Video Variational Deep Atmospheric Turbulence Correction
This paper presents a novel variational deep-learning approach for video atmospheric turbulence correction. We modify and tailor the Nonlinear Activation Free Network (NAFNet) architecture for video restoration, introducing a new transformer-based channel attention mechanism to exploit long-range hi...
Saved in:
| Published in: | IEEE access Vol. 12; pp. 127368 - 127379 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!