Adaptive Racing Sampling Based Immune Optimization Approach for Nonlinear Multi-Objective Chance Constrained Programming

This work investigates a multi-objective immune optimization approach to solve the general type of nonlinear multi-objective chance constrained programming without prior noise information. One such kind of model is first converted into a sample-dependent approximation one, while a sample bound estim...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 12; s. 96231 - 96245
Hlavní autori: Yang, Kai, Zhang, Renchong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This work investigates a multi-objective immune optimization approach to solve the general type of nonlinear multi-objective chance constrained programming without prior noise information. One such kind of model is first converted into a sample-dependent approximation one, while a sample bound estimate model is theoretically acquired based on the empirical Bernstein bound, in order to control the sampling size of random variable. Secondly, a feasibility detection approach with adaptive sampling is designed to quickly justify whether an individual is empirically feasible. Inspired by the danger theory, an artificial immune optimization model is drawn in terms of immune response mechanisms in the immune system, which derives out a multi-objective chance constrained optimizer with small populations and multiple evolutionary strategies. The computational complexity of the optimizer depends mainly on the sample bound and the size of memory pool. Comparative experiments have validated that it is a robust, stable, and effective optimizer with high efficiency while helping for solving complex chance constrained problems.
AbstractList This work investigates a multi-objective immune optimization approach to solve the general type of nonlinear multi-objective chance constrained programming without prior noise information. One such kind of model is first converted into a sample-dependent approximation one, while a sample bound estimate model is theoretically acquired based on the empirical Bernstein bound, in order to control the sampling size of random variable. Secondly, a feasibility detection approach with adaptive sampling is designed to quickly justify whether an individual is empirically feasible. Inspired by the danger theory, an artificial immune optimization model is drawn in terms of immune response mechanisms in the immune system, which derives out a multi-objective chance constrained optimizer with small populations and multiple evolutionary strategies. The computational complexity of the optimizer depends mainly on the sample bound and the size of memory pool. Comparative experiments have validated that it is a robust, stable, and effective optimizer with high efficiency while helping for solving complex chance constrained problems.
Author Yang, Kai
Zhang, Renchong
Author_xml – sequence: 1
  givenname: Kai
  orcidid: 0009-0005-8090-2825
  surname: Yang
  fullname: Yang, Kai
  email: kyang2022@tom.com
  organization: Department of Information Engineering, Guizhou Communications Polytechnic, Guiyang, China
– sequence: 2
  givenname: Renchong
  surname: Zhang
  fullname: Zhang, Renchong
  organization: Computer and Information Engineering College, Guizhou University of Commerce, Guiyang, China
BookMark eNpNkVtv1DAQhS1UJErpL4AHSzxncXxL_LhEha5UWMTCszXxZevVxg5OFgG_vt6mQvXLjEbnfGP7vEYXMUWH0NuarOqaqA_rrrvZ7VaUUL5ivG6UoC_QJa2lqphg8uJZ_wpdT9OBlNOWkWgu0Z-1hXEOvx3-DibEPd7BMB7PzUeYnMWbYThFh7dFM4R_MIcU8XoccwJzj33K-GuKRe4g4y-n4xyqbX9w5hHY3UM0paQ4zRmKxuJvOe0zDEPhv0EvPRwnd_1Ur9DPTzc_utvqbvt5063vKsOEmitppeq5Z9Qowgk3whOiCOOUt40yjjvRWNMbYZVtbWOAeWt8TzyxSgpCgV2hzcK1CQ56zGGA_FcnCPpxkPJeQ56DOTrd07bhjEvXe8t7J3sry1YvGvCO14QW1vuFVd7_6-SmWR_SKcdyfc3Kj7ZSUNkWFVtUJqdpys7_31oTfU5ML4npc2L6KbHiere4gnPumUPIVtUtewCDY5Wn
CODEN IAECCG
Cites_doi 10.7551/mitpress/8996.003.0018
10.1109/TASE.2013.2249663
10.1109/TEVC.2009.2014361
10.1109/TPWRS.2018.2833465
10.1137/050622328
10.1007/1-84628-095-8_1
10.1007/s11768-013-1186-z
10.1080/23311916.2014.991526
10.1504/ijmor.2021.112939
10.1021/acs.iecr.1c04736
10.3934/jimo.2021169
10.1016/j.ijepes.2015.07.007
10.1007/s10479-008-0367-5
10.1007/978-3-540-24854-5_95
10.1145/3603704
10.1137/070702928
10.1016/j.apenergy.2020.116284
10.1016/j.ejor.2006.06.045
10.1162/evco.2008.16.2.225
10.1109/TEVC.2023.3314766
10.1287/ijoc.2020.1001
10.1016/j.omega.2010.09.002
10.1007/s10107-013-0684-6
10.1287/mnsc.6.1.73
10.1007/s00500-016-2467-5
10.1137/1.9780898718751
10.1007/s10957-009-9523-6
10.1016/j.orl.2008.03.006
10.1007/s12530-013-9101-x
10.1016/j.scs.2021.103502
10.1146/annurev.iy.12.040194.005015
10.1515/9781400869930-009
10.1109/4235.996017
10.3390/app11135825
10.3390/pr8010107
10.1051/cocv/2019077
10.1007/978-3-540-89484-1
10.1109/TEVC.2013.2244898
10.1109/CEC.2001.934294
10.1088/1742-6596/2025/1/012030
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3417952
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 96245
ExternalDocumentID oai_doaj_org_article_b2874346ebfd4be6bd6c90f57afe4102
10_1109_ACCESS_2024_3417952
10568918
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Foundation of Guizhou (Guizhou-Science-Contract)
  grantid: 2019]1178; 2020]1Y423
– fundername: Guizhou Sci-Tech Cooperation Platform Talent
  grantid: CXTD[2021]008
– fundername: Science and Technology Project of the Department of Transportation of Guizhou Province
  grantid: 2022-122-020; 2022-321-013
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-6d69b4f32c90404c5f00903424879ce4e57dcbc5d9d8d7ca3fdcfb0f0d96502a3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001272149500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:45:56 EDT 2025
Mon Jun 30 13:13:05 EDT 2025
Sat Nov 29 06:25:50 EST 2025
Wed Aug 27 02:02:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-6d69b4f32c90404c5f00903424879ce4e57dcbc5d9d8d7ca3fdcfb0f0d96502a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-8090-2825
OpenAccessLink https://doaj.org/article/b2874346ebfd4be6bd6c90f57afe4102
PQID 3081865268
PQPubID 4845423
PageCount 15
ParticipantIDs ieee_primary_10568918
proquest_journals_3081865268
crossref_primary_10_1109_ACCESS_2024_3417952
doaj_primary_oai_doaj_org_article_b2874346ebfd4be6bd6c90f57afe4102
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref1
ref17
ref39
ref16
ref38
ref19
Higle (ref18) 2004; 2005
ref24
ref23
ref26
Yang (ref5) 2015; 25
ref25
ref20
ref42
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
Zhang (ref41) 2008
Küçükyavuz (ref2) 2021
ref6
ref40
References_xml – volume: 25
  start-page: 2
  issue: 4
  year: 2015
  ident: ref5
  article-title: Adaptive sampling based immune optimization approach in noisy environments solving chance constrained programming
  publication-title: J. Comput.
– ident: ref37
  doi: 10.7551/mitpress/8996.003.0018
– year: 2008
  ident: ref41
  article-title: Multi-objective optimization test instances for the CEC 2009 special session and competition
– ident: ref32
  doi: 10.1109/TASE.2013.2249663
– ident: ref16
  doi: 10.1109/TEVC.2009.2014361
– ident: ref29
  doi: 10.1109/TPWRS.2018.2833465
– ident: ref9
  doi: 10.1137/050622328
– ident: ref11
  doi: 10.1007/1-84628-095-8_1
– ident: ref35
  doi: 10.1007/s11768-013-1186-z
– ident: ref31
  doi: 10.1080/23311916.2014.991526
– ident: ref15
  doi: 10.1504/ijmor.2021.112939
– ident: ref27
  doi: 10.1021/acs.iecr.1c04736
– year: 2021
  ident: ref2
  article-title: Chance-constrained optimization under limited distributional information: A review of reformulations based on sampling and distributional robustness
  publication-title: arXiv:2101.08746
– volume: 2005
  start-page: 12
  year: 2004
  ident: ref18
  article-title: Adaptive and nonadaptive samples in solving stochastic linear programs: A computational investigation
  publication-title: Stochastic Programming E-Print Series
– ident: ref33
  doi: 10.3934/jimo.2021169
– ident: ref34
  doi: 10.1016/j.ijepes.2015.07.007
– ident: ref21
  doi: 10.1007/s10479-008-0367-5
– ident: ref17
  doi: 10.1007/978-3-540-24854-5_95
– ident: ref44
  doi: 10.1145/3603704
– ident: ref12
  doi: 10.1137/070702928
– ident: ref24
  doi: 10.1016/j.apenergy.2020.116284
– ident: ref20
  doi: 10.1016/j.ejor.2006.06.045
– ident: ref42
  doi: 10.1162/evco.2008.16.2.225
– ident: ref43
  doi: 10.1109/TEVC.2023.3314766
– ident: ref7
  doi: 10.1287/ijoc.2020.1001
– ident: ref22
  doi: 10.1016/j.omega.2010.09.002
– ident: ref23
  doi: 10.1007/s10107-013-0684-6
– ident: ref1
  doi: 10.1287/mnsc.6.1.73
– ident: ref39
  doi: 10.1007/s00500-016-2467-5
– ident: ref19
  doi: 10.1137/1.9780898718751
– ident: ref13
  doi: 10.1007/s10957-009-9523-6
– ident: ref10
  doi: 10.1016/j.orl.2008.03.006
– ident: ref14
  doi: 10.1007/s12530-013-9101-x
– ident: ref26
  doi: 10.1016/j.scs.2021.103502
– ident: ref38
  doi: 10.1146/annurev.iy.12.040194.005015
– ident: ref6
  doi: 10.1515/9781400869930-009
– ident: ref40
  doi: 10.1109/4235.996017
– ident: ref3
  doi: 10.3390/app11135825
– ident: ref25
  doi: 10.3390/pr8010107
– ident: ref4
  doi: 10.1051/cocv/2019077
– ident: ref8
  doi: 10.1007/978-3-540-89484-1
– ident: ref30
  doi: 10.1109/TEVC.2013.2244898
– ident: ref36
  doi: 10.1109/CEC.2001.934294
– ident: ref28
  doi: 10.1088/1742-6596/2025/1/012030
SSID ssj0000816957
Score 2.2996511
Snippet This work investigates a multi-objective immune optimization approach to solve the general type of nonlinear multi-objective chance constrained programming...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 96231
SubjectTerms Adaptation models
Adaptive sampling
Approximation methods
Complexity
Constraints
danger theory
Feasibility
immune optimization
Immune system
Multi-objective chance constrained programming
Multiple objective analysis
Nonlinear systems
Optimization
Optimization methods
Optimization models
Probabilistic logic
Programming profession
Random variables
sample-dependent approximation
Sampling methods
Stochastic processes
Transportation
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PaxwhFJYm9NAe-jMl26bFQ4-dxBl1HI-bpaGFsgn9AbmJPhVayCZsNiV_ft5TE1JKDz2NDOrofKO-5_h9j7H30IOHEFPn0bjvlDay8wM6riaY6BOW6UUhCn8xy-V0empPGlm9cGFSSuXwWdqnZPmXH8_hirbKDihK_GT7aYttGTNWstbdhgpFkLDaNGWhXtiD-WKBnUAfcFD7kiJt6eGP1aeI9LeoKn9NxWV9OXr6ny17xp40Q5LPK_LP2YO0esEe35MXfMmu59Ff0HTGv3rAO_ybp_PjmDjEtSvyz8QNSfwY85w1OiafN41xjsYsX1YdDb_mhafbHYdfdX7kREoAvJB1SUEmsLaTetLrDOvfYT-OPn5ffOpapIUOpLabboyjDSrLASwOagU6C9q_UQO6MxaSStpECKCjjVM04GWOkIPIIlq08AYvX7Ht1fkq7TKu9NTLQG6kTapP2UYt0mCFgEFBb-OMfbhFwF1UQQ1XHBFhXQXMEWCuATZjh4TSXVZSwy438PW7NrhcINF-qcYUclQhjSGO2JGsjc_YBoGV7BBk955X0ZqxvVvQXRu6l04WkT9SwXn9j2Jv2CNqYt2I2WPbm_VVessewu_Nz8v1u_JV3gA_L-Mn
  priority: 102
  providerName: IEEE
Title Adaptive Racing Sampling Based Immune Optimization Approach for Nonlinear Multi-Objective Chance Constrained Programming
URI https://ieeexplore.ieee.org/document/10568918
https://www.proquest.com/docview/3081865268
https://doaj.org/article/b2874346ebfd4be6bd6c90f57afe4102
Volume 12
WOSCitedRecordID wos001272149500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQ1QMcUAtFhIbIB44s9a7t9fqYRKlAgrTiIeVm-SmB1FAladVTfzsztouCOHDhsruyvPZ6ZnYelucbQt741lvvQmwsOPeNkIo3toPAVTkVbIR3WpYThT-q5XJYrfTlXqkvPBNW4IEL4c4cArJz0UeXgnCxd6H3miWpbIqiLTCSTOm9YCrr4KHttVQVZqhl-mw6n8OKICDsxDuOZbdk94cpyoj9tcTKX3o5G5vzI_K0eol0Wr7umDyK62fkyR524HNyNw32GnUV_Ww9tNAvFg-Hw8MMDFOgHzDxI9IL6HNVcy3ptAKIU_BU6bKAZNgNzUm4zYX7UZQfxYwDDzd0HbGCBIx2WY5xXcH4J-Tb-eLr_H1Tyyg0nku9a_rQaycS74BuggkvE8PNGdFBrKJ9FFGq4J2XQYchKG95Cj45lljQ4L51lr8gB-uf6_iSUCGHljuMETUQPyYdJIudZsx3wrc6jMjbB4qa64KWYXKUwbQpDDDIAFMZMCIzpPrvrgh1nRtAAEwVAPMvARiRE-TZ3nyyH3Q7jMj4gYmm_pdbwzOCH0LcvPofc5-Sx7iesiUzJge7zU18TQ797e77djPJIgnXT_eLSU4s_AVoWeh6
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PTxQxFG4UTdSDKGBcBezBowOd_piZHpeNBMK6EIWEW9OfCSYsZFmMf77vtYVgDAdP00zaTjvftH2v0-97hHz2rbfehdhYMO4bqXrRWA6Oa-_6YCOUaVkmCk_72Ww4P9cnlayeuTAxxnz4LO5gMv_LD1f-FrfKdjFK_KDb4Sl5pqTkrNC17rdUMIaEVn3VFmqZ3h1PJtAN8AK53BEYa0vxv9afLNNf46r8MxnnFWZ_9T_b9oa8rqYkHRfs35Incb5GXj0QGFwnv8fBXuOERr9bD3foD4snyCGxB6tXoIfIDon0GPJcVkImHVeVcQrmLJ0VJQ27oJmp2xy7n2WGpEhL8HBB-xLDTEBtJ-Ws1yXUv0HO9r-eTg6aGmuh8ULpZdOFTjuZBPcahrX0KjHcwZEcHBrto4yqD955FXQYQu-tSMEnxxILGmw8bsU7sjK_msf3hEo1tMKhI6mjbGPSQbHINWOeS9_qMCJf7hAw10VSw2RXhGlTADMImKmAjcgeonSfFfWw8w14_aYOL-NQtl_ILroUpIudCx10JKneJmgDg0o2ELIHzytojcjmHeimDt4bI7LMH-rgfHik2Cfy4uD029RMD2dHH8lLbG7ZltkkK8vFbdwiz_2v5cXNYjt_oX8AMr_mbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Racing+Sampling+Based+Immune+Optimization+Approach+for+Nonlinear+Multi-Objective+Chance+Constrained+Programming&rft.jtitle=IEEE+access&rft.au=Yang%2C+Kai&rft.au=Zhang%2C+Renchong&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=96231&rft.epage=96245&rft_id=info:doi/10.1109%2FACCESS.2024.3417952&rft.externalDocID=10568918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon