Dynamic Graph Coloring

In this paper we study the number of vertex recolorings that an algorithm needs to perform in order to maintain a proper coloring of a graph under insertion and deletion of vertices and edges. We present two algorithms that achieve different trade-offs between the number of recolorings and the numbe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithmica Ročník 81; číslo 4; s. 1319 - 1341
Hlavní autori: Barba, Luis, Cardinal, Jean, Korman, Matias, Langerman, Stefan, van Renssen, André, Roeloffzen, Marcel, Verdonschot, Sander
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.04.2019
Springer Nature B.V
Predmet:
ISSN:0178-4617, 1432-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper we study the number of vertex recolorings that an algorithm needs to perform in order to maintain a proper coloring of a graph under insertion and deletion of vertices and edges. We present two algorithms that achieve different trade-offs between the number of recolorings and the number of colors used. For any d > 0 , the first algorithm maintains a proper O ( C d N 1 / d ) -coloring while recoloring at most O ( d ) vertices per update, where C and N are the maximum chromatic number and maximum number of vertices, respectively. The second algorithm reverses the trade-off, maintaining an O ( C d ) -coloring with O ( d N 1 / d ) recolorings per update. The two converge when d = log N , maintaining an O ( C log N ) -coloring with O ( log N ) recolorings per update. We also present a lower bound, showing that any algorithm that maintains a c -coloring of a 2-colorable graph on N vertices must recolor at least Ω ( N 2 c ( c - 1 ) ) vertices per update, for any constant c ≥ 2 .
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-018-0473-y