Online multi-label dependency topic models for text classification

Multi-label text classification is an increasingly important field as large amounts of text data are available and extracting relevant information is important in many application contexts. Probabilistic generative models are the basis of a number of popular text mining methods such as Naive Bayes o...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning Vol. 107; no. 5; pp. 859 - 886
Main Authors: Burkhardt, Sophie, Kramer, Stefan
Format: Journal Article
Language:English
Published: New York Springer US 01.05.2018
Springer Nature B.V
Subjects:
ISSN:0885-6125, 1573-0565
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multi-label text classification is an increasingly important field as large amounts of text data are available and extracting relevant information is important in many application contexts. Probabilistic generative models are the basis of a number of popular text mining methods such as Naive Bayes or Latent Dirichlet Allocation. However, Bayesian models for multi-label text classification often are overly complicated to account for label dependencies and skewed label frequencies while at the same time preventing overfitting. To solve this problem we employ the same technique that contributed to the success of deep learning in recent years: greedy layer-wise training. Applying this technique in the supervised setting prevents overfitting and leads to better classification accuracy. The intuition behind this approach is to learn the labels first and subsequently add a more abstract layer to represent dependencies among the labels. This allows using a relatively simple hierarchical topic model which can easily be adapted to the online setting. We show that our method successfully models dependencies online for large-scale multi-label datasets with many labels and improves over the baseline method not modeling dependencies. The same strategy, layer-wise greedy training, also makes the batch variant competitive with existing more complex multi-label topic models.
AbstractList Multi-label text classification is an increasingly important field as large amounts of text data are available and extracting relevant information is important in many application contexts. Probabilistic generative models are the basis of a number of popular text mining methods such as Naive Bayes or Latent Dirichlet Allocation. However, Bayesian models for multi-label text classification often are overly complicated to account for label dependencies and skewed label frequencies while at the same time preventing overfitting. To solve this problem we employ the same technique that contributed to the success of deep learning in recent years: greedy layer-wise training. Applying this technique in the supervised setting prevents overfitting and leads to better classification accuracy. The intuition behind this approach is to learn the labels first and subsequently add a more abstract layer to represent dependencies among the labels. This allows using a relatively simple hierarchical topic model which can easily be adapted to the online setting. We show that our method successfully models dependencies online for large-scale multi-label datasets with many labels and improves over the baseline method not modeling dependencies. The same strategy, layer-wise greedy training, also makes the batch variant competitive with existing more complex multi-label topic models.
Author Burkhardt, Sophie
Kramer, Stefan
Author_xml – sequence: 1
  givenname: Sophie
  orcidid: 0000-0002-5385-3926
  surname: Burkhardt
  fullname: Burkhardt, Sophie
  email: burkhardt@informatik.uni-mainz.de
  organization: Institute of Computer Science, Johannes Gutenberg-University of Mainz
– sequence: 2
  givenname: Stefan
  surname: Kramer
  fullname: Kramer, Stefan
  organization: Institute of Computer Science, Johannes Gutenberg-University of Mainz
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnqOT7CbZHLX4BYVe9ByySVZSttk1ScH-e7euBxH0NId5n5mXZ4FmoQ8OoUsC1wRA3CQCUlYYiMCM1xLzEzQnTJQYGGczNIe6ZpgTys7QIqUtAFBe8zm624TOB1fs9l32uNON6wrrBhesC-ZQ5H7wptj11nWpaPtYZPeRC9PplHzrjc6-D-fotNVdchffc4leH-5fVk94vXl8Xt2usSmZzJhbQm2lS8kqTS1tWtKOJSppaSU0wLgS4ASztmzBsAYM1KYueStqKaVoWLlEV9PdIfbve5ey2vb7GMaXikgh2HiM0zElppSJfUrRtcr4_NUzR-07RUAdhalJmBqFqaMwxUeS_CKH6Hc6Hv5l6MSkMRveXPzR6U_oE8GufvM
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106995
crossref_primary_10_1145_3373464_3373474
crossref_primary_10_1016_j_ipm_2023_103530
crossref_primary_10_1108_BIJ_07_2022_0454
crossref_primary_10_1109_TMM_2024_3402534
crossref_primary_10_1016_j_ins_2019_12_031
crossref_primary_10_1109_TPAMI_2020_2985210
crossref_primary_10_1007_s10489_021_03086_8
crossref_primary_10_1109_TKDE_2019_2951561
crossref_primary_10_3233_IDA_194952
crossref_primary_10_1007_s10489_020_01798_x
crossref_primary_10_1109_ACCESS_2020_3024745
crossref_primary_10_1155_2022_2834363
crossref_primary_10_1016_j_neucom_2025_129638
crossref_primary_10_1007_s10994_021_05967_y
crossref_primary_10_1016_j_jksuci_2022_10_015
crossref_primary_10_1109_TKDE_2019_2908898
crossref_primary_10_3390_make7010003
crossref_primary_10_1016_j_asoc_2020_106167
crossref_primary_10_1109_TBDATA_2020_3019478
crossref_primary_10_1016_j_ins_2020_09_019
crossref_primary_10_1002_cpe_6347
crossref_primary_10_1109_ACCESS_2023_3326722
crossref_primary_10_1007_s13042_024_02181_9
crossref_primary_10_1016_j_knosys_2020_106624
crossref_primary_10_1016_j_procs_2018_07_037
crossref_primary_10_1109_TNNLS_2024_3382911
crossref_primary_10_1109_ACCESS_2020_2981389
crossref_primary_10_1109_TPAMI_2025_3574183
crossref_primary_10_1109_TNNLS_2021_3105142
crossref_primary_10_1177_1550147720911892
crossref_primary_10_1016_j_knosys_2025_114017
crossref_primary_10_1016_j_knosys_2022_109093
crossref_primary_10_1007_s11042_022_12713_6
crossref_primary_10_1109_TNNLS_2022_3164906
crossref_primary_10_1109_TCYB_2021_3107422
Cites_doi 10.1111/j.1467-9868.2009.00698.x
10.21236/ADA440081
10.1007/978-3-540-74958-5_38
10.1162/neco.2006.18.7.1527
10.1007/978-3-642-12837-0_11
10.1145/2245276.2245311
10.1109/ICDM.2008.140
10.1016/j.patcog.2017.05.007
10.1198/016214506000000302
10.3115/1699510.1699543
10.1073/pnas.0307752101
10.1145/1143844.1143917
10.4018/jdwm.2007070101
10.1007/s10994-011-5256-5
10.1109/TKDE.2013.39
10.1007/978-3-662-44851-9_28
10.1007/s10994-011-5272-5
ContentType Journal Article
Copyright The Author(s) 2017
Machine Learning is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2017
– notice: Machine Learning is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-017-5689-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection (ProQuest)
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database (subscription)
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 886
ExternalDocumentID 10_1007_s10994_017_5689_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c359t-6d12d4a3954a2d2bf1f00249d247a00d4a70e75dd3f0c5b0c08c836f789997b53
IEDL.DBID RSV
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428442300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Tue Nov 04 22:18:10 EST 2025
Sat Nov 29 01:43:27 EST 2025
Tue Nov 18 22:30:01 EST 2025
Fri Feb 21 02:28:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords LDA
Multi-label classification
Online learning
Topic model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-6d12d4a3954a2d2bf1f00249d247a00d4a70e75dd3f0c5b0c08c836f789997b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5385-3926
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10994-017-5689-6.pdf
PQID 1977502462
PQPubID 54194
PageCount 28
ParticipantIDs proquest_journals_1977502462
crossref_citationtrail_10_1007_s10994_017_5689_6
crossref_primary_10_1007_s10994_017_5689_6
springer_journals_10_1007_s10994_017_5689_6
PublicationCentury 2000
PublicationDate 20180500
2018-5-00
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 5
  year: 2018
  text: 20180500
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LewisDDYangYRoseTGLiFRcv1: A new benchmark collection for text categorization researchJournal of Machine Learning Research20045361397
RubinTChambersASmythPSteyversMStatistical topic models for multi-label document classificationMachine Learning2012881–2157208294260710.1007/s10994-011-5272-51243.68248
BishopCMPattern recognition and machine learning (information science and statistics)2006New YorkSpringer1107.68072
ZhangLShahSKakadiarisIHierarchical multi-label classification using fully associative ensemble learningPattern Recognition2017708910310.1016/j.patcog.2017.05.007
Canini, K. R., Shi, L., & Griffiths, T. L. (2009). Online inference of topics with latent dirichlet allocation. In Proceedings of the international conference on artificial intelligence and statistics (pp. 65–72).
Ghamrawi, N., & McCallum, A. (2005). Collective multi-label classification. In Proceedings of the 14th ACM international conference on information and knowledge management (pp. 195–200). New York: ACM.
HintonGEOsinderoSTehYWA fast learning algorithm for deep belief netsNeural Computation200618715271554222448510.1162/neco.2006.18.7.15271106.68094
TehYWJordanMIBealMJBleiDMHierarchical Dirichlet processesJournal of the American Statistical Association200610147615661581227948010.1198/0162145060000003021171.62349
Tsoumakas, G., & Vlahavas, I. (2007). Random k-labelsets: An ensemble method for multilabel classification. In J. N. Kok, J. Koronacki, R. L. d. Mantaras, S. Matwin, D. Mladenič, & A. Skowron (Eds.), Proceedings of ECML (pp. 406–417). Warsaw, Poland: Springer.
Zhang, M. L., & Zhang, K. (2010). Multi-label learning by exploiting label dependency. In Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’10 (pp. 999–1008). Washington, DC, USA: ACM.
Li, A. Q., Ahmed, A., Ravi, S., & Smola, A. J. (2014). Reducing the sampling complexity of topic models. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’14 (pp. 891–900). New York, NY, USA: ACM.
Asuncion, A., Welling, M., Smyth, P., & Teh, Y. W. (2009). On smoothing and inference for topic models. In Proceedings of the 25th conference on uncertainty in artificial intelligence, UAI ’09 (pp. 27–34). Arlington, Virginia, United States: AUAI Press.
HoffmanMDBleiDMWangCPaisleyJStochastic variational inferenceJournal of Machine Learning Research2013141303134730819261317.68163
Loza Mencía, E., & Fürnkranz, J. (2010). Efficient multilabel classification algorithms for large-scale problems in the legal domain. In E. Francesconi, S. Montemagni, W. Peters, & D. Tiscornia (Eds.), Semantic processing of legal texts—Where the language of law meets the law of language, lecture notes in artificial intelligence (1st ed., Vol. 6036, pp. 192–215). Berlin: Springer.
Prabhu, Y., & Varma, M. (2014). Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’14 (pp. 263–272). New York, USA: ACM.
ReadJPfahringerBHolmesGFrankEClassifier chains for multi-label classificationMachine Learning2011853333359310823710.1007/s10994-011-5256-5
ZhangMLZhouZHA review on multi-label learning algorithmsIEEE Transactions on Knowledge and Data Engineering20142681819183710.1109/TKDE.2013.39
Nam, J., Kim, J., Loza Mencía, E., Gurevych, I., & Fürnkranz, J. (2014). Large-scale multi-label text classification—Revisiting neural networks. In T. Calders, F. Esposito, E. Hüllermeier, & R. Meo (Eds.), Proceedings of ECML-PKDD, Part II (pp. 437–452). Berlin, Heidelberg: Springer.
Wallach, H. M., Mimno, D. M., & McCallum, A. (2009). Rethinking lda: Why priors matter. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, A. Culotta (Eds.), Advances in neural information processing systems 22 (pp. 1973–1981). Curran Associates Inc.
Wicker, J., Pfahringer, B., & Kramer, S. (2012). Multi-label classification using boolean matrix decomposition. In Proceedings of the 27th annual ACM symposium on applied computing, SAC ’12 (pp. 179–186). New York, USA: ACM.
Rosen-Zvi, M., Griffiths, T., Steyvers, M., & Smyth, P. (2004). The author-topic model for authors and documents. In Proceedings of the 20th conference on uncertainty in artificial intelligence, UAI ’04 (pp. 487–494). Arlington, Virginia, United States: AUAI Press.
CappOMoulinesEOn-line expectation-maximization algorithm for latent data modelsJournal of the Royal Statistical Society Series B2009713593613274990910.1111/j.1467-9868.2009.00698.x1250.62015
Papanikolaou, Y., Foulds, J. R., Rubin, T. N., & Tsoumakas, G. (2015). Dense distributions from sparse samples: Improved Gibbs sampling parameter estimators for LDA. ArXiv e-prints.
Foulds, J., Boyles, L., DuBois, C., Smyth, P., & Welling, M. (2013). Stochastic collapsed variational bayesian inference for latent dirichlet allocation. In Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’13 (pp. 446–454). New York, USA: ACM.
TsoumakasGKatakisIMulti-label classification: An overviewInternational Journal of Data Warehousing and Mining2007200711310.4018/jdwm.2007070101
Hoffman, M., Bach, F. R., & Blei, D. M. (2010). Online learning for latent dirichlet allocation. In Advances in neural information processing systems (pp. 856–864).
BengioYLamblinPPopoviciDLarochelleHGreedy layer-wise training of deep networksAdvances in Neural Information Processing Systems200719153
AlSumait, L., Barbar, D., & Domeniconi, C. (2008). On-line lda: Adaptive topic models for mining text streams with applications to topic detection and tracking. In 2008 eighth IEEE international conference on data mining (pp. 3–12).
Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 101, pp. 5228–5235). National Academy of Sciences.
Gouk, H., Pfahringer, B., & Cree, M. J. (2016). Learning distance metrics for multi-label classification. In 8th Asian conference on machine learning (Vol. 63, pp. 318–333).
Ramage, D., Hall, D., Nallapati, R., & Manning, C. D. (2009). Labeled lda: A supervised topic model for credit attribution in multi-labeled corpora. In Proceedings of the 2009 conference on empirical methods in natural language processing: Volume 1, EMNLP ’09 (pp. 248–256). Stroudsburg, USA: Association for Computational Linguistics.
Huang, S. J., & Zhou, Z. H. (2012). Multi-label learning by exploiting label correlations locally. In Proceedings of the twenty-sixth AAAI conference on artificial intelligence, AAAI’12 (pp. 949–955). Toronto, Ontario, Canada: AAAI Press.
Li, W., & McCallum, A. (2006). Pachinko allocation: Dag-structured mixture models of topic correlations. In Proceedings of the 23rd international conference on machine learning (pp. 577–584). New York: ACM.
WickerJTyukinAKramerSA Nonlinear Label Compression and Transformation Method for Multi-label Classification Using Autoencoders2016ChamSpringer International Publishing328340
Yen, I.E.H., Huang, X., Ravikumar, P., Zhong, K., & Dhillon, I. (2016). Pd-sparse: A primal and dual sparse approach to extreme multiclass and multilabel classification. In Proceedings of the 33rd international conference on machine learning (pp. 3069–3077). New York: ACM.
Teh, Y. W., Newman, D., & Welling, M. (2006). A collapsed variational bayesian inference algorithm for latent dirichlet allocation. In Advances in neural information processing systems (pp. 1353–1360).
5689_CR9
5689_CR8
CM Bishop (5689_CR4) 2006
5689_CR5
O Capp (5689_CR6) 2009; 71
5689_CR7
5689_CR1
5689_CR24
5689_CR22
5689_CR2
5689_CR20
5689_CR21
G Tsoumakas (5689_CR28) 2007; 2007
5689_CR29
5689_CR27
L Zhang (5689_CR34) 2017; 70
Y Bengio (5689_CR3) 2007; 19
YW Teh (5689_CR26) 2006; 101
5689_CR35
5689_CR14
5689_CR33
5689_CR12
5689_CR31
5689_CR10
GE Hinton (5689_CR11) 2006; 18
5689_CR30
J Wicker (5689_CR32) 2016
5689_CR19
J Read (5689_CR23) 2011; 85
DD Lewis (5689_CR15) 2004; 5
5689_CR17
ML Zhang (5689_CR36) 2014; 26
5689_CR18
5689_CR16
T Rubin (5689_CR25) 2012; 88
MD Hoffman (5689_CR13) 2013; 14
References_xml – reference: Li, A. Q., Ahmed, A., Ravi, S., & Smola, A. J. (2014). Reducing the sampling complexity of topic models. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’14 (pp. 891–900). New York, NY, USA: ACM.
– reference: Asuncion, A., Welling, M., Smyth, P., & Teh, Y. W. (2009). On smoothing and inference for topic models. In Proceedings of the 25th conference on uncertainty in artificial intelligence, UAI ’09 (pp. 27–34). Arlington, Virginia, United States: AUAI Press.
– reference: HintonGEOsinderoSTehYWA fast learning algorithm for deep belief netsNeural Computation200618715271554222448510.1162/neco.2006.18.7.15271106.68094
– reference: Zhang, M. L., & Zhang, K. (2010). Multi-label learning by exploiting label dependency. In Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’10 (pp. 999–1008). Washington, DC, USA: ACM.
– reference: Loza Mencía, E., & Fürnkranz, J. (2010). Efficient multilabel classification algorithms for large-scale problems in the legal domain. In E. Francesconi, S. Montemagni, W. Peters, & D. Tiscornia (Eds.), Semantic processing of legal texts—Where the language of law meets the law of language, lecture notes in artificial intelligence (1st ed., Vol. 6036, pp. 192–215). Berlin: Springer.
– reference: ZhangMLZhouZHA review on multi-label learning algorithmsIEEE Transactions on Knowledge and Data Engineering20142681819183710.1109/TKDE.2013.39
– reference: BishopCMPattern recognition and machine learning (information science and statistics)2006New YorkSpringer1107.68072
– reference: HoffmanMDBleiDMWangCPaisleyJStochastic variational inferenceJournal of Machine Learning Research2013141303134730819261317.68163
– reference: Wicker, J., Pfahringer, B., & Kramer, S. (2012). Multi-label classification using boolean matrix decomposition. In Proceedings of the 27th annual ACM symposium on applied computing, SAC ’12 (pp. 179–186). New York, USA: ACM.
– reference: Papanikolaou, Y., Foulds, J. R., Rubin, T. N., & Tsoumakas, G. (2015). Dense distributions from sparse samples: Improved Gibbs sampling parameter estimators for LDA. ArXiv e-prints.
– reference: TsoumakasGKatakisIMulti-label classification: An overviewInternational Journal of Data Warehousing and Mining2007200711310.4018/jdwm.2007070101
– reference: Canini, K. R., Shi, L., & Griffiths, T. L. (2009). Online inference of topics with latent dirichlet allocation. In Proceedings of the international conference on artificial intelligence and statistics (pp. 65–72).
– reference: TehYWJordanMIBealMJBleiDMHierarchical Dirichlet processesJournal of the American Statistical Association200610147615661581227948010.1198/0162145060000003021171.62349
– reference: Huang, S. J., & Zhou, Z. H. (2012). Multi-label learning by exploiting label correlations locally. In Proceedings of the twenty-sixth AAAI conference on artificial intelligence, AAAI’12 (pp. 949–955). Toronto, Ontario, Canada: AAAI Press.
– reference: Ramage, D., Hall, D., Nallapati, R., & Manning, C. D. (2009). Labeled lda: A supervised topic model for credit attribution in multi-labeled corpora. In Proceedings of the 2009 conference on empirical methods in natural language processing: Volume 1, EMNLP ’09 (pp. 248–256). Stroudsburg, USA: Association for Computational Linguistics.
– reference: RubinTChambersASmythPSteyversMStatistical topic models for multi-label document classificationMachine Learning2012881–2157208294260710.1007/s10994-011-5272-51243.68248
– reference: ZhangLShahSKakadiarisIHierarchical multi-label classification using fully associative ensemble learningPattern Recognition2017708910310.1016/j.patcog.2017.05.007
– reference: Hoffman, M., Bach, F. R., & Blei, D. M. (2010). Online learning for latent dirichlet allocation. In Advances in neural information processing systems (pp. 856–864).
– reference: Gouk, H., Pfahringer, B., & Cree, M. J. (2016). Learning distance metrics for multi-label classification. In 8th Asian conference on machine learning (Vol. 63, pp. 318–333).
– reference: Foulds, J., Boyles, L., DuBois, C., Smyth, P., & Welling, M. (2013). Stochastic collapsed variational bayesian inference for latent dirichlet allocation. In Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’13 (pp. 446–454). New York, USA: ACM.
– reference: Yen, I.E.H., Huang, X., Ravikumar, P., Zhong, K., & Dhillon, I. (2016). Pd-sparse: A primal and dual sparse approach to extreme multiclass and multilabel classification. In Proceedings of the 33rd international conference on machine learning (pp. 3069–3077). New York: ACM.
– reference: Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 101, pp. 5228–5235). National Academy of Sciences.
– reference: CappOMoulinesEOn-line expectation-maximization algorithm for latent data modelsJournal of the Royal Statistical Society Series B2009713593613274990910.1111/j.1467-9868.2009.00698.x1250.62015
– reference: Ghamrawi, N., & McCallum, A. (2005). Collective multi-label classification. In Proceedings of the 14th ACM international conference on information and knowledge management (pp. 195–200). New York: ACM.
– reference: Rosen-Zvi, M., Griffiths, T., Steyvers, M., & Smyth, P. (2004). The author-topic model for authors and documents. In Proceedings of the 20th conference on uncertainty in artificial intelligence, UAI ’04 (pp. 487–494). Arlington, Virginia, United States: AUAI Press.
– reference: WickerJTyukinAKramerSA Nonlinear Label Compression and Transformation Method for Multi-label Classification Using Autoencoders2016ChamSpringer International Publishing328340
– reference: LewisDDYangYRoseTGLiFRcv1: A new benchmark collection for text categorization researchJournal of Machine Learning Research20045361397
– reference: Prabhu, Y., & Varma, M. (2014). Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’14 (pp. 263–272). New York, USA: ACM.
– reference: BengioYLamblinPPopoviciDLarochelleHGreedy layer-wise training of deep networksAdvances in Neural Information Processing Systems200719153
– reference: Teh, Y. W., Newman, D., & Welling, M. (2006). A collapsed variational bayesian inference algorithm for latent dirichlet allocation. In Advances in neural information processing systems (pp. 1353–1360).
– reference: Li, W., & McCallum, A. (2006). Pachinko allocation: Dag-structured mixture models of topic correlations. In Proceedings of the 23rd international conference on machine learning (pp. 577–584). New York: ACM.
– reference: Tsoumakas, G., & Vlahavas, I. (2007). Random k-labelsets: An ensemble method for multilabel classification. In J. N. Kok, J. Koronacki, R. L. d. Mantaras, S. Matwin, D. Mladenič, & A. Skowron (Eds.), Proceedings of ECML (pp. 406–417). Warsaw, Poland: Springer.
– reference: Wallach, H. M., Mimno, D. M., & McCallum, A. (2009). Rethinking lda: Why priors matter. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, A. Culotta (Eds.), Advances in neural information processing systems 22 (pp. 1973–1981). Curran Associates Inc.
– reference: Nam, J., Kim, J., Loza Mencía, E., Gurevych, I., & Fürnkranz, J. (2014). Large-scale multi-label text classification—Revisiting neural networks. In T. Calders, F. Esposito, E. Hüllermeier, & R. Meo (Eds.), Proceedings of ECML-PKDD, Part II (pp. 437–452). Berlin, Heidelberg: Springer.
– reference: AlSumait, L., Barbar, D., & Domeniconi, C. (2008). On-line lda: Adaptive topic models for mining text streams with applications to topic detection and tracking. In 2008 eighth IEEE international conference on data mining (pp. 3–12).
– reference: ReadJPfahringerBHolmesGFrankEClassifier chains for multi-label classificationMachine Learning2011853333359310823710.1007/s10994-011-5256-5
– ident: 5689_CR17
– volume: 71
  start-page: 593
  issue: 3
  year: 2009
  ident: 5689_CR6
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/j.1467-9868.2009.00698.x
– ident: 5689_CR8
  doi: 10.21236/ADA440081
– ident: 5689_CR29
  doi: 10.1007/978-3-540-74958-5_38
– ident: 5689_CR21
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 5689_CR11
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– volume: 14
  start-page: 1303
  year: 2013
  ident: 5689_CR13
  publication-title: Journal of Machine Learning Research
– volume-title: Pattern recognition and machine learning (information science and statistics)
  year: 2006
  ident: 5689_CR4
– ident: 5689_CR18
  doi: 10.1007/978-3-642-12837-0_11
– ident: 5689_CR31
  doi: 10.1145/2245276.2245311
– ident: 5689_CR27
– volume: 5
  start-page: 361
  year: 2004
  ident: 5689_CR15
  publication-title: Journal of Machine Learning Research
– ident: 5689_CR33
– start-page: 328
  volume-title: A Nonlinear Label Compression and Transformation Method for Multi-label Classification Using Autoencoders
  year: 2016
  ident: 5689_CR32
– ident: 5689_CR12
– ident: 5689_CR5
– ident: 5689_CR35
– ident: 5689_CR7
– ident: 5689_CR1
  doi: 10.1109/ICDM.2008.140
– volume: 70
  start-page: 89
  year: 2017
  ident: 5689_CR34
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.05.007
– ident: 5689_CR9
– volume: 101
  start-page: 1566
  issue: 476
  year: 2006
  ident: 5689_CR26
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214506000000302
– ident: 5689_CR22
  doi: 10.3115/1699510.1699543
– volume: 19
  start-page: 153
  year: 2007
  ident: 5689_CR3
  publication-title: Advances in Neural Information Processing Systems
– ident: 5689_CR10
  doi: 10.1073/pnas.0307752101
– ident: 5689_CR14
– ident: 5689_CR20
– ident: 5689_CR24
– ident: 5689_CR16
  doi: 10.1145/1143844.1143917
– volume: 2007
  start-page: 1
  year: 2007
  ident: 5689_CR28
  publication-title: International Journal of Data Warehousing and Mining
  doi: 10.4018/jdwm.2007070101
– volume: 85
  start-page: 333
  issue: 3
  year: 2011
  ident: 5689_CR23
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5256-5
– volume: 26
  start-page: 1819
  issue: 8
  year: 2014
  ident: 5689_CR36
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2013.39
– ident: 5689_CR19
  doi: 10.1007/978-3-662-44851-9_28
– ident: 5689_CR30
– volume: 88
  start-page: 157
  issue: 1–2
  year: 2012
  ident: 5689_CR25
  publication-title: Machine Learning
  doi: 10.1007/s10994-011-5272-5
– ident: 5689_CR2
SSID ssj0002686
Score 2.427457
Snippet Multi-label text classification is an increasingly important field as large amounts of text data are available and extracting relevant information is important...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 859
SubjectTerms Artificial Intelligence
Bayesian analysis
Classification
Computer Science
Control
Data mining
Dirichlet problem
Labels
Machine learning
Mechatronics
Natural Language Processing (NLP)
Robotics
Simulation and Modeling
Text editing
Texts
Training
SummonAdditionalLinks – databaseName: Science Database (subscription)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA46PXhxfuJ0Sg6elGCa5qM9iYrDi2MHhd1K-iaDwdjmWgX_vUnabiq4i-e0ofR5P54kb94HoUvrIp5lFIg23BDO3XIndyyWcKt1HhuVaw1BbEL1-8lwmA7qDbeiLqtsYmII1GYGfo_8JnJERbiEItnt_I141Sh_ulpLaGyiLcdsIl_S9cwGy0jMZFB6dI4kiM_kzalmdXUuNMV1MVrIJCXyZ15akc1f56Mh7fTa__3gPbRbE058V1nIPtqw0wPUbsQccO3bh-i-ajqKQ4UhcbZhJ7hRyIVPXM7mY8BBN6fAjuhiXzGCwXNvX2wU8D1Cr73Hl4cnUgssEIhFWhJpIma4jlPBNTMsH0Wj0ELQMK40pW5IUauEMfGIgsgp0ASSWI6UW6SlKhfxMWpNZ1N7grBQoMBykHmsvNS6tsCcETCbxLkUQDuINr83g7r7uBfBmGSrvskekcwhknlEMtlBV8tX5lXrjXUPdxsUstoLi2wFQQddNzh-G_5rstP1k52hHUebkqrssYta5eLdnqNt-CjHxeIimOAXAW7hBQ
  priority: 102
  providerName: ProQuest
Title Online multi-label dependency topic models for text classification
URI https://link.springer.com/article/10.1007/s10994-017-5689-6
https://www.proquest.com/docview/1977502462
Volume 107
WOSCitedRecordID wos000428442300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6s9eDFt1itJQdPSiDNbpLdo0pFEEupD4qXJZukUChV7Cr4752ku62KCnrJJQ92Z5KZL8xkPoAjhxbPcWaotrGlcYzXnRxRLI2d1nlkVa61CWQTqttNBoO0V77jnlbZ7lVIMljqD4_dQhlbtKpCJimVNaijt0s8X0P_5n5ufrkM9I54egT17rsKZX63xGdntECYX4KiwddcrP_rKzdgrYSW5HS2FzZhyU22YL2ibSDlKd6Gs1l5URJyCSnuAjcmFReueSPF49PIkMCQMyUIaYnPDSHGo2yfVhQ0uQN3F53b80taUilQE4m0oNK2uY11lIpYc8vzYXsYigVaHivNGHYp5pSwNhoyI3JmWGKSSA4VXsdSlYtoF5YnjxO3B0Qoo4yLjcwj5UnVtTMc1c1dEuVSGNYAVsk0M2WdcU93Mc4WFZK9jDKUUeZllMkGHM-nPM2KbPw2uFkpKivP2zRrI4wV-EOSN-CkUsyH7p8W2__T6ANYRbyUzPIdm7BcPL-4Q1gxr8Vo-tyC-lmn2-u3oHalKLbXvIdtTzy0wgZ9B2My2wg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hWqm98OhDLKXFh3JpZdXr-JEcECptEQhYcaASt9QZeyUktLuwC4g_1d_YsROzbaVy49CzE0vOfJ5HPP4-gPeBPF6QArnzynOlqNxpKIvlKjjXFN42zmESm7CDQXl2Vp0swM98Fya2VWafmBy1H2P8R_6pT4mKpoBi5M7kkkfVqHi6miU0WlgchrtbKtmm2wdfyb5bUu59O_2yzztVAY6Frmbc-L70yhWVVk562Qz7w8Sb56WyTggasiJY7X0xFKgbgaLEsjBDS5VJZZuoEkEu_4mKzGKxVVCe3Ht-aZKyJG1czWPmkE9R26t6iYSXYoI2ZcXNn3Fwntz-dR6bwtze8v_2gVZgqUuo2ed2B6zCQhi9gOUsVsE63_USdltSVZY6KDlhP1ywrACMd2w2npwjS7pAU0aJPIsdMQxjbRGbqRJ-X8H3R1nJa1gcjUdhDZi2aDEoNE1ho5S8CygJ5DKURWM0ih6IbM4aO3b1KPJxUc95oSMCakJAHRFQmx58uH9l0lKLPPTwRrZ63XmZaT03eQ8-Ztz8NvyvydYfnmwTnu2fHh_VRweDwzfwnFLEsm3x3IDF2dV1eAtP8WZ2Pr16l-DP4Mdjw-kXaYE8hQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1BTxQxFH4hYAwXUZS4itoDXCAN3c60nTkQo-JGAtnsARPCZey8dhISsruyq4a_xq_jtTNlwURuHDx3pkmn33vve9PX9wFsefJ4Xgrk1uWO5zmlOzWxWJ57a-vMmdpajGITZjgsTk_L0RJcp7swoawy-cToqN0Ewz_yvT4RFUUBRcu9piuLGB0MPk5_8qAgFU5ak5xGC5Ejf_WH0rfZ_uEB7fW2lIOvJ1--8U5hgGOmyjnXri9dbrNS5VY6WTf9JvbQczI3VggaMsIb5VzWCFS1QFFgkenGUJZSmjooRpD7XzGUY4ZywpE6u40CUkeVSTJixQOLSCeq7bW92JCX4oPSRcn1_Zi4ILp_nc3GkDdY-58_1nN41hFt9qm1jBew5MfrsJZELFjn017C57bZKouVlZxswl-wpAyMV2w-mZ4ji3pBM0YEn4VVMgw5Ryiyirh-Bd8fZSUbsDyejP1rYMqgQZ-jrjMTJOatR0ngl77Iaq1Q9ECkra2w67oexD8uqkW_6ICGitBQBTRUugc7t69M25YjDz28mRBQdd5nVi22vwe7CUN3hv812ZuHJ_sATwlF1fHh8OgtrBJzLNrKz01Ynl_-8u_gCf6en88u30dLYPDjsdF0AxchRXE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+multi-label+dependency+topic+models+for+text+classification&rft.jtitle=Machine+learning&rft.au=Burkhardt%2C+Sophie&rft.au=Kramer%2C+Stefan&rft.date=2018-05-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=107&rft.issue=5&rft.spage=859&rft.epage=886&rft_id=info:doi/10.1007%2Fs10994-017-5689-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_017_5689_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon