Non-stoquastic Hamiltonians in quantum annealing via geometric phases

We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:npj quantum information Ročník 3; číslo 1; s. 1 - 6
Hlavní autoři: Vinci, Walter, Lidar, Daniel A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 21.09.2017
Nature Publishing Group
Témata:
ISSN:2056-6387, 2056-6387
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes. Quantum annealing: engineering non-stoquastic interactions via geometric phases Quantum annealing is a promising approach to quantum computation that is particularly suited to solve optimization and sampling problems. Researchers from University of Southern California show that the low-energy effective Hamiltonian describing the quantum anneal of a system implemented with continuous variables includes terms of geometric origin. The inclusion of such geometric effects makes the effective Hamiltonian non-stoquastic. Such Hamiltonians cannot be simulated with Monte Carlo algorithms due to the existence of a sign problem. The implementation of quantum annealing with non-stoquastic Hamiltonians is thus particularly important from a computational complexity perspective. The direct implementation of non-stoquastic interactions is challenging. Their results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.
AbstractList We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.
We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes. Quantum annealing: engineering non-stoquastic interactions via geometric phases Quantum annealing is a promising approach to quantum computation that is particularly suited to solve optimization and sampling problems. Researchers from University of Southern California show that the low-energy effective Hamiltonian describing the quantum anneal of a system implemented with continuous variables includes terms of geometric origin. The inclusion of such geometric effects makes the effective Hamiltonian non-stoquastic. Such Hamiltonians cannot be simulated with Monte Carlo algorithms due to the existence of a sign problem. The implementation of quantum annealing with non-stoquastic Hamiltonians is thus particularly important from a computational complexity perspective. The direct implementation of non-stoquastic interactions is challenging. Their results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.
ArticleNumber 38
Author Vinci, Walter
Lidar, Daniel A.
Author_xml – sequence: 1
  givenname: Walter
  surname: Vinci
  fullname: Vinci, Walter
  email: wltvinci@gmail.com
  organization: Department of Electrical Engineering, University of Southern California, Department of Physics and Astronomy, University of Southern California, Center for Quantum Information Science & Technology, University of Southern California
– sequence: 2
  givenname: Daniel A.
  surname: Lidar
  fullname: Lidar, Daniel A.
  organization: Department of Electrical Engineering, University of Southern California, Department of Physics and Astronomy, University of Southern California, Center for Quantum Information Science & Technology, University of Southern California, Department of Chemistry, University of Southern California
BookMark eNp9kEFLwzAYhoNMcM79AG8Fz9EvTdKmRxnTCUMveg5pm86MNplJJrhfb0Y9DEFPX77wPMnLe4km1lmN0DWBWwJU3AVGOGUYSIkBaIkPZ2iaAy9wQUU5OTlfoHkIWwAgVS5yRqZo-ewsDtF97FWIpslWajB9dNYoGzJjs3Rv437IlLVa9cZusk-jso12g44-8bt3FXS4Qued6oOe_8wZentYvi5WeP3y-LS4X-OG8ipi3grC67KCtmBCsLJphKgZpR1UFWu0Eh2knWjaArRQQ6vbnJOuhpwr2vKaztDN-O7Op8Q6RLl1e2_Tl5JUjNBEsyJR5Ug13oXgdScbE1U0zkavTC8JyGNtcqxNptrksTZ5SCb5Ze68GZT_-tfJRyck1m60P8n0p_QNl_iB9g
CitedBy_id crossref_primary_10_1088_2058_9565_ab935a
crossref_primary_10_1103_PhysRevA_106_042615
crossref_primary_10_1038_s41598_020_64078_1
crossref_primary_10_1103_PhysRevResearch_4_013141
crossref_primary_10_1103_PhysRevApplied_14_014100
crossref_primary_10_1088_1361_6633_ac8c54
crossref_primary_10_1103_PhysRevApplied_17_044005
crossref_primary_10_1103_PhysRevResearch_4_043204
crossref_primary_10_1145_3464456
crossref_primary_10_1038_s41598_023_30914_3
crossref_primary_10_1103_PhysRevA_103_032612
crossref_primary_10_1088_1367_2630_ab83d1
crossref_primary_10_1088_1367_2630_ab2ee7
crossref_primary_10_1103_PhysRevApplied_13_034037
crossref_primary_10_1146_annurev_conmatphys_031119_050605
crossref_primary_10_3390_e25030541
crossref_primary_10_1038_s42005_023_01202_3
crossref_primary_10_1051_epjconf_202429512002
crossref_primary_10_1088_2058_9565_ace54a
crossref_primary_10_1140_epjqt_s40507_025_00369_8
crossref_primary_10_1103_PhysRevA_111_062601
crossref_primary_10_1103_PhysRevApplied_12_064026
crossref_primary_10_1103_PhysRevLett_130_140601
crossref_primary_10_1103_PhysRevResearch_4_L042030
Cites_doi 10.1088/1751-8113/45/43/435301
10.1137/S0097539705447323
10.1103/PhysRevLett.111.100502
10.3389/fict.2017.00002
10.1126/science.aaa4170
10.1103/PhysRevA.81.032331
10.1098/rspa.1984.0023
10.1038/nature10012
10.1103/PhysRevA.95.012309
10.1103/PhysRevA.94.042318
10.1088/0953-2048/23/6/065004
10.1016/S0375-9601(99)00803-8
10.1088/1751-8113/48/33/335301
10.1103/PhysRevB.81.174506
10.1103/PhysRevLett.58.1593
10.1103/PhysRevE.58.5355
10.1038/nature13729
10.1038/ncomms10327
10.1103/PhysRevB.95.184416
10.1143/PTP.58.1377
10.1109/SFCS.2001.959902
10.1016/0375-9601(88)91010-9
10.1103/PhysRevLett.94.170201
10.1088/1751-8113/49/16/165305
10.1103/PhysRevB.60.15398
10.1038/35098037
10.1126/science.aah5178
10.1103/RevModPhys.73.357
10.1103/PhysRevB.83.214518
10.1126/science.1057726
10.1103/RevModPhys.80.1061
10.1038/ncomms12964
10.1137/08072689X
10.1103/PhysRevLett.109.050501
10.1126/science.1068774
10.1103/PhysRevB.82.024511
10.1103/PhysRevLett.119.100503
10.1038/srep41186
10.1088/1367-2630/14/10/103035
10.1103/PhysRevLett.52.2111
ContentType Journal Article
Copyright The Author(s) 2017
2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2017
– notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1038/s41534-017-0037-z
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 2056-6387
EndPage 6
ExternalDocumentID 10_1038_s41534_017_0037_z
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
KQ8
LK8
M7P
M~E
NAO
NO~
OK1
PIMPY
PQQKQ
PROAC
RNT
SNYQT
UKHRP
AAFWJ
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c359t-5d815b790d648847cc88b433f0994cea8f08b41e3d00d0b0ded251fb025a3d5b3
IEDL.DBID M7P
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411507100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2056-6387
IngestDate Tue Oct 07 06:48:35 EDT 2025
Sat Nov 29 02:51:38 EST 2025
Tue Nov 18 22:33:29 EST 2025
Fri Feb 21 02:39:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-5d815b790d648847cc88b433f0994cea8f08b41e3d00d0b0ded251fb025a3d5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/1941325146?pq-origsite=%requestingapplication%
PQID 1941325146
PQPubID 2041919
PageCount 6
ParticipantIDs proquest_journals_1941325146
crossref_citationtrail_10_1038_s41534_017_0037_z
crossref_primary_10_1038_s41534_017_0037_z
springer_journals_10_1038_s41534_017_0037_z
PublicationCentury 2000
PublicationDate 2017-09-21
PublicationDateYYYYMMDD 2017-09-21
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-21
  day: 21
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle npj quantum information
PublicationTitleAbbrev npj Quantum Inf
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References JordanSPGossetDLovePJQuantum-Merlin-Arthur—complete problems for stoquastic Hamiltonians and Markov matricesPhys. Rev. A2010812010PhRvA..81c2331J10.1103/PhysRevA.81.032331
HarrisRExperimental investigation of an eight-qubit unit cell in a superconducting optimization processorPhys. Rev. B2010822010PhRvB..82b4511H10.1103/PhysRevB.82.024511
AharonovYAnandanJPhase change during a cyclic quantum evolutionPhys. Rev. Lett.1987581987PhRvL..58.1593A88431410.1103/PhysRevLett.58.1593
JohnsonMWQuantum annealing with manufactured spinsNature20114731941982011Natur.473..194J10.1038/nature10012
BravyiSDiVincenzoDPOliveiraRITerhalBMThe complexity of stoquastic local Hamiltonian problemsQuantum Inf. Comput.2008824514821192.81055
SeoaneBNishimoriHMany-body transverse interactions in the quantum annealing of the p-spin ferromagnetJ. Phys. A2012452012JPhA...45.5301S298922210.1088/1751-8113/45/43/4353011253.82020
KamleitnerISolinasPMüllerCShnirmanAMöttönenMGeometric quantum gates with superconducting qubitsPhys. Rev. B2011832011PhRvB..83u4518K10.1103/PhysRevB.83.214518
MakhlinYSchönGShnirmanAQuantum-state engineering with Josephson-junction devicesRev. Mod. Phys.2001733574002001RvMP...73..357M10.1103/RevModPhys.73.3571039.81514
AharonovDAdiabatic quantum computation is equivalent to standard quantum computationSIAM J. Comput.200737166194230628810.1137/S00975397054473231134.81009
JohnsonMWA scalable control system for a superconducting adiabatic quantum optimization processorSupercond. Sci. Technol.2010232010SuScT..23f5004J10.1088/0953-2048/23/6/065004
KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E1998581998PhRvE..58.5355K10.1103/PhysRevE.58.5355
SommaRDNagajDKieferováMQuantum speedup by quantum annealingPhys. Rev. Lett.20121092012PhRvL.109e0501S10.1103/PhysRevLett.109.050501
FarhiEA quantum adiabatic evolution algorithm applied to random instances of an NP-complete problemScience20012924724752001Sci...292..472F183876110.1126/science.10577261226.81046
Crosson, E., Farhi, E., Lin, C. Y.-Y., Lin, H.-H. & Shor, P. Different strategies for optimization using the quantum adiabatic algorithm. Preprint at http://arxiv.org/pdf/quant-ph/1401.7320 (2014).
ZanardiPRasettiMHolonomic quantum computationPhys. Lett. A199926494991999PhLA..264...94Z173212710.1016/S0375-9601(99)00803-80949.81009
Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adiabatic evolution. Preprint at http://arxiv.org/pdf/quant-ph/0001106 (2000).
ZengLZhangJSarovarMSchedule path optimization for adiabatic quantum computing and optimizationJ. Phys. A2016492016JPhA...49p5305Z347914010.1088/1751-8113/49/16/1653051342.81094
Nishimori, H. & Takada, K. Exponential enhancement of the efficiency of quantum annealing by nonstochastic Hamiltonians. Preprint at http://arxiv.org/pdf/quant-ph/1609.03785 (2016).
HeimBRønnowTFIsakovSVTroyerMQuantum versus classical annealing of Ising spin glassesScience20153482152172015Sci...348..215H336346510.1126/science.aaa41701355.81182
Hastings, M. B. & Freedman, M. H. Obstructions to classically simulating the quantum adiabatic algorithm. Preprint at http://arxiv.org/pdf/quant-ph/1302.5733 (2013).
OhzekiMQuantum Monte Carlo simulation of a particular class of non-stoquastic Hamiltonians in quantum annealingSci. Rep.201772017NatSR...741186O10.1038/srep41186
BrookeJRosenbaumTFAeppliGTunable quantum tunnelling of magnetic domain wallsNature20014136106132001Natur.413..610B10.1038/35098037
PirkkalainenJMSolinasPPekolaJPMöttönenMNon-abelian geometric phases in ground-state Josephson devicesPhys. Rev. B2010812010PhRvB..81q4506P10.1103/PhysRevB.81.174506
OrlandoTPSuperconducting persistent-current qubitPhys. Rev. B19996015398154131999PhRvB..6015398O10.1103/PhysRevB.60.15398
ZuCExperimental realization of universal geometric quantum gates with solid-state spinsNature201451472752014Natur.514...72Z10.1038/nature13729
FarhiEQuantum adiabatic algorithms, small gaps, and different pathsQuantum Inf. Comput.20111118121427919831247.81085
SuzukiMMiyashitaSKurodaAMonte Carlo simulation of quantum spin systems. I Prog. Theor. Phys.1977581977PThPh..58.1377S45234810.1143/PTP.58.13771098.81683
SjöqvistENon-adiabatic holonomic quantum computationNew J. Phys.201214303696510.1088/1367-2630/14/10/103035
Bravyi, S. Monte Carlo simulation of stoquastic Hamiltonians. Preprint at http://arxiv.org/pdf/quant-ph/1402.2295 (2014).
Weber, S. J. et al. Coherent coupled qubits for quantum annealing. Preprint at http://arxiv.org/pdf/quant-ph/1701.06544 (2017).
Albash, T. & Lidar, D. A. Adiabatic quantum computing. Preprint at http://arxiv.org/pdf/quant-ph/1611.04471 (2016).
YanFThe flux qubit revisited to enhance coherence and reproducibilityNat. Commun.201672016NatCo...712964Y10.1038/ncomms12964
WilczekFZeeAAppearance of gauge structure in simple dynamical systemsPhys. Rev. Lett.198452211121141984PhRvL..52.2111W74673810.1103/PhysRevLett.52.2111
Hormozi, L., Brown, E. W., Carleo, G. & Troyer, M. Non-stoquastic Hamiltonians and quantum annealing of Ising spin glass. Preprint at http://arxiv.org/pdf/quant-ph/1609.06558 (2016).
BerryMVQuantal phase factors accompanying adiabatic changesProc. R. Soc. Lond. A Math. Phys. Sci.19843921984RSPSA.392...45B73892610.1098/rspa.1984.00231113.81306
BravyiSTerhalBComplexity of stoquastic frustrationfree HamiltoniansSIAM J. Comput.20093914621485258053610.1137/08072689X1206.68121
Farhi, E. & Harrow, A. W. Quantum supremacy through the quantum approximate optimization algorithm. Preprint at http://arxiv.org/pdf/quant-ph/1602.07674 (2016).
SantoroGEMartoňákRTosattiECarRTheory of quantum annealing of an Ising spin glassScience2002295242724302002Sci...295.2427S10.1126/science.1068774
JarretMJordanSPLackeyBAdiabatic optimization versus diffusion Monte Carlo methodsPhys. Rev. A2016942016PhRvA..94d2318J10.1103/PhysRevA.94.042318
AnandanJNon-adiabatic non-abelian geometric phasePhys. Lett. A19881331711751988PhLA..133..171A96974510.1016/0375-9601(88)91010-9
TroyerMWieseU-JComputational complexity and fundamental limitations to fermionic quantum Monte Carlo simulationsPhys. Rev. Lett.2005942005PhRvL..94q0201T10.1103/PhysRevLett.94.170201
TakahashiKShortcuts to adiabaticity for quantum annealingPhys. Rev. A2017952017PhRvA..95a2309T10.1103/PhysRevA.95.012309
BoixoSComputational multiqubit tunnelling in programmable quantum annealersNat. Commun.201672016NatCo...710327B10.1038/ncomms10327
van Dam, W., Mosca, M. & Vazirani, U. How powerful is adiabatic quantum computation? Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, 279–287 (2001).
del CampoAShortcuts to adiabaticity by counterdiabatic drivingPhys. Rev. Lett.201311110.1103/PhysRevLett.111.100502
SekiYNishimoriHQuantum annealing with antiferromagnetic transverse interactions for the Hopfield modelJ. Phys. A201548337603210.1088/1751-8113/48/33/3353011335.82031
Bravyi, S. & Gosset, D. Polynomial-time classical simulation of quantum ferromagnets. Preprint at http://arxiv.org/pdf/quant-ph/1612.05602 (2016).
DasAChakrabartiBKColloquium: quantum annealing and analog quantum computationRev. Mod. Phys.200880106110812008RvMP...80.1061D244372110.1103/RevModPhys.80.10611205.81058
McMahonPLA fully-programmable 100-spin coherent Ising machine with all-to-all connectionsScience20163546146172016Sci...354..614M349476910.1126/science.aah5178
TP Orlando (37_CR44) 1999; 60
B Seoane (37_CR26) 2012; 45
E Farhi (37_CR2) 2001; 292
E Farhi (37_CR25) 2011; 11
MV Berry (37_CR40) 1984; 392
S Bravyi (37_CR15) 2009; 39
F Yan (37_CR43) 2016; 7
M Jarret (37_CR24) 2016; 94
37_CR30
F Wilczek (37_CR41) 1984; 52
GE Santoro (37_CR7) 2002; 295
S Boixo (37_CR42) 2016; 7
37_CR31
M Suzuki (37_CR16) 1977; 58
L Zeng (37_CR29) 2016; 49
J Brooke (37_CR9) 2001; 413
A del Campo (37_CR46) 2013; 111
B Heim (37_CR19) 2015; 348
M Troyer (37_CR17) 2005; 94
Y Makhlin (37_CR39) 2001; 73
Y Aharonov (37_CR32) 1987; 58
PL McMahon (37_CR13) 2016; 354
M Ohzeki (37_CR21) 2017; 7
37_CR45
S Bravyi (37_CR14) 2008; 8
P Zanardi (37_CR34) 1999; 264
J Anandan (37_CR33) 1988; 133
JM Pirkkalainen (37_CR37) 2010; 81
T Kadowaki (37_CR6) 1998; 58
37_CR18
RD Somma (37_CR48) 2012; 109
D Aharonov (37_CR4) 2007; 37
I Kamleitner (37_CR38) 2011; 83
R Harris (37_CR12) 2010; 82
SP Jordan (37_CR49) 2010; 81
A Das (37_CR8) 2008; 80
MW Johnson (37_CR11) 2010; 23
E Sjöqvist (37_CR35) 2012; 14
37_CR5
K Takahashi (37_CR47) 2017; 95
37_CR3
C Zu (37_CR36) 2014; 514
MW Johnson (37_CR10) 2011; 473
37_CR22
37_CR23
37_CR20
37_CR1
37_CR27
Y Seki (37_CR28) 2015; 48
References_xml – reference: SeoaneBNishimoriHMany-body transverse interactions in the quantum annealing of the p-spin ferromagnetJ. Phys. A2012452012JPhA...45.5301S298922210.1088/1751-8113/45/43/4353011253.82020
– reference: SekiYNishimoriHQuantum annealing with antiferromagnetic transverse interactions for the Hopfield modelJ. Phys. A201548337603210.1088/1751-8113/48/33/3353011335.82031
– reference: BrookeJRosenbaumTFAeppliGTunable quantum tunnelling of magnetic domain wallsNature20014136106132001Natur.413..610B10.1038/35098037
– reference: JohnsonMWA scalable control system for a superconducting adiabatic quantum optimization processorSupercond. Sci. Technol.2010232010SuScT..23f5004J10.1088/0953-2048/23/6/065004
– reference: BravyiSDiVincenzoDPOliveiraRITerhalBMThe complexity of stoquastic local Hamiltonian problemsQuantum Inf. Comput.2008824514821192.81055
– reference: Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adiabatic evolution. Preprint at http://arxiv.org/pdf/quant-ph/0001106 (2000).
– reference: OhzekiMQuantum Monte Carlo simulation of a particular class of non-stoquastic Hamiltonians in quantum annealingSci. Rep.201772017NatSR...741186O10.1038/srep41186
– reference: Bravyi, S. Monte Carlo simulation of stoquastic Hamiltonians. Preprint at http://arxiv.org/pdf/quant-ph/1402.2295 (2014).
– reference: Bravyi, S. & Gosset, D. Polynomial-time classical simulation of quantum ferromagnets. Preprint at http://arxiv.org/pdf/quant-ph/1612.05602 (2016).
– reference: BoixoSComputational multiqubit tunnelling in programmable quantum annealersNat. Commun.201672016NatCo...710327B10.1038/ncomms10327
– reference: TakahashiKShortcuts to adiabaticity for quantum annealingPhys. Rev. A2017952017PhRvA..95a2309T10.1103/PhysRevA.95.012309
– reference: TroyerMWieseU-JComputational complexity and fundamental limitations to fermionic quantum Monte Carlo simulationsPhys. Rev. Lett.2005942005PhRvL..94q0201T10.1103/PhysRevLett.94.170201
– reference: SuzukiMMiyashitaSKurodaAMonte Carlo simulation of quantum spin systems. I Prog. Theor. Phys.1977581977PThPh..58.1377S45234810.1143/PTP.58.13771098.81683
– reference: PirkkalainenJMSolinasPPekolaJPMöttönenMNon-abelian geometric phases in ground-state Josephson devicesPhys. Rev. B2010812010PhRvB..81q4506P10.1103/PhysRevB.81.174506
– reference: SjöqvistENon-adiabatic holonomic quantum computationNew J. Phys.201214303696510.1088/1367-2630/14/10/103035
– reference: MakhlinYSchönGShnirmanAQuantum-state engineering with Josephson-junction devicesRev. Mod. Phys.2001733574002001RvMP...73..357M10.1103/RevModPhys.73.3571039.81514
– reference: AharonovDAdiabatic quantum computation is equivalent to standard quantum computationSIAM J. Comput.200737166194230628810.1137/S00975397054473231134.81009
– reference: FarhiEA quantum adiabatic evolution algorithm applied to random instances of an NP-complete problemScience20012924724752001Sci...292..472F183876110.1126/science.10577261226.81046
– reference: ZanardiPRasettiMHolonomic quantum computationPhys. Lett. A199926494991999PhLA..264...94Z173212710.1016/S0375-9601(99)00803-80949.81009
– reference: WilczekFZeeAAppearance of gauge structure in simple dynamical systemsPhys. Rev. Lett.198452211121141984PhRvL..52.2111W74673810.1103/PhysRevLett.52.2111
– reference: van Dam, W., Mosca, M. & Vazirani, U. How powerful is adiabatic quantum computation? Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, 279–287 (2001).
– reference: del CampoAShortcuts to adiabaticity by counterdiabatic drivingPhys. Rev. Lett.201311110.1103/PhysRevLett.111.100502
– reference: Nishimori, H. & Takada, K. Exponential enhancement of the efficiency of quantum annealing by nonstochastic Hamiltonians. Preprint at http://arxiv.org/pdf/quant-ph/1609.03785 (2016).
– reference: DasAChakrabartiBKColloquium: quantum annealing and analog quantum computationRev. Mod. Phys.200880106110812008RvMP...80.1061D244372110.1103/RevModPhys.80.10611205.81058
– reference: Crosson, E., Farhi, E., Lin, C. Y.-Y., Lin, H.-H. & Shor, P. Different strategies for optimization using the quantum adiabatic algorithm. Preprint at http://arxiv.org/pdf/quant-ph/1401.7320 (2014).
– reference: KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E1998581998PhRvE..58.5355K10.1103/PhysRevE.58.5355
– reference: BravyiSTerhalBComplexity of stoquastic frustrationfree HamiltoniansSIAM J. Comput.20093914621485258053610.1137/08072689X1206.68121
– reference: ZuCExperimental realization of universal geometric quantum gates with solid-state spinsNature201451472752014Natur.514...72Z10.1038/nature13729
– reference: McMahonPLA fully-programmable 100-spin coherent Ising machine with all-to-all connectionsScience20163546146172016Sci...354..614M349476910.1126/science.aah5178
– reference: AharonovYAnandanJPhase change during a cyclic quantum evolutionPhys. Rev. Lett.1987581987PhRvL..58.1593A88431410.1103/PhysRevLett.58.1593
– reference: YanFThe flux qubit revisited to enhance coherence and reproducibilityNat. Commun.201672016NatCo...712964Y10.1038/ncomms12964
– reference: ZengLZhangJSarovarMSchedule path optimization for adiabatic quantum computing and optimizationJ. Phys. A2016492016JPhA...49p5305Z347914010.1088/1751-8113/49/16/1653051342.81094
– reference: Albash, T. & Lidar, D. A. Adiabatic quantum computing. Preprint at http://arxiv.org/pdf/quant-ph/1611.04471 (2016).
– reference: SommaRDNagajDKieferováMQuantum speedup by quantum annealingPhys. Rev. Lett.20121092012PhRvL.109e0501S10.1103/PhysRevLett.109.050501
– reference: JarretMJordanSPLackeyBAdiabatic optimization versus diffusion Monte Carlo methodsPhys. Rev. A2016942016PhRvA..94d2318J10.1103/PhysRevA.94.042318
– reference: JohnsonMWQuantum annealing with manufactured spinsNature20114731941982011Natur.473..194J10.1038/nature10012
– reference: Farhi, E. & Harrow, A. W. Quantum supremacy through the quantum approximate optimization algorithm. Preprint at http://arxiv.org/pdf/quant-ph/1602.07674 (2016).
– reference: Weber, S. J. et al. Coherent coupled qubits for quantum annealing. Preprint at http://arxiv.org/pdf/quant-ph/1701.06544 (2017).
– reference: HarrisRExperimental investigation of an eight-qubit unit cell in a superconducting optimization processorPhys. Rev. B2010822010PhRvB..82b4511H10.1103/PhysRevB.82.024511
– reference: SantoroGEMartoňákRTosattiECarRTheory of quantum annealing of an Ising spin glassScience2002295242724302002Sci...295.2427S10.1126/science.1068774
– reference: Hastings, M. B. & Freedman, M. H. Obstructions to classically simulating the quantum adiabatic algorithm. Preprint at http://arxiv.org/pdf/quant-ph/1302.5733 (2013).
– reference: BerryMVQuantal phase factors accompanying adiabatic changesProc. R. Soc. Lond. A Math. Phys. Sci.19843921984RSPSA.392...45B73892610.1098/rspa.1984.00231113.81306
– reference: HeimBRønnowTFIsakovSVTroyerMQuantum versus classical annealing of Ising spin glassesScience20153482152172015Sci...348..215H336346510.1126/science.aaa41701355.81182
– reference: FarhiEQuantum adiabatic algorithms, small gaps, and different pathsQuantum Inf. Comput.20111118121427919831247.81085
– reference: OrlandoTPSuperconducting persistent-current qubitPhys. Rev. B19996015398154131999PhRvB..6015398O10.1103/PhysRevB.60.15398
– reference: Hormozi, L., Brown, E. W., Carleo, G. & Troyer, M. Non-stoquastic Hamiltonians and quantum annealing of Ising spin glass. Preprint at http://arxiv.org/pdf/quant-ph/1609.06558 (2016).
– reference: AnandanJNon-adiabatic non-abelian geometric phasePhys. Lett. A19881331711751988PhLA..133..171A96974510.1016/0375-9601(88)91010-9
– reference: KamleitnerISolinasPMüllerCShnirmanAMöttönenMGeometric quantum gates with superconducting qubitsPhys. Rev. B2011832011PhRvB..83u4518K10.1103/PhysRevB.83.214518
– reference: JordanSPGossetDLovePJQuantum-Merlin-Arthur—complete problems for stoquastic Hamiltonians and Markov matricesPhys. Rev. A2010812010PhRvA..81c2331J10.1103/PhysRevA.81.032331
– volume: 45
  year: 2012
  ident: 37_CR26
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/45/43/435301
– volume: 37
  start-page: 166
  year: 2007
  ident: 37_CR4
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539705447323
– ident: 37_CR45
– volume: 111
  year: 2013
  ident: 37_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.100502
– ident: 37_CR31
  doi: 10.3389/fict.2017.00002
– volume: 348
  start-page: 215
  year: 2015
  ident: 37_CR19
  publication-title: Science
  doi: 10.1126/science.aaa4170
– volume: 81
  year: 2010
  ident: 37_CR49
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.032331
– volume: 392
  year: 1984
  ident: 37_CR40
  publication-title: Proc. R. Soc. Lond. A Math. Phys. Sci.
  doi: 10.1098/rspa.1984.0023
– volume: 11
  start-page: 181
  year: 2011
  ident: 37_CR25
  publication-title: Quantum Inf. Comput.
– volume: 473
  start-page: 194
  year: 2011
  ident: 37_CR10
  publication-title: Nature
  doi: 10.1038/nature10012
– volume: 95
  year: 2017
  ident: 37_CR47
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.012309
– ident: 37_CR22
– volume: 94
  year: 2016
  ident: 37_CR24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.042318
– volume: 23
  year: 2010
  ident: 37_CR11
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/23/6/065004
– volume: 264
  start-page: 94
  year: 1999
  ident: 37_CR34
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(99)00803-8
– ident: 37_CR1
– ident: 37_CR5
– volume: 48
  year: 2015
  ident: 37_CR28
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/48/33/335301
– volume: 81
  year: 2010
  ident: 37_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.174506
– volume: 58
  year: 1987
  ident: 37_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.1593
– volume: 58
  year: 1998
  ident: 37_CR6
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.5355
– volume: 514
  start-page: 72
  year: 2014
  ident: 37_CR36
  publication-title: Nature
  doi: 10.1038/nature13729
– volume: 7
  year: 2016
  ident: 37_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10327
– ident: 37_CR30
  doi: 10.1103/PhysRevB.95.184416
– volume: 58
  year: 1977
  ident: 37_CR16
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.58.1377
– ident: 37_CR3
  doi: 10.1109/SFCS.2001.959902
– volume: 133
  start-page: 171
  year: 1988
  ident: 37_CR33
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(88)91010-9
– ident: 37_CR18
– volume: 94
  year: 2005
  ident: 37_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.170201
– volume: 49
  year: 2016
  ident: 37_CR29
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/49/16/165305
– volume: 60
  start-page: 15398
  year: 1999
  ident: 37_CR44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.15398
– volume: 413
  start-page: 610
  year: 2001
  ident: 37_CR9
  publication-title: Nature
  doi: 10.1038/35098037
– volume: 354
  start-page: 614
  year: 2016
  ident: 37_CR13
  publication-title: Science
  doi: 10.1126/science.aah5178
– volume: 8
  year: 2008
  ident: 37_CR14
  publication-title: Quantum Inf. Comput.
– volume: 73
  start-page: 357
  year: 2001
  ident: 37_CR39
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.357
– volume: 83
  year: 2011
  ident: 37_CR38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.214518
– volume: 292
  start-page: 472
  year: 2001
  ident: 37_CR2
  publication-title: Science
  doi: 10.1126/science.1057726
– volume: 80
  start-page: 1061
  year: 2008
  ident: 37_CR8
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.1061
– volume: 7
  year: 2016
  ident: 37_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12964
– volume: 39
  start-page: 1462
  year: 2009
  ident: 37_CR15
  publication-title: SIAM J. Comput.
  doi: 10.1137/08072689X
– volume: 109
  year: 2012
  ident: 37_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.050501
– volume: 295
  start-page: 2427
  year: 2002
  ident: 37_CR7
  publication-title: Science
  doi: 10.1126/science.1068774
– volume: 82
  year: 2010
  ident: 37_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.024511
– ident: 37_CR27
– ident: 37_CR23
– ident: 37_CR20
  doi: 10.1103/PhysRevLett.119.100503
– volume: 7
  year: 2017
  ident: 37_CR21
  publication-title: Sci. Rep.
  doi: 10.1038/srep41186
– volume: 14
  year: 2012
  ident: 37_CR35
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/10/103035
– volume: 52
  start-page: 2111
  year: 1984
  ident: 37_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.52.2111
SSID ssj0001928241
Score 2.3053463
Snippet We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 639/766/483/2802
639/766/483/3926
Adiabatic
Algorithms
Annealing
Classical and Quantum Gravitation
Computer applications
Physics
Physics and Astronomy
Quantum Computing
Quantum Field Theories
Quantum Information Technology
Quantum Physics
Relativity Theory
Spintronics
String Theory
Title Non-stoquastic Hamiltonians in quantum annealing via geometric phases
URI https://link.springer.com/article/10.1038/s41534-017-0037-z
https://www.proquest.com/docview/1941325146
Volume 3
WOSCitedRecordID wos000411507100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2056-6387
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001928241
  issn: 2056-6387
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2056-6387
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001928241
  issn: 2056-6387
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2056-6387
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001928241
  issn: 2056-6387
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2056-6387
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001928241
  issn: 2056-6387
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2056-6387
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001928241
  issn: 2056-6387
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2056-6387
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001928241
  issn: 2056-6387
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGlh4Iwql8sAEsnDqpHYmBKioDFQRAqlMUfyCSpAWUhj49ZzThAISLIxxEiv2nX0v5_sADpSHBI_DkGrNOA1FxqiMLKPGBMoKx0UcuZJsQvT7cjCIkyrhVlTHKus9sdyozUj7HPkxBtsYOKF575yMn6lnjfLV1YpCYx4WPUpCuzy6l8xyLDEGFGFQFzO5PC7QXnF_7EJQj7xC37-bo5mP-aMsWlqbi9X_fucarFR-JjmdKsY6zNl8A1ZrDgdSLelN6PZHOUUH8Pk184jNpOcTHugPotYUZJgTbEer9EQy3I8z_-s6eRtm5N6OnjwVlybjBzSDxRbcXnRvznu0olagmkfxhEZGBpESMTMdXMGh0FpKFXLu0GEMtc2kY3gdWG4YM0wxYw2OySn0kDJuIsW3YSEf5XYHiI2Zddx0Ok5kodJS4URb5QIhmbPoHDWA1TOc6gp33NNfPKZl_ZvLdCqUFIXikUpF-t6Aw89XxlPQjb8ebtaCSKv1V6QzKTTgqBbll9u_dbb7d2d7sNwudSem7aAJC5OXV7sPS_ptMixeWjAvBqIFi2fdfnLdKqP7VqmQ2JZcXiV3H6bw5sw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB3RUKlcSoFWpKV0D-2laMU6u86uDwihFpQIiHKgEj253q8SCZyAQxD5Uf2NzDp2A5XKjQNHf61lz_O8mZ31PIDPOrQET4SgxjBOhcwYVbFj1NpIO-m5TGJfik3IXk-dnib9BfhT_wsTllXWPrF01HZowhz5NibbmDghvbd3R5c0qEaF6motoTGDxaG7vcGUrdjpfkf7fmm1DvZPvnVopSpADY-TMY2timItE2bbCF4hjVFKC849xkrCuEx5htuR45YxyzSzzuJtvcbgIOM21hzHfQGLIoC9AYv97nH_53xWJ8EURkR1-ZSr7QIZkoeFHpKGXi90-pAA51HtP4XYkt8Olp_bm3kDr6tImuzNoL8CCy5fheVapYJUTmsN9nvDnGKIe3mdhZ7UpBOmdDDixe-iIIOc4H7k3QuSIeNk4ed8Mhlk5LcbXgSxMUNGZ0j0xVv48SQP8w4a-TB360Bcwpzntt32MhPaKI2GddpHUjHvMPxrAqstmpqqs3oQ-DhPywo_V-kMBCmCIPRilem0CV__XjKatRV57OSN2vBp5WGKdG71JmzV0Ll3-H-DvX98sE_wqnNyfJQedXuHH2CpVeI2oa1oAxrjq2v3EV6ayXhQXG1W0Cfw66kxdQeLOz_C
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7Rpap6KY-26hZKfSiXVhZO7KydA0KosGIFXe0BJHpK41dZCbILWajKT-PXMc4mLEWCG4ce87KS-PPMNx57PoAvOpQET4WgxjBOhcwZVYlj1NpIO-m5TBNfiU3Ifl8dH6eDObhp9sKEZZWNTawMtR2ZMEe-gcE2Bk5JEGjx9bKIwU53a3xOg4JUyLQ2chpTiOy7v38wfCs3ezvY1-tx3N09_L5Ha4UBaniSTmhiVZRomTLbQSALaYxSWnDukTcJ43LlGR5HjlvGLNPMOouv4DUShZzbRHNs9wXMIyUXcQvmB70fg5-zGZ4UwxkRNalUrjZK9JY8LPqQNNR9odf_OsMZw32QlK18XXfhf_5Li_CmZthkezoklmDOFcuw0KhXkNqYvYXd_qigSH3PL_NQq5rshakeZMI4XkoyLAieR398RnL0RHnYtE-uhjn57UZnQYTMkPEJEoDyHRw9y8e8h1YxKtwHIC5lznPb6XiZC22Uxk522kdSMe-QFraBNb2bmbriehD-OM2qzD9X2RQQGQIi1GiV2XUbvt49Mp6WG3nq5tUGBFltecpshoA2fGtgdO_yY419fLqxz_AKgZQd9Pr7K_A6riCc0jhahdbk4tJ9gpfmajIsL9bqUUDg13ND6hbIHEiC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-stoquastic+Hamiltonians+in+quantum+annealing+via+geometric+phases&rft.jtitle=npj+quantum+information&rft.au=Vinci%2C+Walter&rft.au=Lidar%2C+Daniel+A&rft.date=2017-09-21&rft.pub=Nature+Publishing+Group&rft.eissn=2056-6387&rft.volume=3&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1038%2Fs41534-017-0037-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-6387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-6387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-6387&client=summon