Data complexity meta-features for regression problems

In meta-learning, classification problems can be described by a variety of features, including complexity measures. These measures allow capturing the complexity of the frontier that separates the classes. For regression problems, on the other hand, there is a lack of such type of measures. This pap...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Machine learning Ročník 107; číslo 1; s. 209 - 246
Hlavní autori: Lorena, Ana C., Maciel, Aron I., de Miranda, Péricles B. C., Costa, Ivan G., Prudêncio, Ricardo B. C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.01.2018
Springer Nature B.V
Predmet:
ISSN:0885-6125, 1573-0565
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In meta-learning, classification problems can be described by a variety of features, including complexity measures. These measures allow capturing the complexity of the frontier that separates the classes. For regression problems, on the other hand, there is a lack of such type of measures. This paper presents and analyses measures devoted to estimate the complexity of the function that should fitted to the data in regression problems. As case studies, they are employed as meta-features in three meta-learning setups: (i) the first one predicts the regression function type of some synthetic datasets; (ii) the second one is designed to tune the parameter values of support vector regressors; and (iii) the third one aims to predict the performance of various regressors for a given dataset. The results show the suitability of the new measures to describe the regression datasets and their utility in the meta-learning tasks considered. In cases (ii) and (iii) the achieved results are also similar or better than those obtained by the use of classical meta-features in meta-learning.
AbstractList In meta-learning, classification problems can be described by a variety of features, including complexity measures. These measures allow capturing the complexity of the frontier that separates the classes. For regression problems, on the other hand, there is a lack of such type of measures. This paper presents and analyses measures devoted to estimate the complexity of the function that should fitted to the data in regression problems. As case studies, they are employed as meta-features in three meta-learning setups: (i) the first one predicts the regression function type of some synthetic datasets; (ii) the second one is designed to tune the parameter values of support vector regressors; and (iii) the third one aims to predict the performance of various regressors for a given dataset. The results show the suitability of the new measures to describe the regression datasets and their utility in the meta-learning tasks considered. In cases (ii) and (iii) the achieved results are also similar or better than those obtained by the use of classical meta-features in meta-learning.
Author Maciel, Aron I.
Prudêncio, Ricardo B. C.
de Miranda, Péricles B. C.
Costa, Ivan G.
Lorena, Ana C.
Author_xml – sequence: 1
  givenname: Ana C.
  orcidid: 0000-0002-6140-571X
  surname: Lorena
  fullname: Lorena, Ana C.
  email: aclorena@unifesp.br
  organization: Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo
– sequence: 2
  givenname: Aron I.
  surname: Maciel
  fullname: Maciel, Aron I.
  organization: Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo
– sequence: 3
  givenname: Péricles B. C.
  surname: de Miranda
  fullname: de Miranda, Péricles B. C.
  organization: Centro de Informática, Universidade Federal de Pernambuco
– sequence: 4
  givenname: Ivan G.
  surname: Costa
  fullname: Costa, Ivan G.
  organization: IZKF Research Group Bioinformatics, RWTH Aachen University
– sequence: 5
  givenname: Ricardo B. C.
  surname: Prudêncio
  fullname: Prudêncio, Ricardo B. C.
  organization: Centro de Informática, Universidade Federal de Pernambuco
BookMark eNp9kE1LAzEQhoNUsFZ_gLcFz9FJtkk2R6mfUPCi5zC7O1u27EdNUrD_3pT1IIKeZg7zzDvznLPZMA7E2JWAGwFgboMAa5cchOFKF4KLEzYXyuQclFYzNoeiUFwLqc7YeQhbAJC60HOm7jFiVo39rqPPNh6yniLyhjDuPYWsGX3maZPa0I5DtvNj2VEfLthpg12gy--6YO-PD2-rZ75-fXpZ3a15lSsbuaJiKRRVhVlCLUuEXKAuQVtT1ShtLWsALeuSrNWICDWWtbW5sFJbIkP5gl1Pe1Pwx55CdNtx74cU6YQ1VmuZa52mxDRV-TEET43b-bZHf3AC3NGOm-y4ZMcd7TiRGPOLqdqIMT0ZPbbdv6ScyJBShg35Hzf9CX0Brm560A
CitedBy_id crossref_primary_10_1007_s10489_022_03793_w
crossref_primary_10_1016_j_asoc_2022_109969
crossref_primary_10_1016_j_landusepol_2021_105475
crossref_primary_10_1080_19401493_2024_2440418
crossref_primary_10_3390_su13063099
crossref_primary_10_1016_j_ins_2021_11_003
crossref_primary_10_1109_ACCESS_2023_3273530
crossref_primary_10_3390_forecast4030040
crossref_primary_10_1109_TNNLS_2024_3476439
crossref_primary_10_3390_math10152740
crossref_primary_10_1016_j_ssci_2021_105315
crossref_primary_10_1016_j_neucom_2021_12_086
crossref_primary_10_1109_ACCESS_2021_3130127
crossref_primary_10_1145_3347711
crossref_primary_10_3390_e25071000
crossref_primary_10_1007_s10994_025_06766_5
crossref_primary_10_1007_s42484_025_00273_5
crossref_primary_10_1109_ACCESS_2020_2964726
crossref_primary_10_1007_s00521_022_07302_5
crossref_primary_10_1016_j_patcog_2024_110881
crossref_primary_10_1016_j_aiig_2025_100126
crossref_primary_10_1007_s41060_025_00808_w
crossref_primary_10_1016_j_jclepro_2020_123795
crossref_primary_10_1007_s10618_023_00957_1
crossref_primary_10_1029_2019WR026691
crossref_primary_10_1016_j_ins_2019_06_005
crossref_primary_10_1109_TNNLS_2024_3366615
crossref_primary_10_1016_j_eswa_2021_115053
crossref_primary_10_46939_J_Sci_Arts_23_2_a12
crossref_primary_10_1007_s10710_024_09501_6
crossref_primary_10_1109_TNNLS_2023_3263506
crossref_primary_10_1007_s10462_024_10724_3
crossref_primary_10_1016_j_ins_2025_122610
crossref_primary_10_1145_3436893
crossref_primary_10_1007_s41060_023_00414_8
crossref_primary_10_1016_j_neucom_2022_11_056
Cites_doi 10.1109/IJCNN.2016.7727369
10.1162/089976603321891855
10.1007/978-3-319-46128-1_13
10.1145/2487575.2487629
10.1007/978-3-642-31537-4_10
10.1109/ICTAI.2012.150
10.1007/s10115-016-1003-3
10.1109/ICDMW.2012.68
10.1016/j.neucom.2014.10.085
10.1016/j.ijforecast.2012.02.001
10.1109/34.990132
10.1016/j.neucom.2011.07.005
10.1023/B:MACH.0000015879.28004.9b
10.1109/TKDE.2014.2327034
10.1145/1141277.1141408
10.1007/s10710-013-9186-9
10.1016/j.neucom.2014.12.100
10.1016/j.neucom.2014.06.026
ContentType Journal Article
Copyright The Author(s) 2017
Machine Learning is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2017
– notice: Machine Learning is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-017-5681-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (subscription)
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 246
ExternalDocumentID 10_1007_s10994_017_5681_1
GrantInformation_xml – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo (BR)
  grantid: 2012/22608-8
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  funderid: http://dx.doi.org/10.13039/501100002322
– fundername: IZKF Aachen
– fundername: Deutscher Akademischer Austauschdienst
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (BR)
  grantid: 482222/2013-1; 308858/2014-0
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (BR)
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (BR)
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c359t-5e8415ec8740d2ba031a6b0697cda29d2d0062dbe996aaa0dabd99319269ee7e3
IEDL.DBID RSV
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419684700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Tue Nov 04 22:29:19 EST 2025
Sat Nov 29 01:43:27 EST 2025
Tue Nov 18 21:29:39 EST 2025
Fri Feb 21 02:28:50 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Complexity measures
Meta-features
Meta-learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-5e8415ec8740d2ba031a6b0697cda29d2d0062dbe996aaa0dabd99319269ee7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6140-571X
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10994-017-5681-1.pdf
PQID 1979662366
PQPubID 54194
PageCount 38
ParticipantIDs proquest_journals_1979662366
crossref_primary_10_1007_s10994_017_5681_1
crossref_citationtrail_10_1007_s10994_017_5681_1
springer_journals_10_1007_s10994_017_5681_1
PublicationCentury 2000
PublicationDate 20180100
2018-1-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 1
  year: 2018
  text: 20180100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Thornton, C., Hutter, F., Hoos, H., & Leyton-Brown, K. (2013). Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 847–855).
CristianiniNShawe-TaylorJElisseeffAKandolaJOn kernel-target alignmentAdvances in Neural Information Processing Systems200214367373
Kuba, P., Brazdil, P., Soares, C., & Woznica, A. (2002). Exploiting sampling and meta-learning for parameter setting for support vector machines. In: VIII Iberoamerican conference on artificial intellignce proceedings of workshop learning and data mining associated with iberamia 2002, (University of Sevilla, Sevilla (Spain), (pp. 209–216).
Maciel, A. I., Costa, I. G., & Lorena, A. C. (2016). Measuring the complexity of regression problems. In: IEEE proceedings of the 2016 international conference on neural networks (in press).
PappaGLOchoaGHydeMRFreitasAAWoodwardJSwanJContrasting meta-learning and hyper-heuristic research: The role of evolutionary algorithmsGenetic Programming and Evolvable Machines201415133510.1007/s10710-013-9186-9
Leite, R., Brazdil, P., & Vanschoren, J. (2012). Selecting classification algorithms with active testing. In: Proceedings of the 8th international conference on machine learning and data mining in pattern recognition (pp. 117–131).
Amasyali, M., & Erson, O. (2009). A study of meta learning for regression. Tech. rep. ECE Technical Reports 386, Purdue University.
Orriols-Puig, A., Maci, N., & Ho, T. K. (2010). Documentation for the data complexity library in c++. Tech. rep., La Salle—Universitat Ramon Llull.
Soares, C., & Brazdil, P. B. (2006). Selecting parameters of SVM using meta-learning and kernel matrix-based meta-features. In: Proceedings of the 2006 ACM symposium on applied computing, ACM, SAC ’06, (pp. 564–568).
GarciaLPde CarvalhoACLorenaACEffect of label noise in the complexity of classification problemsNeurocomputing201516010811910.1016/j.neucom.2014.10.085
Bache, K., & Lichman, M. (2013). UCI machine learning repository. http://archive.ics.uci.edu/ml, University of California, Irvine, School of Information and Computer Sciences.
Morán-FernándezLBolón-CanedoVAlonso-BetanzosACan classification performance be predicted by complexity measures? A study using microarray dataKnowledge and Information Systems20175131067109010.1007/s10115-016-1003-3
Soares, C. (2008). Development of metalearning systems for algorithm recommendation. In: P. Brazdil, C. Giraud-Carrier, C. Soares & R. Vilalta (Eds.), Meta-learning: applications to data mining (pp. 33–62). Springer.
de MirandaPPrudêncioRBCCarvalhoASoaresCA hybrid meta-learning architecture for multi-objective optimization of SVM parametersNeurocomputing2014143274310.1016/j.neucom.2014.06.026
GomesTAFPrudêncioRBCSoaresCRossiALDCarvalhoACombining meta-learning and search techniques to select parameters for support vector machinesNeurocomputing201275131310.1016/j.neucom.2011.07.005
PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVScikit-learn: Machine learning in pythonThe Journal of Machine Learning Research2011122825283028543481280.68189
GarciaLPde CarvalhoACLorenaACNoise detection in the meta-learning levelNeurocomputing2016176142510.1016/j.neucom.2014.12.100
Loterman, G., & Mues, C. (2012). Selecting accurate and comprehensible regression algorithms through meta learning. In: IEEE 12th international conference on data mining workshops (pp. 953–960).
KeerthiSSLinCJAsymptotic behaviors of support vector machines with Gaussian kernelNeural Computation20031571667168910.1162/0899766033218918551086.68569
BrazdilPGiraud-CarrierCSoaresCVilaltaRMeta-learning: Applications to data mining2008New YorkSpringer Science and Business Media1173.68625
Smith, M. R., White, A., Giraud-Carrier, C., & Martinez, T. (2014). An easy to use repository for comparing and improving machine learning algorithm usage. Preprint. arXiv:14057292.
ArmstrongJSIllusions in regression analysisInternational Journal of Forecasting201228368969410.1016/j.ijforecast.2012.02.001
Wistuba, M., Schilling, N., & Schmidt-Thieme, L. (2016). Two-stage transfer surrogate model for automatic hyperparameter optimization. In: European conference on machine learning and knowledge discovery in databases (pp. 199–214).
Cavalcanti, G., Ren, T., & Vale, A. (2012). Data complexity measures and nearest neighbor classifiers: A practical analysis for meta-learning. In: IEEE 24th international conference on tools with artificial intelligence (ICTAI), 2012 (Vol. 1, pp. 1065–1069). IEEE.
SoaresCBrazdilPBKubaPA meta-learning method to select the kernel width in support vector regressionMachine Learning200454319520910.1023/B:MACH.0000015879.28004.9b1101.68083
LeyvaEGonzalezAPerezRA set of complexity measures designed for applying meta-learning to instance selectionIEEE Transactions on Knowledge and Data Engineering201527235436710.1109/TKDE.2014.2327034
HoTKBasuMComplexity measures of supervised classification problemsIEEE Transactions on Pattern Analysis and Machine Intelligence200224328930010.1109/34.990132
BasakDPalSPatranabisDCSupport vector regressionNeural Information Processing-Letters and Reviews20071110203224
F Pedregosa (5681_CR22) 2011; 12
5681_CR28
5681_CR27
5681_CR25
TAF Gomes (5681_CR11) 2012; 75
5681_CR24
LP Garcia (5681_CR9) 2015; 160
5681_CR23
TK Ho (5681_CR12) 2002; 24
5681_CR20
SS Keerthi (5681_CR13) 2003; 15
L Morán-Fernández (5681_CR19) 2017; 51
P Miranda de (5681_CR8) 2014; 143
5681_CR6
5681_CR1
LP Garcia (5681_CR10) 2016; 176
5681_CR3
5681_CR18
5681_CR17
C Soares (5681_CR26) 2004; 54
E Leyva (5681_CR16) 2015; 27
5681_CR15
5681_CR14
P Brazdil (5681_CR5) 2008
N Cristianini (5681_CR7) 2002; 14
D Basak (5681_CR4) 2007; 11
GL Pappa (5681_CR21) 2014; 15
JS Armstrong (5681_CR2) 2012; 28
References_xml – reference: GarciaLPde CarvalhoACLorenaACNoise detection in the meta-learning levelNeurocomputing2016176142510.1016/j.neucom.2014.12.100
– reference: SoaresCBrazdilPBKubaPA meta-learning method to select the kernel width in support vector regressionMachine Learning200454319520910.1023/B:MACH.0000015879.28004.9b1101.68083
– reference: BrazdilPGiraud-CarrierCSoaresCVilaltaRMeta-learning: Applications to data mining2008New YorkSpringer Science and Business Media1173.68625
– reference: LeyvaEGonzalezAPerezRA set of complexity measures designed for applying meta-learning to instance selectionIEEE Transactions on Knowledge and Data Engineering201527235436710.1109/TKDE.2014.2327034
– reference: PappaGLOchoaGHydeMRFreitasAAWoodwardJSwanJContrasting meta-learning and hyper-heuristic research: The role of evolutionary algorithmsGenetic Programming and Evolvable Machines201415133510.1007/s10710-013-9186-9
– reference: Soares, C., & Brazdil, P. B. (2006). Selecting parameters of SVM using meta-learning and kernel matrix-based meta-features. In: Proceedings of the 2006 ACM symposium on applied computing, ACM, SAC ’06, (pp. 564–568).
– reference: Maciel, A. I., Costa, I. G., & Lorena, A. C. (2016). Measuring the complexity of regression problems. In: IEEE proceedings of the 2016 international conference on neural networks (in press).
– reference: Thornton, C., Hutter, F., Hoos, H., & Leyton-Brown, K. (2013). Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 847–855).
– reference: Soares, C. (2008). Development of metalearning systems for algorithm recommendation. In: P. Brazdil, C. Giraud-Carrier, C. Soares & R. Vilalta (Eds.), Meta-learning: applications to data mining (pp. 33–62). Springer.
– reference: Amasyali, M., & Erson, O. (2009). A study of meta learning for regression. Tech. rep. ECE Technical Reports 386, Purdue University.
– reference: Orriols-Puig, A., Maci, N., & Ho, T. K. (2010). Documentation for the data complexity library in c++. Tech. rep., La Salle—Universitat Ramon Llull.
– reference: GarciaLPde CarvalhoACLorenaACEffect of label noise in the complexity of classification problemsNeurocomputing201516010811910.1016/j.neucom.2014.10.085
– reference: KeerthiSSLinCJAsymptotic behaviors of support vector machines with Gaussian kernelNeural Computation20031571667168910.1162/0899766033218918551086.68569
– reference: BasakDPalSPatranabisDCSupport vector regressionNeural Information Processing-Letters and Reviews20071110203224
– reference: Cavalcanti, G., Ren, T., & Vale, A. (2012). Data complexity measures and nearest neighbor classifiers: A practical analysis for meta-learning. In: IEEE 24th international conference on tools with artificial intelligence (ICTAI), 2012 (Vol. 1, pp. 1065–1069). IEEE.
– reference: ArmstrongJSIllusions in regression analysisInternational Journal of Forecasting201228368969410.1016/j.ijforecast.2012.02.001
– reference: Smith, M. R., White, A., Giraud-Carrier, C., & Martinez, T. (2014). An easy to use repository for comparing and improving machine learning algorithm usage. Preprint. arXiv:14057292.
– reference: GomesTAFPrudêncioRBCSoaresCRossiALDCarvalhoACombining meta-learning and search techniques to select parameters for support vector machinesNeurocomputing201275131310.1016/j.neucom.2011.07.005
– reference: Morán-FernándezLBolón-CanedoVAlonso-BetanzosACan classification performance be predicted by complexity measures? A study using microarray dataKnowledge and Information Systems20175131067109010.1007/s10115-016-1003-3
– reference: de MirandaPPrudêncioRBCCarvalhoASoaresCA hybrid meta-learning architecture for multi-objective optimization of SVM parametersNeurocomputing2014143274310.1016/j.neucom.2014.06.026
– reference: Leite, R., Brazdil, P., & Vanschoren, J. (2012). Selecting classification algorithms with active testing. In: Proceedings of the 8th international conference on machine learning and data mining in pattern recognition (pp. 117–131).
– reference: HoTKBasuMComplexity measures of supervised classification problemsIEEE Transactions on Pattern Analysis and Machine Intelligence200224328930010.1109/34.990132
– reference: Wistuba, M., Schilling, N., & Schmidt-Thieme, L. (2016). Two-stage transfer surrogate model for automatic hyperparameter optimization. In: European conference on machine learning and knowledge discovery in databases (pp. 199–214).
– reference: Loterman, G., & Mues, C. (2012). Selecting accurate and comprehensible regression algorithms through meta learning. In: IEEE 12th international conference on data mining workshops (pp. 953–960).
– reference: Kuba, P., Brazdil, P., Soares, C., & Woznica, A. (2002). Exploiting sampling and meta-learning for parameter setting for support vector machines. In: VIII Iberoamerican conference on artificial intellignce proceedings of workshop learning and data mining associated with iberamia 2002, (University of Sevilla, Sevilla (Spain), (pp. 209–216).
– reference: CristianiniNShawe-TaylorJElisseeffAKandolaJOn kernel-target alignmentAdvances in Neural Information Processing Systems200214367373
– reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVScikit-learn: Machine learning in pythonThe Journal of Machine Learning Research2011122825283028543481280.68189
– reference: Bache, K., & Lichman, M. (2013). UCI machine learning repository. http://archive.ics.uci.edu/ml, University of California, Irvine, School of Information and Computer Sciences.
– ident: 5681_CR1
– ident: 5681_CR14
– ident: 5681_CR18
  doi: 10.1109/IJCNN.2016.7727369
– volume: 15
  start-page: 1667
  issue: 7
  year: 2003
  ident: 5681_CR13
  publication-title: Neural Computation
  doi: 10.1162/089976603321891855
– ident: 5681_CR28
  doi: 10.1007/978-3-319-46128-1_13
– ident: 5681_CR20
– ident: 5681_CR27
  doi: 10.1145/2487575.2487629
– ident: 5681_CR15
  doi: 10.1007/978-3-642-31537-4_10
– ident: 5681_CR6
  doi: 10.1109/ICTAI.2012.150
– volume: 51
  start-page: 1067
  issue: 3
  year: 2017
  ident: 5681_CR19
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-016-1003-3
– ident: 5681_CR17
  doi: 10.1109/ICDMW.2012.68
– volume: 160
  start-page: 108
  year: 2015
  ident: 5681_CR9
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.10.085
– volume: 28
  start-page: 689
  issue: 3
  year: 2012
  ident: 5681_CR2
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2012.02.001
– volume: 24
  start-page: 289
  issue: 3
  year: 2002
  ident: 5681_CR12
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.990132
– ident: 5681_CR3
– volume: 75
  start-page: 3
  issue: 1
  year: 2012
  ident: 5681_CR11
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.07.005
– volume: 11
  start-page: 203
  issue: 10
  year: 2007
  ident: 5681_CR4
  publication-title: Neural Information Processing-Letters and Reviews
– volume: 54
  start-page: 195
  issue: 3
  year: 2004
  ident: 5681_CR26
  publication-title: Machine Learning
  doi: 10.1023/B:MACH.0000015879.28004.9b
– ident: 5681_CR23
– volume: 27
  start-page: 354
  issue: 2
  year: 2015
  ident: 5681_CR16
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2014.2327034
– ident: 5681_CR25
  doi: 10.1145/1141277.1141408
– volume: 14
  start-page: 367
  year: 2002
  ident: 5681_CR7
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 2825
  year: 2011
  ident: 5681_CR22
  publication-title: The Journal of Machine Learning Research
– ident: 5681_CR24
– volume: 15
  start-page: 3
  issue: 1
  year: 2014
  ident: 5681_CR21
  publication-title: Genetic Programming and Evolvable Machines
  doi: 10.1007/s10710-013-9186-9
– volume-title: Meta-learning: Applications to data mining
  year: 2008
  ident: 5681_CR5
– volume: 176
  start-page: 14
  year: 2016
  ident: 5681_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.100
– volume: 143
  start-page: 27
  year: 2014
  ident: 5681_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.026
SSID ssj0002686
Score 2.4865336
Snippet In meta-learning, classification problems can be described by a variety of features, including complexity measures. These measures allow capturing the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 209
SubjectTerms Artificial Intelligence
Complexity
Computer Science
Control
Datasets
Learning
Machine learning
Mechatronics
Natural Language Processing (NLP)
Regression analysis
Robotics
Simulation and Modeling
Special Issue on Metalearning and Algorithm Selection
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAcmkEXiJnE8IQRUDFB1ANQtsmMbIUFamoD4-ZwdpwUkujAnsax7fvGd70PoOBCGSRYJkirGSBQaRrgQgoSANnIwgVC46vnjLRsM0tGID_2BW-nbKpuY6AK1Guf2jPws5AyQOe0lyfnkjVjWKFtd9RQay2gFkE1oW7ru6HAWiWnimB7BkWJiM3lT1ayvzrmhuBCj7QguEv7MS3Ow-as-6tJOv_3fDW-gdQ848UVtIZtoSRdbqN2QOWDv29sovhKVwK7DXH8CNMevuhLEaDf4s8SAbfFUP9VdswX2PDTlDnroX99f3hDPqUDyXswrEusUUrbOLROfolKAT4tEBglnuRKUK6rsrUolNfwHgc4CJaQCCAM4MOFaM93bRa1iXOg9hAMpE65kkApJo57h3ESMCm5iI0ITaN5BQSPRLPcDxy3vxUs2H5VslZCBEjKrhCzsoJPZJ5N62sail7uN4DPveGU2l3oHnTaq-_b4r8X2Fy92gNYAKaX12UsXtarpuz5Eq_lH9VxOj5zVfQEE5NyJ
  priority: 102
  providerName: ProQuest
Title Data complexity meta-features for regression problems
URI https://link.springer.com/article/10.1007/s10994-017-5681-1
https://www.proquest.com/docview/1979662366
Volume 107
WOSCitedRecordID wos000419684700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZg48CF8RSDMeXACRSpzdqmOfLYhARM1YBp4lIlTYqQoKC1IH4-7msMBEhwyaVpVNlx_LmO_QHsWzLmijuS-ppz6tgxp0JKSW1EGxFuAVsW2fPxBR8O_clEBFUdd1rfdq9TksVJPVfsVrSxxVM1b5pFMeRporfzc76G0dV4dvwyr6B3ROtxae6-61Tmd0t8dkYfCPNLUrTwNYPWv75yFVYqaEmOyr2wBgsmWYdWTdtAKiveAPdUZpIUd8nNG4Jw8mgySWNTtPhMCaJYMjV35f3YhFSMM-km3Az61ydntGJPoFHPFRl1jY_O2UQ5555mSqL1Sk9ZnuCRlkxopvP6Sa0MRjyoHUtLpRGsIOLzhDHc9LagkTwlZhuIpZQntLJ8qZjTi4WIHc6kiN1Y2rFlRBusWoxhVLUWzxkuHsKPpsi5WEIUS5iLJbTbcDB75bnsq_Hb5E6tm7AysTS0BcdQjfU8rw2HtS7mHv-02M6fZu_CMkIkv_zp0oFGNn0xe7AUvWb36bQLzeP-MBh1YfGcUxwvWYBj4N52iz35DgOQ1kE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VRYILO6KsPsAFZJG4SRwfEEIsKqJUPQDiFuzYQUhQoAnbT_GNjLO0gAQ3DpyTWFbeeObZM54HsO7IhCvuSRpqzqnnJpwKKSV1kW3EaAKuzLPnFy3eboeXl6JTg_fqLowtq6x8Yu6o9X1sz8i3XcGRmbNGEOw-PFKrGmWzq5WERmEWJ-btBbds6c7xAeK7wdjR4dl-k5aqAjRu-CKjvgkxaJnYatFppiRatQyUEwgea8mEZtreK9TK4E4AZ-1oqTQGcWRCgTCGmwaOOwQjnu0sZksFWafv-VmQK0viwvWpZQ5VFrW4qpc34cWYYFt-UfdrHByQ22_52DzMHU3-tx80BRMloSZ7xQqYhprpzsBkJVZBSt81C_6BzCTJK-jNK249yJ3JJE1M3tg0JcjdSc9cF1XBXVLq7KRzcP4nk5-H4e591ywAcZQKhFZOKBXzGokQiceZFImfSDdxjKiDUyEYxWVDdavrcRsNWkFb0CMEPbKgR24dNvufPBTdRH57ebkCOiodSxoNUK7DVmUqnx7_NNji74OtwVjz7LQVtY7bJ0swjqwwLM6ZlmE46z2ZFRiNn7ObtLeaWzyBq7-2oA_5DTpP
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58IV58i-szB70owTa7bZqDiLguirLsQUW81KRJRNBVt_X11_x1TvpwVdCbB89tQ9v5MvNNMpkPYM2TlivekDTSnNOGbzkVUkrqI9tIEAK-zHfPz455ux2dn4vOALxVZ2FcWWXlE3NHre8St0a-5QuOzJzVw3DLlmURnWZr5_6BOgUpt9NayWkUEDkyr8-YvqXbh0209Tpjrf2TvQNaKgzQpB6IjAYmwgBmEqdLp5mSiHAZKi8UPNGSCc20O2OolcGsAL_A01JpDOjIikJhDDd1HHcQhjnmmK6csBNcfEQBFuYqkziJA-pYRLWjWhzbyxvyYnxw7b-o_zUm9onut73ZPOS1Jv7zz5qE8ZJok91iZkzBgOlOw0QlYkFKnzYDQVNmkuSV9eYFUxJyazJJrckbnqYEOT3pmauiWrhLSv2ddBZO_-Tl52Coe9c180A8pUKhlRdJxRp1K4RtcCaFDaz0rWdEDbzKmnFSNlp3eh83cb9FtANAjACIHQBivwYbH4_cF11Gfrt5qTJ6XDqcNO5bvAabFWw-Xf5psIXfB1uFUQROfHzYPlqEMSSLUbH8tARDWe_RLMNI8pRdp72VHPwELv8aQO8mfUM7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+complexity+meta-features+for+regression+problems&rft.jtitle=Machine+learning&rft.au=Lorena%2C+Ana+C.&rft.au=Maciel%2C+Aron+I.&rft.au=de+Miranda%2C+P%C3%A9ricles+B.+C.&rft.au=Costa%2C+Ivan+G.&rft.date=2018-01-01&rft.pub=Springer+US&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=107&rft.issue=1&rft.spage=209&rft.epage=246&rft_id=info:doi/10.1007%2Fs10994-017-5681-1&rft.externalDocID=10_1007_s10994_017_5681_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon