Adaptive Racing Sampling Based Immune Optimization Approach for Nonlinear Multi-Objective Chance Constrained Programming
This work investigates a multi-objective immune optimization approach to solve the general type of nonlinear multi-objective chance constrained programming without prior noise information. One such kind of model is first converted into a sample-dependent approximation one, while a sample bound estim...
Uložené v:
| Vydané v: | IEEE access Ročník 12; s. 96231 - 96245 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This work investigates a multi-objective immune optimization approach to solve the general type of nonlinear multi-objective chance constrained programming without prior noise information. One such kind of model is first converted into a sample-dependent approximation one, while a sample bound estimate model is theoretically acquired based on the empirical Bernstein bound, in order to control the sampling size of random variable. Secondly, a feasibility detection approach with adaptive sampling is designed to quickly justify whether an individual is empirically feasible. Inspired by the danger theory, an artificial immune optimization model is drawn in terms of immune response mechanisms in the immune system, which derives out a multi-objective chance constrained optimizer with small populations and multiple evolutionary strategies. The computational complexity of the optimizer depends mainly on the sample bound and the size of memory pool. Comparative experiments have validated that it is a robust, stable, and effective optimizer with high efficiency while helping for solving complex chance constrained problems. |
|---|---|
| AbstractList | This work investigates a multi-objective immune optimization approach to solve the general type of nonlinear multi-objective chance constrained programming without prior noise information. One such kind of model is first converted into a sample-dependent approximation one, while a sample bound estimate model is theoretically acquired based on the empirical Bernstein bound, in order to control the sampling size of random variable. Secondly, a feasibility detection approach with adaptive sampling is designed to quickly justify whether an individual is empirically feasible. Inspired by the danger theory, an artificial immune optimization model is drawn in terms of immune response mechanisms in the immune system, which derives out a multi-objective chance constrained optimizer with small populations and multiple evolutionary strategies. The computational complexity of the optimizer depends mainly on the sample bound and the size of memory pool. Comparative experiments have validated that it is a robust, stable, and effective optimizer with high efficiency while helping for solving complex chance constrained problems. |
| Author | Yang, Kai Zhang, Renchong |
| Author_xml | – sequence: 1 givenname: Kai orcidid: 0009-0005-8090-2825 surname: Yang fullname: Yang, Kai email: kyang2022@tom.com organization: Department of Information Engineering, Guizhou Communications Polytechnic, Guiyang, China – sequence: 2 givenname: Renchong surname: Zhang fullname: Zhang, Renchong organization: Computer and Information Engineering College, Guizhou University of Commerce, Guiyang, China |
| BookMark | eNpNkVtv1DAQhS1UJErpL4AHSzxncXxL_LhEha5UWMTCszXxZevVxg5OFgG_vt6mQvXLjEbnfGP7vEYXMUWH0NuarOqaqA_rrrvZ7VaUUL5ivG6UoC_QJa2lqphg8uJZ_wpdT9OBlNOWkWgu0Z-1hXEOvx3-DibEPd7BMB7PzUeYnMWbYThFh7dFM4R_MIcU8XoccwJzj33K-GuKRe4g4y-n4xyqbX9w5hHY3UM0paQ4zRmKxuJvOe0zDEPhv0EvPRwnd_1Ur9DPTzc_utvqbvt5063vKsOEmitppeq5Z9Qowgk3whOiCOOUt40yjjvRWNMbYZVtbWOAeWt8TzyxSgpCgV2hzcK1CQ56zGGA_FcnCPpxkPJeQ56DOTrd07bhjEvXe8t7J3sry1YvGvCO14QW1vuFVd7_6-SmWR_SKcdyfc3Kj7ZSUNkWFVtUJqdpys7_31oTfU5ML4npc2L6KbHiere4gnPumUPIVtUtewCDY5Wn |
| CODEN | IAECCG |
| Cites_doi | 10.7551/mitpress/8996.003.0018 10.1109/TASE.2013.2249663 10.1109/TEVC.2009.2014361 10.1109/TPWRS.2018.2833465 10.1137/050622328 10.1007/1-84628-095-8_1 10.1007/s11768-013-1186-z 10.1080/23311916.2014.991526 10.1504/ijmor.2021.112939 10.1021/acs.iecr.1c04736 10.3934/jimo.2021169 10.1016/j.ijepes.2015.07.007 10.1007/s10479-008-0367-5 10.1007/978-3-540-24854-5_95 10.1145/3603704 10.1137/070702928 10.1016/j.apenergy.2020.116284 10.1016/j.ejor.2006.06.045 10.1162/evco.2008.16.2.225 10.1109/TEVC.2023.3314766 10.1287/ijoc.2020.1001 10.1016/j.omega.2010.09.002 10.1007/s10107-013-0684-6 10.1287/mnsc.6.1.73 10.1007/s00500-016-2467-5 10.1137/1.9780898718751 10.1007/s10957-009-9523-6 10.1016/j.orl.2008.03.006 10.1007/s12530-013-9101-x 10.1016/j.scs.2021.103502 10.1146/annurev.iy.12.040194.005015 10.1515/9781400869930-009 10.1109/4235.996017 10.3390/app11135825 10.3390/pr8010107 10.1051/cocv/2019077 10.1007/978-3-540-89484-1 10.1109/TEVC.2013.2244898 10.1109/CEC.2001.934294 10.1088/1742-6596/2025/1/012030 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3417952 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 96245 |
| ExternalDocumentID | oai_doaj_org_article_b2874346ebfd4be6bd6c90f57afe4102 10_1109_ACCESS_2024_3417952 10568918 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Science and Technology Foundation of Guizhou (Guizhou-Science-Contract) grantid: 2019]1178; 2020]1Y423 – fundername: Guizhou Sci-Tech Cooperation Platform Talent grantid: CXTD[2021]008 – fundername: Science and Technology Project of the Department of Transportation of Guizhou Province grantid: 2022-122-020; 2022-321-013 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-6d69b4f32c90404c5f00903424879ce4e57dcbc5d9d8d7ca3fdcfb0f0d96502a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001272149500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:45:56 EDT 2025 Mon Jun 30 13:13:05 EDT 2025 Sat Nov 29 06:25:50 EST 2025 Wed Aug 27 02:02:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-6d69b4f32c90404c5f00903424879ce4e57dcbc5d9d8d7ca3fdcfb0f0d96502a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0005-8090-2825 |
| OpenAccessLink | https://doaj.org/article/b2874346ebfd4be6bd6c90f57afe4102 |
| PQID | 3081865268 |
| PQPubID | 4845423 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_10568918 proquest_journals_3081865268 crossref_primary_10_1109_ACCESS_2024_3417952 doaj_primary_oai_doaj_org_article_b2874346ebfd4be6bd6c90f57afe4102 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref1 ref17 ref39 ref16 ref38 ref19 Higle (ref18) 2004; 2005 ref24 ref23 ref26 Yang (ref5) 2015; 25 ref25 ref20 ref42 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 Zhang (ref41) 2008 Küçükyavuz (ref2) 2021 ref6 ref40 |
| References_xml | – volume: 25 start-page: 2 issue: 4 year: 2015 ident: ref5 article-title: Adaptive sampling based immune optimization approach in noisy environments solving chance constrained programming publication-title: J. Comput. – ident: ref37 doi: 10.7551/mitpress/8996.003.0018 – year: 2008 ident: ref41 article-title: Multi-objective optimization test instances for the CEC 2009 special session and competition – ident: ref32 doi: 10.1109/TASE.2013.2249663 – ident: ref16 doi: 10.1109/TEVC.2009.2014361 – ident: ref29 doi: 10.1109/TPWRS.2018.2833465 – ident: ref9 doi: 10.1137/050622328 – ident: ref11 doi: 10.1007/1-84628-095-8_1 – ident: ref35 doi: 10.1007/s11768-013-1186-z – ident: ref31 doi: 10.1080/23311916.2014.991526 – ident: ref15 doi: 10.1504/ijmor.2021.112939 – ident: ref27 doi: 10.1021/acs.iecr.1c04736 – year: 2021 ident: ref2 article-title: Chance-constrained optimization under limited distributional information: A review of reformulations based on sampling and distributional robustness publication-title: arXiv:2101.08746 – volume: 2005 start-page: 12 year: 2004 ident: ref18 article-title: Adaptive and nonadaptive samples in solving stochastic linear programs: A computational investigation publication-title: Stochastic Programming E-Print Series – ident: ref33 doi: 10.3934/jimo.2021169 – ident: ref34 doi: 10.1016/j.ijepes.2015.07.007 – ident: ref21 doi: 10.1007/s10479-008-0367-5 – ident: ref17 doi: 10.1007/978-3-540-24854-5_95 – ident: ref44 doi: 10.1145/3603704 – ident: ref12 doi: 10.1137/070702928 – ident: ref24 doi: 10.1016/j.apenergy.2020.116284 – ident: ref20 doi: 10.1016/j.ejor.2006.06.045 – ident: ref42 doi: 10.1162/evco.2008.16.2.225 – ident: ref43 doi: 10.1109/TEVC.2023.3314766 – ident: ref7 doi: 10.1287/ijoc.2020.1001 – ident: ref22 doi: 10.1016/j.omega.2010.09.002 – ident: ref23 doi: 10.1007/s10107-013-0684-6 – ident: ref1 doi: 10.1287/mnsc.6.1.73 – ident: ref39 doi: 10.1007/s00500-016-2467-5 – ident: ref19 doi: 10.1137/1.9780898718751 – ident: ref13 doi: 10.1007/s10957-009-9523-6 – ident: ref10 doi: 10.1016/j.orl.2008.03.006 – ident: ref14 doi: 10.1007/s12530-013-9101-x – ident: ref26 doi: 10.1016/j.scs.2021.103502 – ident: ref38 doi: 10.1146/annurev.iy.12.040194.005015 – ident: ref6 doi: 10.1515/9781400869930-009 – ident: ref40 doi: 10.1109/4235.996017 – ident: ref3 doi: 10.3390/app11135825 – ident: ref25 doi: 10.3390/pr8010107 – ident: ref4 doi: 10.1051/cocv/2019077 – ident: ref8 doi: 10.1007/978-3-540-89484-1 – ident: ref30 doi: 10.1109/TEVC.2013.2244898 – ident: ref36 doi: 10.1109/CEC.2001.934294 – ident: ref28 doi: 10.1088/1742-6596/2025/1/012030 |
| SSID | ssj0000816957 |
| Score | 2.2996511 |
| Snippet | This work investigates a multi-objective immune optimization approach to solve the general type of nonlinear multi-objective chance constrained programming... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 96231 |
| SubjectTerms | Adaptation models Adaptive sampling Approximation methods Complexity Constraints danger theory Feasibility immune optimization Immune system Multi-objective chance constrained programming Multiple objective analysis Nonlinear systems Optimization Optimization methods Optimization models Probabilistic logic Programming profession Random variables sample-dependent approximation Sampling methods Stochastic processes Transportation |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PaxwhFJYm9NAe-jMl26bFQ4-dxBl1HI-bpaGFsgn9AbmJPhVayCZsNiV_ft5TE1JKDz2NDOrofKO-5_h9j7H30IOHEFPn0bjvlDay8wM6riaY6BOW6UUhCn8xy-V0empPGlm9cGFSSuXwWdqnZPmXH8_hirbKDihK_GT7aYttGTNWstbdhgpFkLDaNGWhXtiD-WKBnUAfcFD7kiJt6eGP1aeI9LeoKn9NxWV9OXr6ny17xp40Q5LPK_LP2YO0esEe35MXfMmu59Ff0HTGv3rAO_ybp_PjmDjEtSvyz8QNSfwY85w1OiafN41xjsYsX1YdDb_mhafbHYdfdX7kREoAvJB1SUEmsLaTetLrDOvfYT-OPn5ffOpapIUOpLabboyjDSrLASwOagU6C9q_UQO6MxaSStpECKCjjVM04GWOkIPIIlq08AYvX7Ht1fkq7TKu9NTLQG6kTapP2UYt0mCFgEFBb-OMfbhFwF1UQQ1XHBFhXQXMEWCuATZjh4TSXVZSwy438PW7NrhcINF-qcYUclQhjSGO2JGsjc_YBoGV7BBk955X0ZqxvVvQXRu6l04WkT9SwXn9j2Jv2CNqYt2I2WPbm_VVessewu_Nz8v1u_JV3gA_L-Mn priority: 102 providerName: IEEE |
| Title | Adaptive Racing Sampling Based Immune Optimization Approach for Nonlinear Multi-Objective Chance Constrained Programming |
| URI | https://ieeexplore.ieee.org/document/10568918 https://www.proquest.com/docview/3081865268 https://doaj.org/article/b2874346ebfd4be6bd6c90f57afe4102 |
| Volume | 12 |
| WOSCitedRecordID | wos001272149500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journal (DOAJ) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQ1QMcUAtFhIbIB44s9a7t9fqYRKlAgrTiIeVm-SmB1FAladVTfzsztouCOHDhsruyvPZ6ZnYelucbQt741lvvQmwsOPeNkIo3toPAVTkVbIR3WpYThT-q5XJYrfTlXqkvPBNW4IEL4c4cArJz0UeXgnCxd6H3miWpbIqiLTCSTOm9YCrr4KHttVQVZqhl-mw6n8OKICDsxDuOZbdk94cpyoj9tcTKX3o5G5vzI_K0eol0Wr7umDyK62fkyR524HNyNw32GnUV_Ww9tNAvFg-Hw8MMDFOgHzDxI9IL6HNVcy3ptAKIU_BU6bKAZNgNzUm4zYX7UZQfxYwDDzd0HbGCBIx2WY5xXcH4J-Tb-eLr_H1Tyyg0nku9a_rQaycS74BuggkvE8PNGdFBrKJ9FFGq4J2XQYchKG95Cj45lljQ4L51lr8gB-uf6_iSUCGHljuMETUQPyYdJIudZsx3wrc6jMjbB4qa64KWYXKUwbQpDDDIAFMZMCIzpPrvrgh1nRtAAEwVAPMvARiRE-TZ3nyyH3Q7jMj4gYmm_pdbwzOCH0LcvPofc5-Sx7iesiUzJge7zU18TQ797e77djPJIgnXT_eLSU4s_AVoWeh6 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PTxQxFG4UTdSDKGBcBezBowOd_piZHpeNBMK6EIWEW9OfCSYsZFmMf77vtYVgDAdP00zaTjvftH2v0-97hHz2rbfehdhYMO4bqXrRWA6Oa-_6YCOUaVkmCk_72Ww4P9cnlayeuTAxxnz4LO5gMv_LD1f-FrfKdjFK_KDb4Sl5pqTkrNC17rdUMIaEVn3VFmqZ3h1PJtAN8AK53BEYa0vxv9afLNNf46r8MxnnFWZ_9T_b9oa8rqYkHRfs35Incb5GXj0QGFwnv8fBXuOERr9bD3foD4snyCGxB6tXoIfIDon0GPJcVkImHVeVcQrmLJ0VJQ27oJmp2xy7n2WGpEhL8HBB-xLDTEBtJ-Ws1yXUv0HO9r-eTg6aGmuh8ULpZdOFTjuZBPcahrX0KjHcwZEcHBrto4yqD955FXQYQu-tSMEnxxILGmw8bsU7sjK_msf3hEo1tMKhI6mjbGPSQbHINWOeS9_qMCJf7hAw10VSw2RXhGlTADMImKmAjcgeonSfFfWw8w14_aYOL-NQtl_ILroUpIudCx10JKneJmgDg0o2ELIHzytojcjmHeimDt4bI7LMH-rgfHik2Cfy4uD029RMD2dHH8lLbG7ZltkkK8vFbdwiz_2v5cXNYjt_oX8AMr_mbg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Racing+Sampling+Based+Immune+Optimization+Approach+for+Nonlinear+Multi-Objective+Chance+Constrained+Programming&rft.jtitle=IEEE+access&rft.au=Yang%2C+Kai&rft.au=Zhang%2C+Renchong&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=96231&rft.epage=96245&rft_id=info:doi/10.1109%2FACCESS.2024.3417952&rft.externalDocID=10568918 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |