest.com/docview/2117100362 |
| Volume | 22 |
| WOSCitedRecordID | wos000441400200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4g8YAHUdCIotmDJ-PCPlq6PSJCPBj0gIbbZtttUQOs4eHvty-IRmPibQ_TZrNf59GdmW8ALmlEVNTNsJ_oFnedePOZwIGf8zCUSJ2oyJK43pPhMBmP6WMJrre9MEIIU3wmWvrR5PLzgq_1r7J2EuoLON6BHUKI7dXaZgw0TYotpqcqYkzGLoMZBrQ96j_3dBEXaUWEaMFvPsgMVflhiY17GVT_92IHsO_CSK9rcT-EkpjXoLoZ0eA5ja3B3he-wRpUdGhpmZnrMDBuSippx7E68W-US8u9Wzuk3jO9uQV7sybRe1DGZea6Nr3udFIsXlcvs-URPA36o96d76Yq-DzGdOWTKIhokDERCswly5By-jQjklHWybBUKo8YzQXiksgM5ZLSKJM4ZixGlOvw8BjK82IuTsCjIVcGgUVIdBjSvO5xLJM8FjnpoIwh3IBg851T7ijH9eSLaWquHgFNNTSphiZ10DTgarvk3fJt_CVc11hsBR0MDWhuwEydRi5TddHVREbKX5_-vuoMKmrvxBb3NaG8WqzFOezyD4XL4sIctk88xtCP |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH_Bj0Q8iKJGFHUHT8bJ1rV0PSpCMCJ6QMNtWbsWNXwYRP9-27UQjcbE2w6v2dJf30f33vs9gBOGqI66OfFj0-JuEm8-lyTwMxGGCusThSyJa4d2u3G_z-4LcLbohZFS5sVn8tw85rn8bCLeza-yWhyaCzhZghWCMQptt9YiZ2CIUmw5PdMxY9x3OcwwYLVe87FhyrjoOaLUCH7zQvlYlR-2OHcwrdL_Pm0TNlwg6V1Y5LegIMdlKM2HNHhOZ8uw_oVxsAxFE1xabuZtaOWOSmlpx7I68C-1U8u8Kzum3su7cyf8xRpF706bl5Hr2_QuhoPJ9Hn2NHrbgYdWs9do-26ugi8iwmY-RQFiQcplKIlQPNVbSVhKFWe8nhKllR5zlkksFFUpzhRjKFUk4jzCTJgAcReWx5Ox3AOPhUKbBI6wrHNsmN2jSMVZJDNaxynHpALBfJ8T4UjHzeyLYZJfPgKWGGgSA03ioKnA6WLJq2Xc-Et422CxEHQwVKA6BzNxOvmW6KuuoTLSHnv_91XHsNbu3XaSznX35gCK-j2xLfWrwvJs-i4PYVV8aIymR_nB-wQ9btPW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transfer+Learning-Based+Dynamic+Multiobjective+Optimization+Algorithms&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Jiang%2C+Min&rft.au=Huang%2C+Zhongqiang&rft.au=Qiu%2C+Liming&rft.au=Huang%2C+Wenzhen&rft.date=2018-08-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=22&rft.issue=4&rft.spage=501&rft.epage=514&rft_id=info:doi/10.1109%2FTEVC.2017.2771451&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2017_2771451 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |