Non-stoquastic Hamiltonians in quantum annealing via geometric phases
We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of n...
Uloženo v:
| Vydáno v: | npj quantum information Ročník 3; číslo 1; s. 1 - 6 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
21.09.2017
Nature Publishing Group |
| Témata: | |
| ISSN: | 2056-6387, 2056-6387 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.
Quantum annealing: engineering non-stoquastic interactions via geometric phases
Quantum annealing is a promising approach to quantum computation that is particularly suited to solve optimization and sampling problems. Researchers from University of Southern California show that the low-energy effective Hamiltonian describing the quantum anneal of a system implemented with continuous variables includes terms of geometric origin. The inclusion of such geometric effects makes the effective Hamiltonian non-stoquastic. Such Hamiltonians cannot be simulated with Monte Carlo algorithms due to the existence of a sign problem. The implementation of quantum annealing with non-stoquastic Hamiltonians is thus particularly important from a computational complexity perspective. The direct implementation of non-stoquastic interactions is challenging. Their results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes. |
|---|---|
| AbstractList | We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes. We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes. Quantum annealing: engineering non-stoquastic interactions via geometric phases Quantum annealing is a promising approach to quantum computation that is particularly suited to solve optimization and sampling problems. Researchers from University of Southern California show that the low-energy effective Hamiltonian describing the quantum anneal of a system implemented with continuous variables includes terms of geometric origin. The inclusion of such geometric effects makes the effective Hamiltonian non-stoquastic. Such Hamiltonians cannot be simulated with Monte Carlo algorithms due to the existence of a sign problem. The implementation of quantum annealing with non-stoquastic Hamiltonians is thus particularly important from a computational complexity perspective. The direct implementation of non-stoquastic interactions is challenging. Their results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes. |
| ArticleNumber | 38 |
| Author | Vinci, Walter Lidar, Daniel A. |
| Author_xml | – sequence: 1 givenname: Walter surname: Vinci fullname: Vinci, Walter email: wltvinci@gmail.com organization: Department of Electrical Engineering, University of Southern California, Department of Physics and Astronomy, University of Southern California, Center for Quantum Information Science & Technology, University of Southern California – sequence: 2 givenname: Daniel A. surname: Lidar fullname: Lidar, Daniel A. organization: Department of Electrical Engineering, University of Southern California, Department of Physics and Astronomy, University of Southern California, Center for Quantum Information Science & Technology, University of Southern California, Department of Chemistry, University of Southern California |
| BookMark | eNp9kEFLwzAYhoNMcM79AG8Fz9EvTdKmRxnTCUMveg5pm86MNplJJrhfb0Y9DEFPX77wPMnLe4km1lmN0DWBWwJU3AVGOGUYSIkBaIkPZ2iaAy9wQUU5OTlfoHkIWwAgVS5yRqZo-ewsDtF97FWIpslWajB9dNYoGzJjs3Rv437IlLVa9cZusk-jso12g44-8bt3FXS4Qued6oOe_8wZentYvi5WeP3y-LS4X-OG8ipi3grC67KCtmBCsLJphKgZpR1UFWu0Eh2knWjaArRQQ6vbnJOuhpwr2vKaztDN-O7Op8Q6RLl1e2_Tl5JUjNBEsyJR5Ug13oXgdScbE1U0zkavTC8JyGNtcqxNptrksTZ5SCb5Ze68GZT_-tfJRyck1m60P8n0p_QNl_iB9g |
| CitedBy_id | crossref_primary_10_1088_2058_9565_ab935a crossref_primary_10_1103_PhysRevA_106_042615 crossref_primary_10_1038_s41598_020_64078_1 crossref_primary_10_1103_PhysRevResearch_4_013141 crossref_primary_10_1103_PhysRevApplied_14_014100 crossref_primary_10_1088_1361_6633_ac8c54 crossref_primary_10_1103_PhysRevApplied_17_044005 crossref_primary_10_1103_PhysRevResearch_4_043204 crossref_primary_10_1145_3464456 crossref_primary_10_1038_s41598_023_30914_3 crossref_primary_10_1103_PhysRevA_103_032612 crossref_primary_10_1088_1367_2630_ab83d1 crossref_primary_10_1088_1367_2630_ab2ee7 crossref_primary_10_1103_PhysRevApplied_13_034037 crossref_primary_10_1146_annurev_conmatphys_031119_050605 crossref_primary_10_3390_e25030541 crossref_primary_10_1038_s42005_023_01202_3 crossref_primary_10_1051_epjconf_202429512002 crossref_primary_10_1088_2058_9565_ace54a crossref_primary_10_1140_epjqt_s40507_025_00369_8 crossref_primary_10_1103_PhysRevA_111_062601 crossref_primary_10_1103_PhysRevApplied_12_064026 crossref_primary_10_1103_PhysRevLett_130_140601 crossref_primary_10_1103_PhysRevResearch_4_L042030 |
| Cites_doi | 10.1088/1751-8113/45/43/435301 10.1137/S0097539705447323 10.1103/PhysRevLett.111.100502 10.3389/fict.2017.00002 10.1126/science.aaa4170 10.1103/PhysRevA.81.032331 10.1098/rspa.1984.0023 10.1038/nature10012 10.1103/PhysRevA.95.012309 10.1103/PhysRevA.94.042318 10.1088/0953-2048/23/6/065004 10.1016/S0375-9601(99)00803-8 10.1088/1751-8113/48/33/335301 10.1103/PhysRevB.81.174506 10.1103/PhysRevLett.58.1593 10.1103/PhysRevE.58.5355 10.1038/nature13729 10.1038/ncomms10327 10.1103/PhysRevB.95.184416 10.1143/PTP.58.1377 10.1109/SFCS.2001.959902 10.1016/0375-9601(88)91010-9 10.1103/PhysRevLett.94.170201 10.1088/1751-8113/49/16/165305 10.1103/PhysRevB.60.15398 10.1038/35098037 10.1126/science.aah5178 10.1103/RevModPhys.73.357 10.1103/PhysRevB.83.214518 10.1126/science.1057726 10.1103/RevModPhys.80.1061 10.1038/ncomms12964 10.1137/08072689X 10.1103/PhysRevLett.109.050501 10.1126/science.1068774 10.1103/PhysRevB.82.024511 10.1103/PhysRevLett.119.100503 10.1038/srep41186 10.1088/1367-2630/14/10/103035 10.1103/PhysRevLett.52.2111 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2017 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2017 – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1038/s41534-017-0037-z |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Natural Science Collection ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics Computer Science |
| EISSN | 2056-6387 |
| EndPage | 6 |
| ExternalDocumentID | 10_1038_s41534_017_0037_z |
| GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AFPKN AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK KQ8 LK8 M7P M~E NAO NO~ OK1 PIMPY PQQKQ PROAC RNT SNYQT UKHRP AAFWJ AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS |
| ID | FETCH-LOGICAL-c359t-5d815b790d648847cc88b433f0994cea8f08b41e3d00d0b0ded251fb025a3d5b3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411507100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2056-6387 |
| IngestDate | Tue Oct 07 06:48:35 EDT 2025 Sat Nov 29 02:51:38 EST 2025 Tue Nov 18 22:33:29 EST 2025 Fri Feb 21 02:39:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-5d815b790d648847cc88b433f0994cea8f08b41e3d00d0b0ded251fb025a3d5b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/1941325146?pq-origsite=%requestingapplication% |
| PQID | 1941325146 |
| PQPubID | 2041919 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_1941325146 crossref_citationtrail_10_1038_s41534_017_0037_z crossref_primary_10_1038_s41534_017_0037_z springer_journals_10_1038_s41534_017_0037_z |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-21 |
| PublicationDateYYYYMMDD | 2017-09-21 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | npj quantum information |
| PublicationTitleAbbrev | npj Quantum Inf |
| PublicationYear | 2017 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | JordanSPGossetDLovePJQuantum-Merlin-Arthur—complete problems for stoquastic Hamiltonians and Markov matricesPhys. Rev. A2010812010PhRvA..81c2331J10.1103/PhysRevA.81.032331 HarrisRExperimental investigation of an eight-qubit unit cell in a superconducting optimization processorPhys. Rev. B2010822010PhRvB..82b4511H10.1103/PhysRevB.82.024511 AharonovYAnandanJPhase change during a cyclic quantum evolutionPhys. Rev. Lett.1987581987PhRvL..58.1593A88431410.1103/PhysRevLett.58.1593 JohnsonMWQuantum annealing with manufactured spinsNature20114731941982011Natur.473..194J10.1038/nature10012 BravyiSDiVincenzoDPOliveiraRITerhalBMThe complexity of stoquastic local Hamiltonian problemsQuantum Inf. Comput.2008824514821192.81055 SeoaneBNishimoriHMany-body transverse interactions in the quantum annealing of the p-spin ferromagnetJ. Phys. A2012452012JPhA...45.5301S298922210.1088/1751-8113/45/43/4353011253.82020 KamleitnerISolinasPMüllerCShnirmanAMöttönenMGeometric quantum gates with superconducting qubitsPhys. Rev. B2011832011PhRvB..83u4518K10.1103/PhysRevB.83.214518 MakhlinYSchönGShnirmanAQuantum-state engineering with Josephson-junction devicesRev. Mod. Phys.2001733574002001RvMP...73..357M10.1103/RevModPhys.73.3571039.81514 AharonovDAdiabatic quantum computation is equivalent to standard quantum computationSIAM J. Comput.200737166194230628810.1137/S00975397054473231134.81009 JohnsonMWA scalable control system for a superconducting adiabatic quantum optimization processorSupercond. Sci. Technol.2010232010SuScT..23f5004J10.1088/0953-2048/23/6/065004 KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E1998581998PhRvE..58.5355K10.1103/PhysRevE.58.5355 SommaRDNagajDKieferováMQuantum speedup by quantum annealingPhys. Rev. Lett.20121092012PhRvL.109e0501S10.1103/PhysRevLett.109.050501 FarhiEA quantum adiabatic evolution algorithm applied to random instances of an NP-complete problemScience20012924724752001Sci...292..472F183876110.1126/science.10577261226.81046 Crosson, E., Farhi, E., Lin, C. Y.-Y., Lin, H.-H. & Shor, P. Different strategies for optimization using the quantum adiabatic algorithm. Preprint at http://arxiv.org/pdf/quant-ph/1401.7320 (2014). ZanardiPRasettiMHolonomic quantum computationPhys. Lett. A199926494991999PhLA..264...94Z173212710.1016/S0375-9601(99)00803-80949.81009 Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adiabatic evolution. Preprint at http://arxiv.org/pdf/quant-ph/0001106 (2000). ZengLZhangJSarovarMSchedule path optimization for adiabatic quantum computing and optimizationJ. Phys. A2016492016JPhA...49p5305Z347914010.1088/1751-8113/49/16/1653051342.81094 Nishimori, H. & Takada, K. Exponential enhancement of the efficiency of quantum annealing by nonstochastic Hamiltonians. Preprint at http://arxiv.org/pdf/quant-ph/1609.03785 (2016). HeimBRønnowTFIsakovSVTroyerMQuantum versus classical annealing of Ising spin glassesScience20153482152172015Sci...348..215H336346510.1126/science.aaa41701355.81182 Hastings, M. B. & Freedman, M. H. Obstructions to classically simulating the quantum adiabatic algorithm. Preprint at http://arxiv.org/pdf/quant-ph/1302.5733 (2013). OhzekiMQuantum Monte Carlo simulation of a particular class of non-stoquastic Hamiltonians in quantum annealingSci. Rep.201772017NatSR...741186O10.1038/srep41186 BrookeJRosenbaumTFAeppliGTunable quantum tunnelling of magnetic domain wallsNature20014136106132001Natur.413..610B10.1038/35098037 PirkkalainenJMSolinasPPekolaJPMöttönenMNon-abelian geometric phases in ground-state Josephson devicesPhys. Rev. B2010812010PhRvB..81q4506P10.1103/PhysRevB.81.174506 OrlandoTPSuperconducting persistent-current qubitPhys. Rev. B19996015398154131999PhRvB..6015398O10.1103/PhysRevB.60.15398 ZuCExperimental realization of universal geometric quantum gates with solid-state spinsNature201451472752014Natur.514...72Z10.1038/nature13729 FarhiEQuantum adiabatic algorithms, small gaps, and different pathsQuantum Inf. Comput.20111118121427919831247.81085 SuzukiMMiyashitaSKurodaAMonte Carlo simulation of quantum spin systems. I Prog. Theor. Phys.1977581977PThPh..58.1377S45234810.1143/PTP.58.13771098.81683 SjöqvistENon-adiabatic holonomic quantum computationNew J. Phys.201214303696510.1088/1367-2630/14/10/103035 Bravyi, S. Monte Carlo simulation of stoquastic Hamiltonians. Preprint at http://arxiv.org/pdf/quant-ph/1402.2295 (2014). Weber, S. J. et al. Coherent coupled qubits for quantum annealing. Preprint at http://arxiv.org/pdf/quant-ph/1701.06544 (2017). Albash, T. & Lidar, D. A. Adiabatic quantum computing. Preprint at http://arxiv.org/pdf/quant-ph/1611.04471 (2016). YanFThe flux qubit revisited to enhance coherence and reproducibilityNat. Commun.201672016NatCo...712964Y10.1038/ncomms12964 WilczekFZeeAAppearance of gauge structure in simple dynamical systemsPhys. Rev. Lett.198452211121141984PhRvL..52.2111W74673810.1103/PhysRevLett.52.2111 Hormozi, L., Brown, E. W., Carleo, G. & Troyer, M. Non-stoquastic Hamiltonians and quantum annealing of Ising spin glass. Preprint at http://arxiv.org/pdf/quant-ph/1609.06558 (2016). BerryMVQuantal phase factors accompanying adiabatic changesProc. R. Soc. Lond. A Math. Phys. Sci.19843921984RSPSA.392...45B73892610.1098/rspa.1984.00231113.81306 BravyiSTerhalBComplexity of stoquastic frustrationfree HamiltoniansSIAM J. Comput.20093914621485258053610.1137/08072689X1206.68121 Farhi, E. & Harrow, A. W. Quantum supremacy through the quantum approximate optimization algorithm. Preprint at http://arxiv.org/pdf/quant-ph/1602.07674 (2016). SantoroGEMartoňákRTosattiECarRTheory of quantum annealing of an Ising spin glassScience2002295242724302002Sci...295.2427S10.1126/science.1068774 JarretMJordanSPLackeyBAdiabatic optimization versus diffusion Monte Carlo methodsPhys. Rev. A2016942016PhRvA..94d2318J10.1103/PhysRevA.94.042318 AnandanJNon-adiabatic non-abelian geometric phasePhys. Lett. A19881331711751988PhLA..133..171A96974510.1016/0375-9601(88)91010-9 TroyerMWieseU-JComputational complexity and fundamental limitations to fermionic quantum Monte Carlo simulationsPhys. Rev. Lett.2005942005PhRvL..94q0201T10.1103/PhysRevLett.94.170201 TakahashiKShortcuts to adiabaticity for quantum annealingPhys. Rev. A2017952017PhRvA..95a2309T10.1103/PhysRevA.95.012309 BoixoSComputational multiqubit tunnelling in programmable quantum annealersNat. Commun.201672016NatCo...710327B10.1038/ncomms10327 van Dam, W., Mosca, M. & Vazirani, U. How powerful is adiabatic quantum computation? Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, 279–287 (2001). del CampoAShortcuts to adiabaticity by counterdiabatic drivingPhys. Rev. Lett.201311110.1103/PhysRevLett.111.100502 SekiYNishimoriHQuantum annealing with antiferromagnetic transverse interactions for the Hopfield modelJ. Phys. A201548337603210.1088/1751-8113/48/33/3353011335.82031 Bravyi, S. & Gosset, D. Polynomial-time classical simulation of quantum ferromagnets. Preprint at http://arxiv.org/pdf/quant-ph/1612.05602 (2016). DasAChakrabartiBKColloquium: quantum annealing and analog quantum computationRev. Mod. Phys.200880106110812008RvMP...80.1061D244372110.1103/RevModPhys.80.10611205.81058 McMahonPLA fully-programmable 100-spin coherent Ising machine with all-to-all connectionsScience20163546146172016Sci...354..614M349476910.1126/science.aah5178 TP Orlando (37_CR44) 1999; 60 B Seoane (37_CR26) 2012; 45 E Farhi (37_CR2) 2001; 292 E Farhi (37_CR25) 2011; 11 MV Berry (37_CR40) 1984; 392 S Bravyi (37_CR15) 2009; 39 F Yan (37_CR43) 2016; 7 M Jarret (37_CR24) 2016; 94 37_CR30 F Wilczek (37_CR41) 1984; 52 GE Santoro (37_CR7) 2002; 295 S Boixo (37_CR42) 2016; 7 37_CR31 M Suzuki (37_CR16) 1977; 58 L Zeng (37_CR29) 2016; 49 J Brooke (37_CR9) 2001; 413 A del Campo (37_CR46) 2013; 111 B Heim (37_CR19) 2015; 348 M Troyer (37_CR17) 2005; 94 Y Makhlin (37_CR39) 2001; 73 Y Aharonov (37_CR32) 1987; 58 PL McMahon (37_CR13) 2016; 354 M Ohzeki (37_CR21) 2017; 7 37_CR45 S Bravyi (37_CR14) 2008; 8 P Zanardi (37_CR34) 1999; 264 J Anandan (37_CR33) 1988; 133 JM Pirkkalainen (37_CR37) 2010; 81 T Kadowaki (37_CR6) 1998; 58 37_CR18 RD Somma (37_CR48) 2012; 109 D Aharonov (37_CR4) 2007; 37 I Kamleitner (37_CR38) 2011; 83 R Harris (37_CR12) 2010; 82 SP Jordan (37_CR49) 2010; 81 A Das (37_CR8) 2008; 80 MW Johnson (37_CR11) 2010; 23 E Sjöqvist (37_CR35) 2012; 14 37_CR5 K Takahashi (37_CR47) 2017; 95 37_CR3 C Zu (37_CR36) 2014; 514 MW Johnson (37_CR10) 2011; 473 37_CR22 37_CR23 37_CR20 37_CR1 37_CR27 Y Seki (37_CR28) 2015; 48 |
| References_xml | – reference: SeoaneBNishimoriHMany-body transverse interactions in the quantum annealing of the p-spin ferromagnetJ. Phys. A2012452012JPhA...45.5301S298922210.1088/1751-8113/45/43/4353011253.82020 – reference: SekiYNishimoriHQuantum annealing with antiferromagnetic transverse interactions for the Hopfield modelJ. Phys. A201548337603210.1088/1751-8113/48/33/3353011335.82031 – reference: BrookeJRosenbaumTFAeppliGTunable quantum tunnelling of magnetic domain wallsNature20014136106132001Natur.413..610B10.1038/35098037 – reference: JohnsonMWA scalable control system for a superconducting adiabatic quantum optimization processorSupercond. Sci. Technol.2010232010SuScT..23f5004J10.1088/0953-2048/23/6/065004 – reference: BravyiSDiVincenzoDPOliveiraRITerhalBMThe complexity of stoquastic local Hamiltonian problemsQuantum Inf. Comput.2008824514821192.81055 – reference: Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adiabatic evolution. Preprint at http://arxiv.org/pdf/quant-ph/0001106 (2000). – reference: OhzekiMQuantum Monte Carlo simulation of a particular class of non-stoquastic Hamiltonians in quantum annealingSci. Rep.201772017NatSR...741186O10.1038/srep41186 – reference: Bravyi, S. Monte Carlo simulation of stoquastic Hamiltonians. Preprint at http://arxiv.org/pdf/quant-ph/1402.2295 (2014). – reference: Bravyi, S. & Gosset, D. Polynomial-time classical simulation of quantum ferromagnets. Preprint at http://arxiv.org/pdf/quant-ph/1612.05602 (2016). – reference: BoixoSComputational multiqubit tunnelling in programmable quantum annealersNat. Commun.201672016NatCo...710327B10.1038/ncomms10327 – reference: TakahashiKShortcuts to adiabaticity for quantum annealingPhys. Rev. A2017952017PhRvA..95a2309T10.1103/PhysRevA.95.012309 – reference: TroyerMWieseU-JComputational complexity and fundamental limitations to fermionic quantum Monte Carlo simulationsPhys. Rev. Lett.2005942005PhRvL..94q0201T10.1103/PhysRevLett.94.170201 – reference: SuzukiMMiyashitaSKurodaAMonte Carlo simulation of quantum spin systems. I Prog. Theor. Phys.1977581977PThPh..58.1377S45234810.1143/PTP.58.13771098.81683 – reference: PirkkalainenJMSolinasPPekolaJPMöttönenMNon-abelian geometric phases in ground-state Josephson devicesPhys. Rev. B2010812010PhRvB..81q4506P10.1103/PhysRevB.81.174506 – reference: SjöqvistENon-adiabatic holonomic quantum computationNew J. Phys.201214303696510.1088/1367-2630/14/10/103035 – reference: MakhlinYSchönGShnirmanAQuantum-state engineering with Josephson-junction devicesRev. Mod. Phys.2001733574002001RvMP...73..357M10.1103/RevModPhys.73.3571039.81514 – reference: AharonovDAdiabatic quantum computation is equivalent to standard quantum computationSIAM J. Comput.200737166194230628810.1137/S00975397054473231134.81009 – reference: FarhiEA quantum adiabatic evolution algorithm applied to random instances of an NP-complete problemScience20012924724752001Sci...292..472F183876110.1126/science.10577261226.81046 – reference: ZanardiPRasettiMHolonomic quantum computationPhys. Lett. A199926494991999PhLA..264...94Z173212710.1016/S0375-9601(99)00803-80949.81009 – reference: WilczekFZeeAAppearance of gauge structure in simple dynamical systemsPhys. Rev. Lett.198452211121141984PhRvL..52.2111W74673810.1103/PhysRevLett.52.2111 – reference: van Dam, W., Mosca, M. & Vazirani, U. How powerful is adiabatic quantum computation? Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, 279–287 (2001). – reference: del CampoAShortcuts to adiabaticity by counterdiabatic drivingPhys. Rev. Lett.201311110.1103/PhysRevLett.111.100502 – reference: Nishimori, H. & Takada, K. Exponential enhancement of the efficiency of quantum annealing by nonstochastic Hamiltonians. Preprint at http://arxiv.org/pdf/quant-ph/1609.03785 (2016). – reference: DasAChakrabartiBKColloquium: quantum annealing and analog quantum computationRev. Mod. Phys.200880106110812008RvMP...80.1061D244372110.1103/RevModPhys.80.10611205.81058 – reference: Crosson, E., Farhi, E., Lin, C. Y.-Y., Lin, H.-H. & Shor, P. Different strategies for optimization using the quantum adiabatic algorithm. Preprint at http://arxiv.org/pdf/quant-ph/1401.7320 (2014). – reference: KadowakiTNishimoriHQuantum annealing in the transverse Ising modelPhys. Rev. E1998581998PhRvE..58.5355K10.1103/PhysRevE.58.5355 – reference: BravyiSTerhalBComplexity of stoquastic frustrationfree HamiltoniansSIAM J. Comput.20093914621485258053610.1137/08072689X1206.68121 – reference: ZuCExperimental realization of universal geometric quantum gates with solid-state spinsNature201451472752014Natur.514...72Z10.1038/nature13729 – reference: McMahonPLA fully-programmable 100-spin coherent Ising machine with all-to-all connectionsScience20163546146172016Sci...354..614M349476910.1126/science.aah5178 – reference: AharonovYAnandanJPhase change during a cyclic quantum evolutionPhys. Rev. Lett.1987581987PhRvL..58.1593A88431410.1103/PhysRevLett.58.1593 – reference: YanFThe flux qubit revisited to enhance coherence and reproducibilityNat. Commun.201672016NatCo...712964Y10.1038/ncomms12964 – reference: ZengLZhangJSarovarMSchedule path optimization for adiabatic quantum computing and optimizationJ. Phys. A2016492016JPhA...49p5305Z347914010.1088/1751-8113/49/16/1653051342.81094 – reference: Albash, T. & Lidar, D. A. Adiabatic quantum computing. Preprint at http://arxiv.org/pdf/quant-ph/1611.04471 (2016). – reference: SommaRDNagajDKieferováMQuantum speedup by quantum annealingPhys. Rev. Lett.20121092012PhRvL.109e0501S10.1103/PhysRevLett.109.050501 – reference: JarretMJordanSPLackeyBAdiabatic optimization versus diffusion Monte Carlo methodsPhys. Rev. A2016942016PhRvA..94d2318J10.1103/PhysRevA.94.042318 – reference: JohnsonMWQuantum annealing with manufactured spinsNature20114731941982011Natur.473..194J10.1038/nature10012 – reference: Farhi, E. & Harrow, A. W. Quantum supremacy through the quantum approximate optimization algorithm. Preprint at http://arxiv.org/pdf/quant-ph/1602.07674 (2016). – reference: Weber, S. J. et al. Coherent coupled qubits for quantum annealing. Preprint at http://arxiv.org/pdf/quant-ph/1701.06544 (2017). – reference: HarrisRExperimental investigation of an eight-qubit unit cell in a superconducting optimization processorPhys. Rev. B2010822010PhRvB..82b4511H10.1103/PhysRevB.82.024511 – reference: SantoroGEMartoňákRTosattiECarRTheory of quantum annealing of an Ising spin glassScience2002295242724302002Sci...295.2427S10.1126/science.1068774 – reference: Hastings, M. B. & Freedman, M. H. Obstructions to classically simulating the quantum adiabatic algorithm. Preprint at http://arxiv.org/pdf/quant-ph/1302.5733 (2013). – reference: BerryMVQuantal phase factors accompanying adiabatic changesProc. R. Soc. Lond. A Math. Phys. Sci.19843921984RSPSA.392...45B73892610.1098/rspa.1984.00231113.81306 – reference: HeimBRønnowTFIsakovSVTroyerMQuantum versus classical annealing of Ising spin glassesScience20153482152172015Sci...348..215H336346510.1126/science.aaa41701355.81182 – reference: FarhiEQuantum adiabatic algorithms, small gaps, and different pathsQuantum Inf. Comput.20111118121427919831247.81085 – reference: OrlandoTPSuperconducting persistent-current qubitPhys. Rev. B19996015398154131999PhRvB..6015398O10.1103/PhysRevB.60.15398 – reference: Hormozi, L., Brown, E. W., Carleo, G. & Troyer, M. Non-stoquastic Hamiltonians and quantum annealing of Ising spin glass. Preprint at http://arxiv.org/pdf/quant-ph/1609.06558 (2016). – reference: AnandanJNon-adiabatic non-abelian geometric phasePhys. Lett. A19881331711751988PhLA..133..171A96974510.1016/0375-9601(88)91010-9 – reference: KamleitnerISolinasPMüllerCShnirmanAMöttönenMGeometric quantum gates with superconducting qubitsPhys. Rev. B2011832011PhRvB..83u4518K10.1103/PhysRevB.83.214518 – reference: JordanSPGossetDLovePJQuantum-Merlin-Arthur—complete problems for stoquastic Hamiltonians and Markov matricesPhys. Rev. A2010812010PhRvA..81c2331J10.1103/PhysRevA.81.032331 – volume: 45 year: 2012 ident: 37_CR26 publication-title: J. Phys. A doi: 10.1088/1751-8113/45/43/435301 – volume: 37 start-page: 166 year: 2007 ident: 37_CR4 publication-title: SIAM J. Comput. doi: 10.1137/S0097539705447323 – ident: 37_CR45 – volume: 111 year: 2013 ident: 37_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.100502 – ident: 37_CR31 doi: 10.3389/fict.2017.00002 – volume: 348 start-page: 215 year: 2015 ident: 37_CR19 publication-title: Science doi: 10.1126/science.aaa4170 – volume: 81 year: 2010 ident: 37_CR49 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.81.032331 – volume: 392 year: 1984 ident: 37_CR40 publication-title: Proc. R. Soc. Lond. A Math. Phys. Sci. doi: 10.1098/rspa.1984.0023 – volume: 11 start-page: 181 year: 2011 ident: 37_CR25 publication-title: Quantum Inf. Comput. – volume: 473 start-page: 194 year: 2011 ident: 37_CR10 publication-title: Nature doi: 10.1038/nature10012 – volume: 95 year: 2017 ident: 37_CR47 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.012309 – ident: 37_CR22 – volume: 94 year: 2016 ident: 37_CR24 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.94.042318 – volume: 23 year: 2010 ident: 37_CR11 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/23/6/065004 – volume: 264 start-page: 94 year: 1999 ident: 37_CR34 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(99)00803-8 – ident: 37_CR1 – ident: 37_CR5 – volume: 48 year: 2015 ident: 37_CR28 publication-title: J. Phys. A doi: 10.1088/1751-8113/48/33/335301 – volume: 81 year: 2010 ident: 37_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.174506 – volume: 58 year: 1987 ident: 37_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.1593 – volume: 58 year: 1998 ident: 37_CR6 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.5355 – volume: 514 start-page: 72 year: 2014 ident: 37_CR36 publication-title: Nature doi: 10.1038/nature13729 – volume: 7 year: 2016 ident: 37_CR42 publication-title: Nat. Commun. doi: 10.1038/ncomms10327 – ident: 37_CR30 doi: 10.1103/PhysRevB.95.184416 – volume: 58 year: 1977 ident: 37_CR16 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.58.1377 – ident: 37_CR3 doi: 10.1109/SFCS.2001.959902 – volume: 133 start-page: 171 year: 1988 ident: 37_CR33 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(88)91010-9 – ident: 37_CR18 – volume: 94 year: 2005 ident: 37_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.170201 – volume: 49 year: 2016 ident: 37_CR29 publication-title: J. Phys. A doi: 10.1088/1751-8113/49/16/165305 – volume: 60 start-page: 15398 year: 1999 ident: 37_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.15398 – volume: 413 start-page: 610 year: 2001 ident: 37_CR9 publication-title: Nature doi: 10.1038/35098037 – volume: 354 start-page: 614 year: 2016 ident: 37_CR13 publication-title: Science doi: 10.1126/science.aah5178 – volume: 8 year: 2008 ident: 37_CR14 publication-title: Quantum Inf. Comput. – volume: 73 start-page: 357 year: 2001 ident: 37_CR39 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.73.357 – volume: 83 year: 2011 ident: 37_CR38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.214518 – volume: 292 start-page: 472 year: 2001 ident: 37_CR2 publication-title: Science doi: 10.1126/science.1057726 – volume: 80 start-page: 1061 year: 2008 ident: 37_CR8 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.1061 – volume: 7 year: 2016 ident: 37_CR43 publication-title: Nat. Commun. doi: 10.1038/ncomms12964 – volume: 39 start-page: 1462 year: 2009 ident: 37_CR15 publication-title: SIAM J. Comput. doi: 10.1137/08072689X – volume: 109 year: 2012 ident: 37_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.050501 – volume: 295 start-page: 2427 year: 2002 ident: 37_CR7 publication-title: Science doi: 10.1126/science.1068774 – volume: 82 year: 2010 ident: 37_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.024511 – ident: 37_CR27 – ident: 37_CR23 – ident: 37_CR20 doi: 10.1103/PhysRevLett.119.100503 – volume: 7 year: 2017 ident: 37_CR21 publication-title: Sci. Rep. doi: 10.1038/srep41186 – volume: 14 year: 2012 ident: 37_CR35 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/10/103035 – volume: 52 start-page: 2111 year: 1984 ident: 37_CR41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.52.2111 |
| SSID | ssj0001928241 |
| Score | 2.3053463 |
| Snippet | We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 639/766/483/2802 639/766/483/3926 Adiabatic Algorithms Annealing Classical and Quantum Gravitation Computer applications Physics Physics and Astronomy Quantum Computing Quantum Field Theories Quantum Information Technology Quantum Physics Relativity Theory Spintronics String Theory |
| Title | Non-stoquastic Hamiltonians in quantum annealing via geometric phases |
| URI | https://link.springer.com/article/10.1038/s41534-017-0037-z https://www.proquest.com/docview/1941325146 |
| Volume | 3 |
| WOSCitedRecordID | wos000411507100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2056-6387 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001928241 issn: 2056-6387 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2056-6387 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001928241 issn: 2056-6387 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2056-6387 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001928241 issn: 2056-6387 databaseCode: M7P dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2056-6387 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001928241 issn: 2056-6387 databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2056-6387 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001928241 issn: 2056-6387 databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2056-6387 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001928241 issn: 2056-6387 databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGlh4Iwql8sAEsnDqpHYmBKioDFQRAqlMUfyCSpAWUhj49ZzThAISLIxxEiv2nX0v5_sADpSHBI_DkGrNOA1FxqiMLKPGBMoKx0UcuZJsQvT7cjCIkyrhVlTHKus9sdyozUj7HPkxBtsYOKF575yMn6lnjfLV1YpCYx4WPUpCuzy6l8xyLDEGFGFQFzO5PC7QXnF_7EJQj7xC37-bo5mP-aMsWlqbi9X_fucarFR-JjmdKsY6zNl8A1ZrDgdSLelN6PZHOUUH8Pk184jNpOcTHugPotYUZJgTbEer9EQy3I8z_-s6eRtm5N6OnjwVlybjBzSDxRbcXnRvznu0olagmkfxhEZGBpESMTMdXMGh0FpKFXLu0GEMtc2kY3gdWG4YM0wxYw2OySn0kDJuIsW3YSEf5XYHiI2Zddx0Ok5kodJS4URb5QIhmbPoHDWA1TOc6gp33NNfPKZl_ZvLdCqUFIXikUpF-t6Aw89XxlPQjb8ebtaCSKv1V6QzKTTgqBbll9u_dbb7d2d7sNwudSem7aAJC5OXV7sPS_ptMixeWjAvBqIFi2fdfnLdKqP7VqmQ2JZcXiV3H6bw5sw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB3RUKlcSoFWpKV0D-2laMU6u86uDwihFpQIiHKgEj253q8SCZyAQxD5Uf2NzDp2A5XKjQNHf61lz_O8mZ31PIDPOrQET4SgxjBOhcwYVbFj1NpIO-m5TGJfik3IXk-dnib9BfhT_wsTllXWPrF01HZowhz5NibbmDghvbd3R5c0qEaF6motoTGDxaG7vcGUrdjpfkf7fmm1DvZPvnVopSpADY-TMY2timItE2bbCF4hjVFKC849xkrCuEx5htuR45YxyzSzzuJtvcbgIOM21hzHfQGLIoC9AYv97nH_53xWJ8EURkR1-ZSr7QIZkoeFHpKGXi90-pAA51HtP4XYkt8Olp_bm3kDr6tImuzNoL8CCy5fheVapYJUTmsN9nvDnGKIe3mdhZ7UpBOmdDDixe-iIIOc4H7k3QuSIeNk4ed8Mhlk5LcbXgSxMUNGZ0j0xVv48SQP8w4a-TB360Bcwpzntt32MhPaKI2GddpHUjHvMPxrAqstmpqqs3oQ-DhPywo_V-kMBCmCIPRilem0CV__XjKatRV57OSN2vBp5WGKdG71JmzV0Ll3-H-DvX98sE_wqnNyfJQedXuHH2CpVeI2oa1oAxrjq2v3EV6ayXhQXG1W0Cfw66kxdQeLOz_C |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7Rpap6KY-26hZKfSiXVhZO7KydA0KosGIFXe0BJHpK41dZCbILWajKT-PXMc4mLEWCG4ce87KS-PPMNx57PoAvOpQET4WgxjBOhcwZVYlj1NpIO-m5TBNfiU3Ifl8dH6eDObhp9sKEZZWNTawMtR2ZMEe-gcE2Bk5JEGjx9bKIwU53a3xOg4JUyLQ2chpTiOy7v38wfCs3ezvY1-tx3N09_L5Ha4UBaniSTmhiVZRomTLbQSALaYxSWnDukTcJ43LlGR5HjlvGLNPMOouv4DUShZzbRHNs9wXMIyUXcQvmB70fg5-zGZ4UwxkRNalUrjZK9JY8LPqQNNR9odf_OsMZw32QlK18XXfhf_5Li_CmZthkezoklmDOFcuw0KhXkNqYvYXd_qigSH3PL_NQq5rshakeZMI4XkoyLAieR398RnL0RHnYtE-uhjn57UZnQYTMkPEJEoDyHRw9y8e8h1YxKtwHIC5lznPb6XiZC22Uxk522kdSMe-QFraBNb2bmbriehD-OM2qzD9X2RQQGQIi1GiV2XUbvt49Mp6WG3nq5tUGBFltecpshoA2fGtgdO_yY419fLqxz_AKgZQd9Pr7K_A6riCc0jhahdbk4tJ9gpfmajIsL9bqUUDg13ND6hbIHEiC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-stoquastic+Hamiltonians+in+quantum+annealing+via+geometric+phases&rft.jtitle=npj+quantum+information&rft.au=Vinci%2C+Walter&rft.au=Lidar%2C+Daniel+A&rft.date=2017-09-21&rft.pub=Nature+Publishing+Group&rft.eissn=2056-6387&rft.volume=3&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1038%2Fs41534-017-0037-z&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-6387&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-6387&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-6387&client=summon |