Evaluating Task Optimization and Reinforcement Learning Models in Robotic Task Parameterization

The rapid evolution of industrial robot hardware has created a technological gap with software, limiting its adoption. The software solutions proposed in recent years have yet to meet the industrial sector's requirements, as they focus more on the definition of task structure than the definitio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 12; pp. 173734 - 173748
Main Authors: Delledonne, Michele, Villagrossi, Enrico, Beschi, Manuel, Rastegarpanah, Alireza
Format: Journal Article
Language:English
Published: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The rapid evolution of industrial robot hardware has created a technological gap with software, limiting its adoption. The software solutions proposed in recent years have yet to meet the industrial sector's requirements, as they focus more on the definition of task structure than the definition and tuning of its execution parameters. A framework for task parameter optimization was developed to address this gap. It breaks down the task using a modular structure, allowing the task optimization piece by piece. The optimization is performed with a dedicated hill-climbing algorithm. This paper revisits the framework by proposing an alternative approach that replaces the algorithmic component with reinforcement learning (RL) models. Five RL models are proposed with increasing complexity and efficiency. A comparative analysis of the traditional algorithm and RL models is presented, highlighting efficiency, flexibility, and usability. The results demonstrate that although RL models improve task optimization efficiency by 95%, they still need more flexibility. However, the nature of these models provides significant opportunities for future advancements.
AbstractList The rapid evolution of industrial robot hardware has created a technological gap with software, limiting its adoption. The software solutions proposed in recent years have yet to meet the industrial sector’s requirements, as they focus more on the definition of task structure than the definition and tuning of its execution parameters. A framework for task parameter optimization was developed to address this gap. It breaks down the task using a modular structure, allowing the task optimization piece by piece. The optimization is performed with a dedicated hill-climbing algorithm. This paper revisits the framework by proposing an alternative approach that replaces the algorithmic component with reinforcement learning (RL) models. Five RL models are proposed with increasing complexity and efficiency. A comparative analysis of the traditional algorithm and RL models is presented, highlighting efficiency, flexibility, and usability. The results demonstrate that although RL models improve task optimization efficiency by 95%, they still need more flexibility. However, the nature of these models provides significant opportunities for future advancements.
Author Delledonne, Michele
Beschi, Manuel
Rastegarpanah, Alireza
Villagrossi, Enrico
Author_xml – sequence: 1
  givenname: Michele
  orcidid: 0000-0001-5236-2706
  surname: Delledonne
  fullname: Delledonne, Michele
  email: michele.delledonne@stiima.cnr.it
  organization: Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council of Italy, Milan, Italy
– sequence: 2
  givenname: Enrico
  orcidid: 0000-0002-9493-4175
  surname: Villagrossi
  fullname: Villagrossi, Enrico
  organization: Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council of Italy, Milan, Italy
– sequence: 3
  givenname: Manuel
  orcidid: 0000-0002-8845-2313
  surname: Beschi
  fullname: Beschi, Manuel
  organization: Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council of Italy, Milan, Italy
– sequence: 4
  givenname: Alireza
  orcidid: 0000-0003-4264-6857
  surname: Rastegarpanah
  fullname: Rastegarpanah, Alireza
  organization: School of Metallurgy and Materials, University of Birmingham, Birmingham, U.K
BookMark eNpNkU9LAzEQxYMoWKufQA8LnluTJtndHEupWqhU_HMOs9lJSW2Tmt0K-ulN3SKdywyP-b0ZeBfk1AePhFwzOmSMqrvxZDJ9fR2O6EgMuaSCS3FCeiOWqwGXPD89ms_JVdOsaKoySbLoET39gvUOWueX2Rs0H9li27qN-0lK8Bn4OntB522IBjfo22yOEP1--SnUuG4y57OXUIXWmQ5_hggbbDEeLC7JmYV1g1eH3ifv99O3yeNgvniYTcbzgeFStYNiRKlhIG2lqBUIqjRQSSYLzGukeZVTI0ssSrCFkCW3xtqSCURl8spKW_M-mXW-dYCV3ka3gfitAzj9J4S41BDTl2vUKGWVq5LRshaCGgBQkglpCs5rVWOVvG47r20MnztsWr0Ku-jT-5ozzkViU-sT3m2ZGJomov2_yqjeB6O7YPQ-GH0IJlE3HeUQ8YgopMoF5b_kr4zS
CODEN IAECCG
Cites_doi 10.1080/0951192X.2022.2148754
10.1007/s10845-023-02211-3
10.1007/s13218-019-00595-0
10.1145/3466819
10.4236/ahs.2019.81002
10.1515/zwf-2021-0044
10.1007/s35724-022-1138-6
10.3390/app12063164
10.1145/3640008
10.1007/s10723-022-09618-x
10.3390/s23073762
10.1109/TITS.2020.3046478
10.14569/ijacsa.2021.0121070
10.3390/robotics10010050
10.1108/ir-02-2021-0043
10.1016/j.mechatronics.2018.02.009
10.1109/ACCESS.2020.3027152
10.1109/SII58957.2024.10417267
10.1109/ETFA54631.2023.10275720
10.1016/j.compbiomed.2022.106060
10.1016/j.cogr.2023.04.001
10.1007/s10845-023-02294-y
10.1109/TRO.2023.3258669
10.3390/app12020937
10.1016/j.eswa.2023.120254
10.3390/app13042582
10.1007/s10845-023-02096-2
10.1016/j.neucom.2023.126896
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3504354
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 173748
ExternalDocumentID oai_doaj_org_article_e55b698108d440caaa95145c733d9deb
10_1109_ACCESS_2024_3504354
10759640
Genre orig-research
GrantInformation_xml – fundername: REBELION Project
  grantid: 101104241
– fundername: Lombardy, Italy Regional Project EcoCirc (deliberation XI/4730 of the 17/05/2021)
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-7200c1a5fb90f4ea98cab5157e6de06b60c58e78af74583fcff814ee9c6bf5fd3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001409526500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:06 EDT 2025
Mon Jun 30 12:58:28 EDT 2025
Sat Nov 29 04:27:13 EST 2025
Wed Aug 27 03:03:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-7200c1a5fb90f4ea98cab5157e6de06b60c58e78af74583fcff814ee9c6bf5fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4264-6857
0000-0002-9493-4175
0000-0002-8845-2313
0000-0001-5236-2706
OpenAccessLink https://ieeexplore.ieee.org/document/10759640
PQID 3133498113
PQPubID 4845423
PageCount 15
ParticipantIDs ieee_primary_10759640
crossref_primary_10_1109_ACCESS_2024_3504354
doaj_primary_oai_doaj_org_article_e55b698108d440caaa95145c733d9deb
proquest_journals_3133498113
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Bilancia (ref6) 2023; 13
ref13
ref12
ref15
ref14
ref30
ref11
ref10
Ionescu (ref7) 2021; 10
ref2
ref1
Blankemeyer (ref16); 76
Raffaeli (ref3) 2022; 12
Arents (ref19) 2022; 12
Towers (ref33) 2023
Truong (ref27) 2023; 562
Tsarouchi (ref17); 23
Islam (ref23) 2022; 149
ref24
Han (ref31) 2023; 23
Villani (ref18) 2018; 55
ref25
Coumans (ref32) 2016
ref22
ref28
ref29
ref8
ref9
ref4
Soori (ref20) 2023; 3
ref5
Liu (ref21) 2023; 227
Raffin (ref34) 2021; 22
Chen (ref26) 2021; 10
References_xml – volume: 23
  start-page: 47
  volume-title: Proc. CIRP Conf. Assem. Technol. Syst.
  ident: ref17
  article-title: Robotized assembly process using dual arm robot
– ident: ref12
  doi: 10.1080/0951192X.2022.2148754
– ident: ref24
  doi: 10.1007/s10845-023-02211-3
– volume: 10
  start-page: 1
  issue: 1
  year: 2021
  ident: ref7
  article-title: Leveraging graphical user interface automation for generic robot programming
  publication-title: Robot.
– ident: ref5
  doi: 10.1007/s13218-019-00595-0
– ident: ref15
  doi: 10.1145/3466819
– ident: ref1
  doi: 10.4236/ahs.2019.81002
– ident: ref8
  doi: 10.1515/zwf-2021-0044
– volume: 76
  start-page: 155
  volume-title: Proc. CIRP
  ident: ref16
  article-title: Intuitive robot programming using augmented reality
– ident: ref2
  doi: 10.1007/s35724-022-1138-6
– volume-title: Pybullet, a Python Module for Physics Simulation for Games, Robotics and Machine Learning
  year: 2016
  ident: ref32
– volume: 12
  start-page: 3164
  issue: 6
  year: 2022
  ident: ref3
  article-title: Engineering method and tool for the complete virtual commissioning of robotic cells
  publication-title: Appl. Sci.
  doi: 10.3390/app12063164
– ident: ref14
  doi: 10.1145/3640008
– ident: ref11
  doi: 10.1007/s10723-022-09618-x
– volume: 23
  start-page: 3762
  issue: 7
  year: 2023
  ident: ref31
  article-title: A survey on deep reinforcement learning algorithms for robotic manipulation
  publication-title: Sensors
  doi: 10.3390/s23073762
– ident: ref22
  doi: 10.1109/TITS.2020.3046478
– ident: ref25
  doi: 10.14569/ijacsa.2021.0121070
– volume: 10
  start-page: 50
  issue: 1
  year: 2021
  ident: ref26
  article-title: Industrial robot trajectory tracking control using multi-layer neural networks trained by iterative learning control
  publication-title: Robotics
  doi: 10.3390/robotics10010050
– volume-title: Gymnasium
  year: 2023
  ident: ref33
– ident: ref9
  doi: 10.1108/ir-02-2021-0043
– volume: 55
  start-page: 248
  year: 2018
  ident: ref18
  article-title: Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2018.02.009
– ident: ref30
  doi: 10.1109/ACCESS.2020.3027152
– ident: ref29
  doi: 10.1109/SII58957.2024.10417267
– ident: ref4
  doi: 10.1109/ETFA54631.2023.10275720
– volume: 149
  year: 2022
  ident: ref23
  article-title: Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106060
– volume: 3
  start-page: 54
  year: 2023
  ident: ref20
  article-title: Artificial intelligence, machine learning and deep learning in advanced robotics, a review
  publication-title: Cognit. Robot.
  doi: 10.1016/j.cogr.2023.04.001
– ident: ref28
  doi: 10.1007/s10845-023-02294-y
– ident: ref10
  doi: 10.1109/TRO.2023.3258669
– volume: 12
  start-page: 937
  issue: 2
  year: 2022
  ident: ref19
  article-title: Smart industrial robot control trends, challenges and opportunities within manufacturing
  publication-title: Appl. Sci.
  doi: 10.3390/app12020937
– volume: 227
  year: 2023
  ident: ref21
  article-title: Path planning techniques for mobile robots: Review and prospect
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120254
– volume: 13
  start-page: 2582
  issue: 4
  year: 2023
  ident: ref6
  article-title: An overview of industrial robots control and programming approaches
  publication-title: Appl. Sci.
  doi: 10.3390/app13042582
– ident: ref13
  doi: 10.1007/s10845-023-02096-2
– volume: 562
  year: 2023
  ident: ref27
  article-title: Neural network-based sliding mode controllers applied to robot manipulators: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126896
– volume: 22
  start-page: 1
  issue: 268
  year: 2021
  ident: ref34
  article-title: Stable-baselines3: Reliable reinforcement learning implementations
  publication-title: J. Mach. Learn. Res.
SSID ssj0000816957
Score 2.2999768
Snippet The rapid evolution of industrial robot hardware has created a technological gap with software, limiting its adoption. The software solutions proposed in...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 173734
SubjectTerms Algorithms
Artificial intelligence
Efficiency
Flexibility
Industrial robots
intuitive robot programming
Libraries
Machine learning
Mathematical models
Modular structures
Optimization
Parameterization
Parameters
Programming
Reinforcement learning
Robot learning
Robot sensing systems
robotic task optimization
Robots
Service robots
Software
task-oriented programming
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYQ6gEOVVtAhNLKB45sY-P3EaJEHBBFEVS5WbN-RFFhg0jK78f2OlWqHnrpdbU7s57xvPz4BqEzLyDfr1SNF440PCRTBA-uIcoEWnY6S9O-Hzfq9lbPZuZuq9VXPhPWwwP3ghsGIVppNCXac04cAKScgAunGPPGhzZ730R4q5gqPlhTaYSqMEOUmOHlaJRGlArCC_6NZdguwf8IRQWxv7ZY-csvl2Az-YDe1ywRX_Z_9xHthO4T2t_CDjxAdlxxurs5vofVT_w9Gf9TvVWJofN4GgoqqisLgLgCqc5x7n72uMKLDk-X7TIx6D-_g3xMKyM39yQO0cNkfD-6bmq3hMYxYdaNSvPdURCxNSTyAEY7aFO2ooL0gchWEid0UBqiynul0cWoKQ_BONlGET07QrvdsgvHCDPKacuMM156HiWA5iAVpNieisWUggzQ-UZw9rkHxbClmCDG9nK2Wc62ynmArrJwf7-aEa3Lg6RnW_Vs_6XnATrMqtnip4SRnAzQ6UZXtprfyrJUefNEjLKT_8H7M9rL4-lXXk7R7vrlV_iC3rnX9WL18rXMvDcAkdt-
  priority: 102
  providerName: Directory of Open Access Journals
Title Evaluating Task Optimization and Reinforcement Learning Models in Robotic Task Parameterization
URI https://ieeexplore.ieee.org/document/10759640
https://www.proquest.com/docview/3133498113
https://doaj.org/article/e55b698108d440caaa95145c733d9deb
Volume 12
WOSCitedRecordID wos001409526500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZa1AM99EGp2HaLfOBIIMGv-LisFvXQUoSg4mZN7DFCQLbaXXrsb-_YMQiEeugliqL4EX8Ze2bs-YaxnaAgxVeaKihfVxJJFCGAr2pjsck7nTlp389v5vi4vbiwJyVYPcfCIGI-fIZ76Tbv5Ye5v0uuMpJwo6yWZKG_NEYPwVoPDpWUQcIqU5iFmtruT6ZT-giyAQ_knkhMXUo-WX0ySX_JqvJsKs7ry9Hb_-zZO_amKJJ8MiD_nr3AfoO9fkQv-IG5WaHy7i_5GSyv-Q-aH25L4CWHPvBTzMSpPvsIeeFaveQpQdrNkl_1_HTezamBofgJpJNcidx5qGKTnR_NzqZfq5JQofJC2VVlSCR8Ayp2to4SwbYeOlJoDOqAte507VWLpoVo0nZq9DG2jUS0XndRxSA-srV-3uMW46KRTSest0EHGTVAK0EboOWfhoK0lBHbvR9o92vgzXDZ3qitG3BxCRdXcBmxwwTGw6uJ9Do_oFF2RYYcKtVpSw20QcraAwCph1J5I0SwAbsR20zIPGpvAGXExvfYuiKhSyfIOJdUWSM-_aPYZ7aeujj4W8ZsbbW4wy_slf-9uloutrPxTtfvf2bb-Uf8CzZu2zE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hggQceLZioYAPHElx6ld8LKtWRSxLVS2oN8uxx1UFZFF329_fseNWRYgDtyiKn1_Gnhl7vgF4F5XP8ZWmiSrwRiKJoo8-NNxYbMtJZ0na931m5vPu5MQe1WD1EguDiOXyGe7kx3KWH5fhIrvKSMKNslqShX5XSbnLx3CtG5dKziFhlancQi23H_amUxoGWYG7ckdkri4l_9h_Ck1_zavy12JcdpiDx__ZtyfwqKqSbG_E_incweEZPLxFMPgc3H4l8x5O2cKvfrCvtEL8qqGXzA-RHWOhTg3FS8gq2-opyynSfq7Y2cCOl_2SGhiLH_l8lyvTO49VbMK3g_3F9LCpKRWaIJRdN4aEIrRepd7yJNHbLvieVBqDOiLXveZBdWg6n0w-UE0hpa6ViDboPqkUxRZsDMsBXwATrWx7YYONOsqkve-k18aTAkBTQXrKBN5fT7T7PTJnuGJxcOtGXFzGxVVcJvAxg3Hzaaa9Li9oll2VIodK9dpSA12UkgfvPSmIUgUjRLQR-wlsZmRutTeCMoHta2xdldGVE2SeS6qsFS__Uewt3D9cfJm52af551fwIHd39L5sw8b6_AJfw71wuT5bnb8pP-IVa_ncUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+Task+Optimization+and+Reinforcement+Learning+Models+in+Robotic+Task+Parameterization&rft.jtitle=IEEE+access&rft.au=Delledonne%2C+Michele&rft.au=Villagrossi%2C+Enrico&rft.au=Beschi%2C+Manuel&rft.au=Rastegarpanah%2C+Alireza&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=173734&rft.epage=173748&rft_id=info:doi/10.1109%2FACCESS.2024.3504354&rft.externalDocID=10759640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon