The Partial Visibility Representation Extension Problem

For a graph G , a function ψ is called a bar visibility representation of G when for each vertex v ∈ V ( G ) , ψ ( v ) is a horizontal line segment ( bar ) and u v ∈ E ( G ) if and only if there is an unobstructed, vertical, ε -wide line of sight between ψ ( u ) and ψ ( v ) . Graphs admitting such r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 80; číslo 8; s. 2286 - 2323
Hlavní autoři: Chaplick, Steven, Guśpiel, Grzegorz, Gutowski, Grzegorz, Krawczyk, Tomasz, Liotta, Giuseppe
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2018
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For a graph G , a function ψ is called a bar visibility representation of G when for each vertex v ∈ V ( G ) , ψ ( v ) is a horizontal line segment ( bar ) and u v ∈ E ( G ) if and only if there is an unobstructed, vertical, ε -wide line of sight between ψ ( u ) and ψ ( v ) . Graphs admitting such representations are well understood (via simple characterizations) and recognizable in linear time. For a directed graph G , a bar visibility representation of G , additionally, puts the bar ψ ( u ) strictly below the bar ψ ( v ) for each directed edge ( u ,  v ) of G . We study a generalization of the recognition problem where a function ψ ′ defined on a subset V ′ of V ( G ) is given and the question is whether there is a bar visibility representation ψ of G with ψ ( v ) = ψ ′ ( v ) for every v ∈ V ′ . We show that for undirected graphs this problem, and other closely related problems, is NP -complete, but for certain cases involving directed graphs it is solvable in polynomial time.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-017-0322-4