A penalty-like neurodynamic approach to constrained nonsmooth distributed convex optimization

A nonsmooth distributed optimization problem subject to affine equality and convex inequality is considered in this paper. All the local objective functions in the distributed optimization problem possess a common decision variable. And taking privacy into consideration, each agent doesn’t share its...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 377; s. 225 - 233
Hlavní autoři: Jiang, Xinrui, Qin, Sitian, Xue, Xiaoping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.02.2020
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A nonsmooth distributed optimization problem subject to affine equality and convex inequality is considered in this paper. All the local objective functions in the distributed optimization problem possess a common decision variable. And taking privacy into consideration, each agent doesn’t share its local information with other agents, including the information about the local objective function and constraint set. To cope with this distributed optimization, a neurodynamic approach based on the penalty-like methods is proposed. It is proved that the presented neurodynamic approach is convergent to an optimal solution to the considered distributed optimization problem. The proposed neurodynamic approach in this paper has lower model complexity and computational load via reducing auxiliary variables. In the end, two illustrative examples are given to show the effectiveness and practical application of the proposed neural network.
AbstractList A nonsmooth distributed optimization problem subject to affine equality and convex inequality is considered in this paper. All the local objective functions in the distributed optimization problem possess a common decision variable. And taking privacy into consideration, each agent doesn’t share its local information with other agents, including the information about the local objective function and constraint set. To cope with this distributed optimization, a neurodynamic approach based on the penalty-like methods is proposed. It is proved that the presented neurodynamic approach is convergent to an optimal solution to the considered distributed optimization problem. The proposed neurodynamic approach in this paper has lower model complexity and computational load via reducing auxiliary variables. In the end, two illustrative examples are given to show the effectiveness and practical application of the proposed neural network.
Author Jiang, Xinrui
Qin, Sitian
Xue, Xiaoping
Author_xml – sequence: 1
  givenname: Xinrui
  surname: Jiang
  fullname: Jiang, Xinrui
  email: jiangxrhit@163.com
  organization: Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
– sequence: 2
  givenname: Sitian
  orcidid: 0000-0002-4543-4940
  surname: Qin
  fullname: Qin, Sitian
  email: qinsitian@hitwh.edu.cn
  organization: Department of Mathematics, Harbin Institute of Technology, Weihai 264209, China
– sequence: 3
  givenname: Xiaoping
  surname: Xue
  fullname: Xue, Xiaoping
  email: xiaopingxue@hit.edu.cn
  organization: Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wIxJ5jcuhFL8A8GNLiVkMndo6kwyJGmxPr0Z68qFri583HPuPWeBZsYaQOiSkpQSWl5tUwM7ZYeUEcojSklBTtCc1hVLalaXMzQnnBUJyyg7Qwvvt4TQijI-R28rPIKRfTgkvX4HHI2cbQ9GDlphOY7OSrXBwWJljQ9OagMtjuf9YG3Y4FZHqJtdiDRu7OED2zHoQX_KoK05R6ed7D1c_Mwler27fVk_JE_P94_r1VOisoKHpJS56ipFJOMNp7RsWsg5SMJJzQmtuyJjedWUVHKSVU0Dqm2JzCSpOl5R4EW2RPnRVznrvYNOjE4P0h0EJWKqSGzFsSIxVTTRWFGUXf-SKR2-H5-S9v-Jb45iiMH2GpzwSoNR0GoHKojW6r8NvgB8yInm
CitedBy_id crossref_primary_10_1016_j_jfranklin_2021_02_029
crossref_primary_10_1109_TETCI_2024_3369667
crossref_primary_10_1016_j_neucom_2021_06_097
crossref_primary_10_1007_s40747_024_01436_w
crossref_primary_10_1007_s00521_022_07003_z
crossref_primary_10_1088_1402_4896_adb652
crossref_primary_10_1016_j_jfranklin_2022_03_046
crossref_primary_10_1007_s11075_021_01075_z
crossref_primary_10_1016_j_neunet_2024_106337
crossref_primary_10_1016_j_neucom_2021_03_082
crossref_primary_10_1109_TSMC_2024_3358405
crossref_primary_10_1016_j_jfranklin_2021_07_007
crossref_primary_10_1016_j_jfranklin_2025_107642
crossref_primary_10_1016_j_neucom_2025_131406
crossref_primary_10_1007_s00521_023_08794_5
crossref_primary_10_1016_j_neucom_2021_08_139
crossref_primary_10_1007_s40747_020_00265_x
crossref_primary_10_1016_j_neucom_2022_08_035
crossref_primary_10_1109_TNSE_2022_3178107
crossref_primary_10_1016_j_neunet_2021_11_013
crossref_primary_10_1016_j_isatra_2025_08_050
crossref_primary_10_1007_s00521_021_06026_2
crossref_primary_10_1109_TAC_2024_3453117
crossref_primary_10_1007_s00521_022_07399_8
crossref_primary_10_1109_TAC_2021_3137054
crossref_primary_10_1016_j_neunet_2023_12_011
Cites_doi 10.1016/j.automatica.2016.08.007
10.1016/j.neucom.2017.12.060
10.1016/j.sysconle.2015.06.006
10.1016/j.neucom.2018.01.082
10.1080/23307706.2014.926622
10.1109/TNN.2009.2016340
10.1016/j.neucom.2018.11.002
10.1109/TETCI.2017.2716377
10.1016/j.neucom.2017.09.079
10.1109/TCYB.2016.2567449
10.1016/j.automatica.2011.03.014
10.1016/j.neucom.2017.09.016
10.1109/TNNLS.2016.2549566
10.1109/TAC.2018.2810039
10.1109/TAC.2016.2628807
10.1109/TAC.2013.2278132
10.1109/TAC.2015.2416927
10.1109/TNN.2011.2109735
10.1016/j.neucom.2017.07.005
10.1016/j.neucom.2018.03.036
10.1109/TAC.2017.2673240
10.1109/TNN.2010.2050601
10.1109/TCYB.2017.2760908
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2019.10.050
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 233
ExternalDocumentID 10_1016_j_neucom_2019_10_050
S0925231219314298
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11731010, 11671109, 61773136
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c359t-6a4cf7c0a29b9116bde49ea09089018f53247b61a9037bbecdd0a3a07f971e953
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000504873400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 20:53:26 EST 2025
Sat Nov 29 07:08:47 EST 2025
Fri Feb 23 02:48:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differential inclusion
Neurodynamic approach
Constrained distributed optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c359t-6a4cf7c0a29b9116bde49ea09089018f53247b61a9037bbecdd0a3a07f971e953
ORCID 0000-0002-4543-4940
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_neucom_2019_10_050
crossref_citationtrail_10_1016_j_neucom_2019_10_050
elsevier_sciencedirect_doi_10_1016_j_neucom_2019_10_050
PublicationCentury 2000
PublicationDate 2020-02-15
PublicationDateYYYYMMDD 2020-02-15
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xue, Bian (bib0030) 2008; 55(8)
Gharesifard, Cortes (bib0019) 2014; 59(3)
Hu, Yang (bib0017) 2018; 287
Ma, Bian (bib0009) 2019
Qin, Yang, Xue, Song (bib0024) 2017; 47(10)
Blot, Picard, Thome, Cord (bib0001) 2019; 330
Clarke (bib0029) 1983
Le, Yan, Xi (bib0002) 2017; 1(4)
Liu, Yang, Wang (bib0004) 2017; 28(8)
Le, Chen, Yan, Xi (bib0018) 2018; 48(11)
Liu, Wang (bib0020) 2015; 60(12)
Cheng, Hou, Tan, Lin (bib0011) 2010; 21(8)
Cheng, Hou, Lin, Tan, Zhang, Wu (bib0031) 2011; 22(5)
Yi, Hong, Liu (bib0012) 2015; 83(711)
Dong, Wei, Liu, Alsaadi, Dong, Wei, Liu, Alsaadi, Dong, Wei (bib0014) 2018; 275
Droge, Kawashima, Egerstedt (bib0006) 2014; 1(3)
Cheng, Hou, Lin, Tan, Zhang (bib0025) 2011; 47(10)
Bian, Xue (bib0033) 2009; 20(6)
Li, Zhang, Ji, Sun (bib0015) 2018; 275
Zhao, Gang, Dai (bib0008) 2018; 284
Zeng, Yi, Hong (bib0021) 2017; 62(10)
Yi, Hong, Liu (bib0026) 2016; 74
Liu, Qin (bib0028) 2018
Aubin, Cellina (bib0032) 1984
Yan, Hui, Xia (bib0016) 2018; 296
Zhu, Yu, Wen, Chen, Ren (bib0022) 2018; 64(4)
Zhou, Zeng, Hong (bib0027) 2018
Sun, Ye, Hu (bib0013) 2017; 62(7)
Zhang, Lu, Zheng, Shuai, Yu, Li (bib0007) 2018; 63(12)
Tran, Wang, Yang (bib0005) 2018; 272
Zhang, Kong, Zheng, Zhang, Qu, Liao, Yu (bib0010) 2018
Bullo, Cortes, Martinez (bib0003) 2009
Zhu, Yu, Wen, Chen (bib0023) 2018
Yi (10.1016/j.neucom.2019.10.050_bib0026) 2016; 74
Hu (10.1016/j.neucom.2019.10.050_bib0017) 2018; 287
Zeng (10.1016/j.neucom.2019.10.050_bib0021) 2017; 62(10)
Sun (10.1016/j.neucom.2019.10.050_bib0013) 2017; 62(7)
Li (10.1016/j.neucom.2019.10.050_bib0015) 2018; 275
Cheng (10.1016/j.neucom.2019.10.050_bib0031) 2011; 22(5)
Zhu (10.1016/j.neucom.2019.10.050_sbref0023) 2018
Bian (10.1016/j.neucom.2019.10.050_bib0033) 2009; 20(6)
Droge (10.1016/j.neucom.2019.10.050_bib0006) 2014; 1(3)
Yi (10.1016/j.neucom.2019.10.050_bib0012) 2015; 83(711)
Zhao (10.1016/j.neucom.2019.10.050_bib0008) 2018; 284
Yan (10.1016/j.neucom.2019.10.050_bib0016) 2018; 296
Zhou (10.1016/j.neucom.2019.10.050_bib0027) 2018
Xue (10.1016/j.neucom.2019.10.050_bib0030) 2008; 55(8)
Liu (10.1016/j.neucom.2019.10.050_bib0020) 2015; 60(12)
Cheng (10.1016/j.neucom.2019.10.050_bib0025) 2011; 47(10)
Gharesifard (10.1016/j.neucom.2019.10.050_bib0019) 2014; 59(3)
Zhang (10.1016/j.neucom.2019.10.050_bib0010) 2018
Liu (10.1016/j.neucom.2019.10.050_bib0028) 2018
Ma (10.1016/j.neucom.2019.10.050_bib0009) 2019
Cheng (10.1016/j.neucom.2019.10.050_bib0011) 2010; 21(8)
Clarke (10.1016/j.neucom.2019.10.050_bib0029) 1983
Liu (10.1016/j.neucom.2019.10.050_bib0004) 2017; 28(8)
Tran (10.1016/j.neucom.2019.10.050_bib0005) 2018; 272
Dong (10.1016/j.neucom.2019.10.050_bib0014) 2018; 275
Le (10.1016/j.neucom.2019.10.050_bib0002) 2017; 1(4)
Le (10.1016/j.neucom.2019.10.050_bib0018) 2018; 48(11)
Bullo (10.1016/j.neucom.2019.10.050_bib0003) 2009
Zhang (10.1016/j.neucom.2019.10.050_bib0007) 2018; 63(12)
Zhu (10.1016/j.neucom.2019.10.050_bib0022) 2018; 64(4)
Qin (10.1016/j.neucom.2019.10.050_bib0024) 2017; 47(10)
Aubin (10.1016/j.neucom.2019.10.050_bib0032) 1984
Blot (10.1016/j.neucom.2019.10.050_bib0001) 2019; 330
References_xml – year: 2009
  ident: bib0003
  publication-title: Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms
– volume: 275
  start-page: 1416
  year: 2018
  end-page: 1425
  ident: bib0015
  article-title: Distributed multi-agent optimization via event-triggered based continuous-time Newton–Raphson algorithm
  publication-title: Neurocomputing
– volume: 47(10)
  start-page: 3063
  year: 2017
  end-page: 3074
  ident: bib0024
  article-title: A one-layer recurrent neural network for pseudoconvex optimization problems with equality and inequality constraints
  publication-title: IEEE Trans. Cybern.
– volume: 64(4)
  start-page: 1694
  year: 2018
  end-page: 1701
  ident: bib0022
  article-title: Continuous-time distributed subgradient algorithm for convex optimization with general constraints
  publication-title: IEEE Trans. Autom. Control
– volume: 59(3)
  start-page: 781
  year: 2014
  end-page: 786
  ident: bib0019
  article-title: Distributed continuous-time convex optimization on weight-balanced digraphs
  publication-title: IEEE Trans. Autom. Control
– volume: 22(5)
  start-page: 714
  year: 2011
  end-page: 726
  ident: bib0031
  article-title: Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 296
  start-page: 100
  year: 2018
  end-page: 108
  ident: bib0016
  article-title: Distributed optimization of multi-agent systems with delayed sampled-data
  publication-title: Neurocomputing
– volume: 63(12)
  start-page: 4110
  year: 2018
  end-page: 4125
  ident: bib0007
  article-title: A new varying-parameter convergent-differential neural-network for solving time-varying convex QP problem constrained by linear-equality
  publication-title: IEEE Trans. Autom. Control
– volume: 21(8)
  start-page: 1351
  year: 2010
  end-page: 1358
  ident: bib0011
  article-title: Neural-network-based adaptive leader-following control for multiagent systems with uncertainties
  publication-title: IEEE Trans. Neural Netw.
– volume: 1(3)
  start-page: 191
  year: 2014
  end-page: 213
  ident: bib0006
  article-title: Continuous-time proportional-integral distributed optimisation for networked systems
  publication-title: J. Control Decis.
– volume: 20(6)
  start-page: 1024
  year: 2009
  end-page: 1038
  ident: bib0033
  article-title: Subgradient-based neural networks for nonsmooth nonconvex optimization problems
  publication-title: IEEE Trans. Neural Netw.
– volume: 74
  start-page: 259
  year: 2016
  end-page: 269
  ident: bib0026
  article-title: Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems
  publication-title: Automatica
– year: 2018
  ident: bib0010
  article-title: Robustness analysis of a power-type varying-parameter recurrent neural network for solving time-varying QM and QP problems and applications
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 28(8)
  start-page: 1747
  year: 2017
  end-page: 1758
  ident: bib0004
  article-title: A collective neurodynamic approach to distributed constrained optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 60(12)
  start-page: 3310
  year: 2015
  end-page: 3315
  ident: bib0020
  article-title: A second-order multi-agent network for bound-constrained distributed optimization
  publication-title: IEEE Trans. Autom. Control
– volume: 287
  start-page: 173
  year: 2018
  end-page: 184
  ident: bib0017
  article-title: Distributed finite-time optimization for second order continuous-time multiple agents systems with time-varying cost function
  publication-title: Neurocomputing
– volume: 62(7)
  start-page: 3687
  year: 2017
  end-page: 3694
  ident: bib0013
  article-title: Distributed time-varying quadratic optimization for multiple agents under undirected graphs
  publication-title: IEEE Trans. Autom. Control
– volume: 275
  start-page: 725
  year: 2018
  end-page: 732
  ident: bib0014
  article-title: A modified distributed optimization method for both continuous-time and discrete-time multi-agent systems
  publication-title: Neurocomputing
– year: 1983
  ident: bib0029
  publication-title: Optimization and Nonsmooth Analysis
– volume: 272
  start-page: 386
  year: 2018
  end-page: 395
  ident: bib0005
  article-title: Distributed optimization problem for double-integrator systems with the presence of the exogenous disturbance
  publication-title: Neurocomputing
– volume: 1(4)
  start-page: 305
  year: 2017
  end-page: 314
  ident: bib0002
  article-title: A collective neurodynamic system for distributed optimization with applications in model predictive control
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 55(8)
  start-page: 2378
  year: 2008
  end-page: 2391
  ident: bib0030
  article-title: Subgradient-based neural networks for nonsmooth convex optimization problems
  publication-title: IEEE Trans. Circuits Syst. I: Regul. Pap.
– year: 2018
  ident: bib0027
  article-title: Adaptive exact penalty design for constrained distributed optimization
  publication-title: Trans. Autom. Control
– year: 2018
  ident: bib0028
  article-title: A novel neurodynamic approach to constrained complex-variable pseudoconvex optimization
  publication-title: IEEE Trans. Cybern.
– year: 2019
  ident: bib0009
  article-title: A novel multiagent neurodynamic approach to constrained distributed convex optimization
  publication-title: IEEE Trans. Cybern.
– volume: 47(10)
  start-page: 2218
  year: 2011
  end-page: 2223
  ident: bib0025
  article-title: Solving a modified consensus problem of linear multi-agent systems
  publication-title: Automatica
– volume: 83(711)
  start-page: 45
  year: 2015
  end-page: 52
  ident: bib0012
  article-title: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems
  publication-title: Syst. Control Lett.
– volume: 62(10)
  start-page: 5227
  year: 2017
  end-page: 5233
  ident: bib0021
  article-title: Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach
  publication-title: IEEE Trans. Autom. Control
– volume: 330
  start-page: 287
  year: 2019
  end-page: 296
  ident: bib0001
  article-title: Distributed optimization for deep learning with gossip exchange
  publication-title: Neurocomputing
– volume: 284
  start-page: 90
  year: 2018
  end-page: 98
  ident: bib0008
  article-title: Distributed event-triggered scheme for a convex optimization problem in multi-agent systems
  publication-title: Neurocomputing
– year: 2018
  ident: bib0023
  article-title: Projected primal-dual dynamics for distributed constrained nonsmooth convex optimization
  publication-title: IEEE Trans. Cybern.
– year: 1984
  ident: bib0032
  publication-title: Differential Inclusions
– volume: 48(11)
  start-page: 3149
  year: 2018
  end-page: 3158
  ident: bib0018
  article-title: A neurodynamic approach to distributed optimization with globally coupled constraints
  publication-title: IEEE Trans. Cybern.
– volume: 74
  start-page: 259
  year: 2016
  ident: 10.1016/j.neucom.2019.10.050_bib0026
  article-title: Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.08.007
– volume: 284
  start-page: 90
  year: 2018
  ident: 10.1016/j.neucom.2019.10.050_bib0008
  article-title: Distributed event-triggered scheme for a convex optimization problem in multi-agent systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.12.060
– volume: 83(711)
  start-page: 45
  year: 2015
  ident: 10.1016/j.neucom.2019.10.050_bib0012
  article-title: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2015.06.006
– volume: 287
  start-page: 173
  year: 2018
  ident: 10.1016/j.neucom.2019.10.050_bib0017
  article-title: Distributed finite-time optimization for second order continuous-time multiple agents systems with time-varying cost function
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.082
– year: 2019
  ident: 10.1016/j.neucom.2019.10.050_bib0009
  article-title: A novel multiagent neurodynamic approach to constrained distributed convex optimization
  publication-title: IEEE Trans. Cybern.
– volume: 1(3)
  start-page: 191
  year: 2014
  ident: 10.1016/j.neucom.2019.10.050_bib0006
  article-title: Continuous-time proportional-integral distributed optimisation for networked systems
  publication-title: J. Control Decis.
  doi: 10.1080/23307706.2014.926622
– year: 2009
  ident: 10.1016/j.neucom.2019.10.050_bib0003
– volume: 20(6)
  start-page: 1024
  year: 2009
  ident: 10.1016/j.neucom.2019.10.050_bib0033
  article-title: Subgradient-based neural networks for nonsmooth nonconvex optimization problems
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2016340
– volume: 330
  start-page: 287
  year: 2019
  ident: 10.1016/j.neucom.2019.10.050_bib0001
  article-title: Distributed optimization for deep learning with gossip exchange
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.002
– volume: 55(8)
  start-page: 2378
  year: 2008
  ident: 10.1016/j.neucom.2019.10.050_bib0030
  article-title: Subgradient-based neural networks for nonsmooth convex optimization problems
  publication-title: IEEE Trans. Circuits Syst. I: Regul. Pap.
– volume: 1(4)
  start-page: 305
  year: 2017
  ident: 10.1016/j.neucom.2019.10.050_bib0002
  article-title: A collective neurodynamic system for distributed optimization with applications in model predictive control
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2017.2716377
– volume: 275
  start-page: 1416
  year: 2018
  ident: 10.1016/j.neucom.2019.10.050_bib0015
  article-title: Distributed multi-agent optimization via event-triggered based continuous-time Newton–Raphson algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.079
– year: 2018
  ident: 10.1016/j.neucom.2019.10.050_bib0010
  article-title: Robustness analysis of a power-type varying-parameter recurrent neural network for solving time-varying QM and QP problems and applications
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 47(10)
  start-page: 3063
  year: 2017
  ident: 10.1016/j.neucom.2019.10.050_bib0024
  article-title: A one-layer recurrent neural network for pseudoconvex optimization problems with equality and inequality constraints
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2567449
– year: 2018
  ident: 10.1016/j.neucom.2019.10.050_bib0028
  article-title: A novel neurodynamic approach to constrained complex-variable pseudoconvex optimization
  publication-title: IEEE Trans. Cybern.
– volume: 47(10)
  start-page: 2218
  year: 2011
  ident: 10.1016/j.neucom.2019.10.050_bib0025
  article-title: Solving a modified consensus problem of linear multi-agent systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.03.014
– volume: 275
  start-page: 725
  year: 2018
  ident: 10.1016/j.neucom.2019.10.050_bib0014
  article-title: A modified distributed optimization method for both continuous-time and discrete-time multi-agent systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.016
– year: 2018
  ident: 10.1016/j.neucom.2019.10.050_sbref0023
  article-title: Projected primal-dual dynamics for distributed constrained nonsmooth convex optimization
  publication-title: IEEE Trans. Cybern.
– volume: 28(8)
  start-page: 1747
  year: 2017
  ident: 10.1016/j.neucom.2019.10.050_bib0004
  article-title: A collective neurodynamic approach to distributed constrained optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2549566
– volume: 63(12)
  start-page: 4110
  year: 2018
  ident: 10.1016/j.neucom.2019.10.050_bib0007
  article-title: A new varying-parameter convergent-differential neural-network for solving time-varying convex QP problem constrained by linear-equality
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2018.2810039
– volume: 62(10)
  start-page: 5227
  year: 2017
  ident: 10.1016/j.neucom.2019.10.050_bib0021
  article-title: Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2016.2628807
– volume: 59(3)
  start-page: 781
  year: 2014
  ident: 10.1016/j.neucom.2019.10.050_bib0019
  article-title: Distributed continuous-time convex optimization on weight-balanced digraphs
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2013.2278132
– volume: 60(12)
  start-page: 3310
  year: 2015
  ident: 10.1016/j.neucom.2019.10.050_bib0020
  article-title: A second-order multi-agent network for bound-constrained distributed optimization
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2015.2416927
– year: 2018
  ident: 10.1016/j.neucom.2019.10.050_bib0027
  article-title: Adaptive exact penalty design for constrained distributed optimization
  publication-title: Trans. Autom. Control
– year: 1984
  ident: 10.1016/j.neucom.2019.10.050_bib0032
– volume: 22(5)
  start-page: 714
  year: 2011
  ident: 10.1016/j.neucom.2019.10.050_bib0031
  article-title: Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2011.2109735
– volume: 272
  start-page: 386
  year: 2018
  ident: 10.1016/j.neucom.2019.10.050_bib0005
  article-title: Distributed optimization problem for double-integrator systems with the presence of the exogenous disturbance
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.005
– volume: 296
  start-page: 100
  year: 2018
  ident: 10.1016/j.neucom.2019.10.050_bib0016
  article-title: Distributed optimization of multi-agent systems with delayed sampled-data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.036
– volume: 62(7)
  start-page: 3687
  year: 2017
  ident: 10.1016/j.neucom.2019.10.050_bib0013
  article-title: Distributed time-varying quadratic optimization for multiple agents under undirected graphs
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2673240
– volume: 64(4)
  start-page: 1694
  year: 2018
  ident: 10.1016/j.neucom.2019.10.050_bib0022
  article-title: Continuous-time distributed subgradient algorithm for convex optimization with general constraints
  publication-title: IEEE Trans. Autom. Control
– volume: 21(8)
  start-page: 1351
  year: 2010
  ident: 10.1016/j.neucom.2019.10.050_bib0011
  article-title: Neural-network-based adaptive leader-following control for multiagent systems with uncertainties
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2050601
– year: 1983
  ident: 10.1016/j.neucom.2019.10.050_bib0029
– volume: 48(11)
  start-page: 3149
  year: 2018
  ident: 10.1016/j.neucom.2019.10.050_bib0018
  article-title: A neurodynamic approach to distributed optimization with globally coupled constraints
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2760908
SSID ssj0017129
Score 2.4200568
Snippet A nonsmooth distributed optimization problem subject to affine equality and convex inequality is considered in this paper. All the local objective functions in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 225
SubjectTerms Constrained distributed optimization
Differential inclusion
Neurodynamic approach
Title A penalty-like neurodynamic approach to constrained nonsmooth distributed convex optimization
URI https://dx.doi.org/10.1016/j.neucom.2019.10.050
Volume 377
WOSCitedRecordID wos000504873400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIde0jdN-kCH3hYH27Is6WhCSptDKCQFX4qRbRmc7outN2wgPz4zluyIbukLejFGSLuy5tPo00gzQ8j7lFc6SmECqriMAwBFFMi6lEHJ6kQYxnFX0iebEOfnMs_V58nkdvCFuZ6JxUJut2r1X0UNZSBsdJ39C3GPPwoF8A5ChyeIHZ5_JPhsujJQqbsJZu03M-0DVtY27_wYQRwZZ4XMEBNE4AUAeJ8vQWh4YGNzYJna3kjfTpegVebOXdPnsn1cj6rPCuHsDdkcwy7UiLHRvnDWOot03i7Wm3Y0tNrYBRdt5-Ez3xhbU_duXL5FArafmB-F35vJdlxlrL0x5gGQSat6jdW2UsS9H7uvjplL6-IUqnWLdmtzbINm7Kh9a4G4OoYhxTtAQGrUMd7ZszFtfwiofYFdwZ4Ad41gOZYPyH4suAKduJ99Os3PxlMoEcU2VqPr-uB62d8P3P2vn1Mbj65cPiEHbp9BM4uPp2RiFs_I4yGHB3Uq_Tn5mlEfLtSHCx3gQrsl9eBCR7hQDy7UwoX6cHlBvnw4vTz5GLiUG0HFuOqCVCdVI6pQx6qEZTAta5Moo0M8HQ4j2XDg36JMI61CJkqY_3UdaqZD0SgRGcXZS7IHfTCvCI1VClQX1oiSyaRpjKyRBzHNEwWsUkeHhA2jVVQuHj1-xqwYLh5eFXaMCxxjLIUxPiTB2Gpl47H8pr4YBFE4Tmm5YgHY-WXLo39u-Zo8up8Wb8het96Yt-Rhdd2139fvHMjuABucoAE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+penalty-like+neurodynamic+approach+to+constrained+nonsmooth+distributed+convex+optimization&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Jiang%2C+Xinrui&rft.au=Qin%2C+Sitian&rft.au=Xue%2C+Xiaoping&rft.date=2020-02-15&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=377&rft.spage=225&rft.epage=233&rft_id=info:doi/10.1016%2Fj.neucom.2019.10.050&rft.externalDocID=S0925231219314298
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon