Unsupervised Crowd-Assisted Learning Enabling Location-Aware Facilities

The accelerated evolution of Internet of Things (IoT) architectures and their incorporation in vehicles, buildings, or cities provide the ideal environment for the development and optimization of smart services. Under this light, positioning services that harvest location fingerprinting based on rec...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE internet of things journal Ročník 5; číslo 6; s. 4699 - 4713
Hlavní autori: Sikeridis, Dimitrios, Rimal, Bhaskar Prasad, Papapanagiotou, Ioannis, Devetsikiotis, Michael
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2327-4662, 2327-4662
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The accelerated evolution of Internet of Things (IoT) architectures and their incorporation in vehicles, buildings, or cities provide the ideal environment for the development and optimization of smart services. Under this light, positioning services that harvest location fingerprinting based on received signal strength indications (RSSIs) are widely popular due to the massive data generation that IoT settings provide. However, the labor-intensive and repetitive task of the radio map construction through offline RSSI fingerprint collection prevents such services from becoming standard equipment for future smart facilities. In this paper, we present a location-aware infrastructure that combines a broad sensing layer, edge computing, and centralized cloud federation support. Our setting gives rise to a sensing mechanism that enables in-facility crowdsourcing able to aid fingerprinting localization services. To that end, instead of extensive offline measurements, we use the facility occupants to gather unlabeled RSSI samples. To support the localization functionality, we develop a probabilistic cell-based model that is constructed by an unsupervised learning algorithm. Our black-box approach maintains the positioning accuracy regardless of changes in the underlying hardware or indoor environment. To evaluate our approach, we have deployed a multistorey facility testbed and performed an extensive real-subject trial to gather the unlabeled fingerprint dataset. The proposed unsupervised method yields average location classification accuracy of 0.8 that can rise up to 0.9 when a semi-supervised approach is considered. We also provide insights into the performance of the proposed infrastructure regarding mobility tracking, and under varying deployment scenarios.
AbstractList The accelerated evolution of Internet of Things (IoT) architectures and their incorporation in vehicles, buildings, or cities provide the ideal environment for the development and optimization of smart services. Under this light, positioning services that harvest location fingerprinting based on received signal strength indications (RSSIs) are widely popular due to the massive data generation that IoT settings provide. However, the labor-intensive and repetitive task of the radio map construction through offline RSSI fingerprint collection prevents such services from becoming standard equipment for future smart facilities. In this paper, we present a location-aware infrastructure that combines a broad sensing layer, edge computing, and centralized cloud federation support. Our setting gives rise to a sensing mechanism that enables in-facility crowdsourcing able to aid fingerprinting localization services. To that end, instead of extensive offline measurements, we use the facility occupants to gather unlabeled RSSI samples. To support the localization functionality, we develop a probabilistic cell-based model that is constructed by an unsupervised learning algorithm. Our black-box approach maintains the positioning accuracy regardless of changes in the underlying hardware or indoor environment. To evaluate our approach, we have deployed a multistorey facility testbed and performed an extensive real-subject trial to gather the unlabeled fingerprint dataset. The proposed unsupervised method yields average location classification accuracy of 0.8 that can rise up to 0.9 when a semi-supervised approach is considered. We also provide insights into the performance of the proposed infrastructure regarding mobility tracking, and under varying deployment scenarios.
Author Sikeridis, Dimitrios
Devetsikiotis, Michael
Rimal, Bhaskar Prasad
Papapanagiotou, Ioannis
Author_xml – sequence: 1
  givenname: Dimitrios
  orcidid: 0000-0002-5102-0090
  surname: Sikeridis
  fullname: Sikeridis, Dimitrios
  email: dsike@unm.edu
  organization: Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
– sequence: 2
  givenname: Bhaskar Prasad
  surname: Rimal
  fullname: Rimal, Bhaskar Prasad
  email: bhaskar@unm.edu
  organization: Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
– sequence: 3
  givenname: Ioannis
  surname: Papapanagiotou
  fullname: Papapanagiotou, Ioannis
  email: ipapapa@unm.edu
  organization: Netflix, Los Gatos, CA, USA
– sequence: 4
  givenname: Michael
  surname: Devetsikiotis
  fullname: Devetsikiotis, Michael
  email: mdevets@unm.edu
  organization: Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
BookMark eNp9kEtLAzEUhYNUsNb-AHFTcD1jHpOZZFlKWysD3bTrcCfNSMqY1GRq8d87Y4uIC1f3XDjffZxbNHDeGYTuCU4JwfLpZbXepBQTkVJBsMDiCg0po0WS5Tkd_NI3aBzjHmPcYZzIfIiWWxePBxM-bDS7ySz40y6Zxmhj27WlgeCse53MHVRNL0qvobXeJdMTBDNZgLaNba2Jd-i6hiaa8aWO0HYx38yek3K9XM2mZaIZl23CATOtMVDQFeU1kUBYZaDojtE0qyQVOdc6zznIuoAauMBkxzNcF8R0LGUj9Hieewj-_Whiq_b-GFy3UlGSy4wVIis6Fzm7dPAxBlOrQ7BvED4VwaqPTPWRqT4ydYmsY4o_jLbt97NtANv8Sz6cSWuM-dkkGOYZp-wLeZN6eA
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_JSEN_2020_3041331
crossref_primary_10_1155_2021_1614055
crossref_primary_10_3390_s24144586
crossref_primary_10_1109_JBHI_2024_3406737
crossref_primary_10_1109_JIOT_2022_3230913
crossref_primary_10_1109_JIOT_2019_2912808
crossref_primary_10_3390_info14060320
crossref_primary_10_1109_JIOT_2019_2955115
crossref_primary_10_1109_TBDATA_2024_3489425
crossref_primary_10_1155_2019_5216495
crossref_primary_10_1109_TAES_2022_3169126
crossref_primary_10_1109_TGCN_2018_2885645
crossref_primary_10_1109_JIOT_2021_3135700
crossref_primary_10_1016_j_iot_2021_100397
crossref_primary_10_1080_09205071_2019_1667268
crossref_primary_10_1109_COMST_2019_2911558
crossref_primary_10_1109_COMST_2019_2951036
crossref_primary_10_3390_app13116768
crossref_primary_10_1016_j_jnca_2018_09_003
crossref_primary_10_1109_TWC_2024_3413671
crossref_primary_10_1109_JIOT_2019_2957293
crossref_primary_10_4018_IJITSA_318658
Cites_doi 10.1023/A:1007413511361
10.1109/ICC.2017.7996508
10.1109/TITS.2016.2594479
10.1109/TPDS.2012.179
10.1109/INFOCOM.2015.7218669
10.1145/2979683.2979687
10.1109/JIOT.2015.2506258
10.1145/3083187.3083213
10.1109/IPIN.2016.7743684
10.1109/TPAMI.2011.165
10.1109/MAP.2003.1232163
10.1145/2348543.2348580
10.1109/INFCOM.2000.832252
10.1109/TPAMI.2007.1078
10.1109/TMC.2014.2320254
10.1109/TMC.2007.1025
10.1109/PERCOMW.2017.7917559
10.1109/JIOT.2015.2442956
10.1145/2079296.2079299
10.1002/wcm.2678
10.1109/MWC.2016.7498078
10.1109/PERCOMW.2016.7457140
10.1109/JSAC.2015.2430281
10.1162/neco.1996.8.1.129
10.1109/INFCOMW.2017.8116393
10.1109/34.990138
10.1016/j.ipm.2009.03.002
10.1109/INFOCOM.2015.7218637
10.1109/MCOM.2016.1600546CM
10.1109/34.232078
10.2307/2346806
10.1145/1859995.1860016
10.1109/GlobalSIP.2017.8309074
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TVT.2016.2545523
10.1109/TMC.2014.2343636
10.1109/TMC.2015.2506585
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2018.2810808
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 4713
ExternalDocumentID 10_1109_JIOT_2018_2810808
8305452
Genre orig-research
GrantInformation_xml – fundername: IBM Faculty Award
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-5a03cc0a2acb25f19a13bea7519c24b92865cc665a9f7afa5801d540f71e5a023
IEDL.DBID RIE
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456475500044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Sun Nov 09 08:13:10 EST 2025
Sat Nov 29 06:16:43 EST 2025
Tue Nov 18 20:55:37 EST 2025
Wed Aug 27 03:02:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-5a03cc0a2acb25f19a13bea7519c24b92865cc665a9f7afa5801d540f71e5a023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5102-0090
PQID 2169437847
PQPubID 2040421
PageCount 15
ParticipantIDs ieee_primary_8305452
crossref_primary_10_1109_JIOT_2018_2810808
proquest_journals_2169437847
crossref_citationtrail_10_1109_JIOT_2018_2810808
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
sikeridis (ref27) 2017
ref34
ref37
ref15
ref36
ref14
liu (ref4) 2013
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
mohammadi (ref16) 0
ref18
wu (ref8) 2013; 24
chen (ref24) 2008; 49
murphy (ref19) 2012
sikeridis (ref31) 2018
ref45
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
(ref28) 2018
ref29
ref7
ref9
ref3
ref6
ref5
ref40
(ref12) 2014
References_xml – ident: ref20
  doi: 10.1023/A:1007413511361
– ident: ref11
  doi: 10.1109/ICC.2017.7996508
– ident: ref43
  doi: 10.1109/TITS.2016.2594479
– volume: 24
  start-page: 839
  year: 2013
  ident: ref8
  article-title: WILL: Wireless indoor localization without site survey
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2012.179
– ident: ref18
  doi: 10.1109/INFOCOM.2015.7218669
– ident: ref41
  doi: 10.1145/2979683.2979687
– start-page: 1
  year: 2013
  ident: ref4
  article-title: Indoor localization on mobile phone platforms using embedded inertial sensors
  publication-title: Proc IEEE Workshop on Position Nav Commun (WPNC)
– ident: ref1
  doi: 10.1109/JIOT.2015.2506258
– ident: ref30
  doi: 10.1145/3083187.3083213
– ident: ref29
  doi: 10.1109/IPIN.2016.7743684
– volume: 49
  year: 2008
  ident: ref24
  publication-title: Correlative Learning A Basis for Brain and Adaptive Systems
– ident: ref39
  doi: 10.1109/TPAMI.2011.165
– ident: ref13
  doi: 10.1109/MAP.2003.1232163
– ident: ref7
  doi: 10.1145/2348543.2348580
– ident: ref9
  doi: 10.1109/INFCOM.2000.832252
– start-page: 40
  year: 2017
  ident: ref27
  article-title: A cloud-assisted infrastructure for occupancy tracking in smart facilities
  publication-title: Proc IBM Cloud Acad Conf (ICA CON)
– ident: ref33
  doi: 10.1109/TPAMI.2007.1078
– ident: ref45
  doi: 10.1109/TMC.2014.2320254
– ident: ref37
  doi: 10.1109/TMC.2007.1025
– ident: ref15
  doi: 10.1109/PERCOMW.2017.7917559
– year: 2018
  ident: ref28
  publication-title: MQ Telemetry Transport
– year: 0
  ident: ref16
  article-title: Semi-supervised deep reinforcement learning in support of IoT and smart city services
  publication-title: IEEE Internet of Things Journal
– ident: ref17
  doi: 10.1109/JIOT.2015.2442956
– year: 2014
  ident: ref12
  publication-title: Apple ibeacon
– ident: ref5
  doi: 10.1145/2079296.2079299
– ident: ref40
  doi: 10.1002/wcm.2678
– ident: ref44
  doi: 10.1109/MWC.2016.7498078
– year: 2012
  ident: ref19
  publication-title: Machine Learning A Probabilistic Perspective
– ident: ref2
  doi: 10.1109/PERCOMW.2016.7457140
– ident: ref6
  doi: 10.1109/JSAC.2015.2430281
– ident: ref25
  doi: 10.1162/neco.1996.8.1.129
– ident: ref26
  doi: 10.1109/INFCOMW.2017.8116393
– ident: ref22
  doi: 10.1109/34.990138
– ident: ref32
  doi: 10.1016/j.ipm.2009.03.002
– ident: ref10
  doi: 10.1109/INFOCOM.2015.7218637
– ident: ref42
  doi: 10.1109/MCOM.2016.1600546CM
– ident: ref34
  doi: 10.1109/34.232078
– ident: ref23
  doi: 10.2307/2346806
– ident: ref36
  doi: 10.1145/1859995.1860016
– ident: ref3
  doi: 10.1109/GlobalSIP.2017.8309074
– ident: ref21
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref35
  doi: 10.1109/TVT.2016.2545523
– ident: ref38
  doi: 10.1109/TMC.2014.2343636
– year: 2018
  ident: ref31
  article-title: BLEBeacon: A real-subject trial dataset from mobile Bluetooth low energy beacons
  publication-title: arXiv preprint arxiv 1802 05807
– ident: ref14
  doi: 10.1109/TMC.2015.2506585
SSID ssj0001105196
Score 2.3257954
Snippet The accelerated evolution of Internet of Things (IoT) architectures and their incorporation in vehicles, buildings, or cities provide the ideal environment for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4699
SubjectTerms Accuracy
Bluetooth low energy (BLE)
Computational modeling
Computer architecture
crowdsensing
Edge computing
Fingerprinting
Fingerprints
Indoor environments
indoor localization
Infrastructure
Internet of Things
Internet of Things (IoT)
Localization
location-aware infrastructure
Machine learning
Microprocessors
Position (location)
Probabilistic logic
Sensors
Signal strength
smart environment
unsupervised learning
Wireless communication
Title Unsupervised Crowd-Assisted Learning Enabling Location-Aware Facilities
URI https://ieeexplore.ieee.org/document/8305452
https://www.proquest.com/docview/2169437847
Volume 5
WOSCitedRecordID wos000456475500044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4cGLU6c4ndKDJzFbmzZNcxxj8wOZHjbYraRpIoJ0Yx_675vXZhNRBG855JXyfsn7yvsAuKImilguGGHMZCSSTBLJmBWGVtcblcU6Vn45bIKPRsl0Kp5rcLOthdFal8lnuoPL8i0_n6k1hsq6iT2cEbMCd4fzuKrV-oqnBGiMxO7hMvBF9-H-aYy5W0mHJphJl3xTPeUslR8CuNQqw8b__ucA9p316PUquA-hposjaGwmM3juojbhdlIs13MUA0ude33raufEAoGQ5p5rqfriDbBuChePsypwR3ofcqG9oVSYMWt96GOYDAfj_h1xIxOICplYESb9UClfUqkyykwgZBBmWnLLGkWjTGAdqlJxzKQwXBrJrILKrdFmeKAtLQ1PoF7MCn0KHrPqLaeZkgK7CgaJlJRzo6x5l-kkykwL_A03U-X6ieNYi7e09Ct8kSIAKQKQOgBacL0lmVfNNP7a3ESObzc6ZregvYEsdddtmdIgFlHIraY9-53qHPbw21UeShvqq8VaX8Cuel-9LheX5Un6BBYQxyg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8haqIXUdGIou7gyTjYunZbj4SAoIgeIOG2dF1rTAwQPvTft28rGKMx8dZDX7a8X_u--j4ArommlGWcuYzp1KWCCVcwZoSh0fVapqEKpZcPm4gGg3g85s8luN3Uwiil8uQzVcdl_pafTeUKQ2WN2BxOyozA3WaUEq-o1vqKqPhojoT26dL3eOO-9zTE7K24TmLMpYu_KZ98msoPEZzrlU75f390APvWfnSaBeCHUFKTIyivZzM49qpW4G40WaxmKAgWKnNaxtnOXAMFgpo5tqnqi9PGyilc9KdF6M5tfoi5cjpCYs6s8aKPYdRpD1td1w5NcGXA-NJlwguk9AQRMiVM-1z4QapEZFgjCU05VqJKGYZMcB0JLZhRUZkx23TkK0NLghPYmkwn6hQcZhRcRlIpOPYV9GMhSBRpaQy8VMU01VXw1txMpO0ojoMt3pLcs_B4ggAkCEBiAajCzYZkVrTT-GtzBTm-2WiZXYXaGrLEXrhFQvyQ0yAyuvbsd6or2O0OH_tJvzd4OIc9_E6RlVKDreV8pS5gR74vXxfzy_xUfQKbkMpv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Crowd-Assisted+Learning+Enabling+Location-Aware+Facilities&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Sikeridis%2C+Dimitrios&rft.au=Rimal%2C+Bhaskar+Prasad&rft.au=Papapanagiotou%2C+Ioannis&rft.au=Devetsikiotis%2C+Michael&rft.date=2018-12-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=5&rft.issue=6&rft.spage=4699&rft.epage=4713&rft_id=info:doi/10.1109%2FJIOT.2018.2810808&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2018_2810808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon