Unsupervised Crowd-Assisted Learning Enabling Location-Aware Facilities
The accelerated evolution of Internet of Things (IoT) architectures and their incorporation in vehicles, buildings, or cities provide the ideal environment for the development and optimization of smart services. Under this light, positioning services that harvest location fingerprinting based on rec...
Uložené v:
| Vydané v: | IEEE internet of things journal Ročník 5; číslo 6; s. 4699 - 4713 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2327-4662, 2327-4662 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The accelerated evolution of Internet of Things (IoT) architectures and their incorporation in vehicles, buildings, or cities provide the ideal environment for the development and optimization of smart services. Under this light, positioning services that harvest location fingerprinting based on received signal strength indications (RSSIs) are widely popular due to the massive data generation that IoT settings provide. However, the labor-intensive and repetitive task of the radio map construction through offline RSSI fingerprint collection prevents such services from becoming standard equipment for future smart facilities. In this paper, we present a location-aware infrastructure that combines a broad sensing layer, edge computing, and centralized cloud federation support. Our setting gives rise to a sensing mechanism that enables in-facility crowdsourcing able to aid fingerprinting localization services. To that end, instead of extensive offline measurements, we use the facility occupants to gather unlabeled RSSI samples. To support the localization functionality, we develop a probabilistic cell-based model that is constructed by an unsupervised learning algorithm. Our black-box approach maintains the positioning accuracy regardless of changes in the underlying hardware or indoor environment. To evaluate our approach, we have deployed a multistorey facility testbed and performed an extensive real-subject trial to gather the unlabeled fingerprint dataset. The proposed unsupervised method yields average location classification accuracy of 0.8 that can rise up to 0.9 when a semi-supervised approach is considered. We also provide insights into the performance of the proposed infrastructure regarding mobility tracking, and under varying deployment scenarios. |
|---|---|
| AbstractList | The accelerated evolution of Internet of Things (IoT) architectures and their incorporation in vehicles, buildings, or cities provide the ideal environment for the development and optimization of smart services. Under this light, positioning services that harvest location fingerprinting based on received signal strength indications (RSSIs) are widely popular due to the massive data generation that IoT settings provide. However, the labor-intensive and repetitive task of the radio map construction through offline RSSI fingerprint collection prevents such services from becoming standard equipment for future smart facilities. In this paper, we present a location-aware infrastructure that combines a broad sensing layer, edge computing, and centralized cloud federation support. Our setting gives rise to a sensing mechanism that enables in-facility crowdsourcing able to aid fingerprinting localization services. To that end, instead of extensive offline measurements, we use the facility occupants to gather unlabeled RSSI samples. To support the localization functionality, we develop a probabilistic cell-based model that is constructed by an unsupervised learning algorithm. Our black-box approach maintains the positioning accuracy regardless of changes in the underlying hardware or indoor environment. To evaluate our approach, we have deployed a multistorey facility testbed and performed an extensive real-subject trial to gather the unlabeled fingerprint dataset. The proposed unsupervised method yields average location classification accuracy of 0.8 that can rise up to 0.9 when a semi-supervised approach is considered. We also provide insights into the performance of the proposed infrastructure regarding mobility tracking, and under varying deployment scenarios. |
| Author | Sikeridis, Dimitrios Devetsikiotis, Michael Rimal, Bhaskar Prasad Papapanagiotou, Ioannis |
| Author_xml | – sequence: 1 givenname: Dimitrios orcidid: 0000-0002-5102-0090 surname: Sikeridis fullname: Sikeridis, Dimitrios email: dsike@unm.edu organization: Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA – sequence: 2 givenname: Bhaskar Prasad surname: Rimal fullname: Rimal, Bhaskar Prasad email: bhaskar@unm.edu organization: Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA – sequence: 3 givenname: Ioannis surname: Papapanagiotou fullname: Papapanagiotou, Ioannis email: ipapapa@unm.edu organization: Netflix, Los Gatos, CA, USA – sequence: 4 givenname: Michael surname: Devetsikiotis fullname: Devetsikiotis, Michael email: mdevets@unm.edu organization: Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA |
| BookMark | eNp9kEtLAzEUhYNUsNb-AHFTcD1jHpOZZFlKWysD3bTrcCfNSMqY1GRq8d87Y4uIC1f3XDjffZxbNHDeGYTuCU4JwfLpZbXepBQTkVJBsMDiCg0po0WS5Tkd_NI3aBzjHmPcYZzIfIiWWxePBxM-bDS7ySz40y6Zxmhj27WlgeCse53MHVRNL0qvobXeJdMTBDNZgLaNba2Jd-i6hiaa8aWO0HYx38yek3K9XM2mZaIZl23CATOtMVDQFeU1kUBYZaDojtE0qyQVOdc6zznIuoAauMBkxzNcF8R0LGUj9Hieewj-_Whiq_b-GFy3UlGSy4wVIis6Fzm7dPAxBlOrQ7BvED4VwaqPTPWRqT4ydYmsY4o_jLbt97NtANv8Sz6cSWuM-dkkGOYZp-wLeZN6eA |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_1109_JSEN_2020_3041331 crossref_primary_10_1155_2021_1614055 crossref_primary_10_3390_s24144586 crossref_primary_10_1109_JBHI_2024_3406737 crossref_primary_10_1109_JIOT_2022_3230913 crossref_primary_10_1109_JIOT_2019_2912808 crossref_primary_10_3390_info14060320 crossref_primary_10_1109_JIOT_2019_2955115 crossref_primary_10_1109_TBDATA_2024_3489425 crossref_primary_10_1155_2019_5216495 crossref_primary_10_1109_TAES_2022_3169126 crossref_primary_10_1109_TGCN_2018_2885645 crossref_primary_10_1109_JIOT_2021_3135700 crossref_primary_10_1016_j_iot_2021_100397 crossref_primary_10_1080_09205071_2019_1667268 crossref_primary_10_1109_COMST_2019_2911558 crossref_primary_10_1109_COMST_2019_2951036 crossref_primary_10_3390_app13116768 crossref_primary_10_1016_j_jnca_2018_09_003 crossref_primary_10_1109_TWC_2024_3413671 crossref_primary_10_1109_JIOT_2019_2957293 crossref_primary_10_4018_IJITSA_318658 |
| Cites_doi | 10.1023/A:1007413511361 10.1109/ICC.2017.7996508 10.1109/TITS.2016.2594479 10.1109/TPDS.2012.179 10.1109/INFOCOM.2015.7218669 10.1145/2979683.2979687 10.1109/JIOT.2015.2506258 10.1145/3083187.3083213 10.1109/IPIN.2016.7743684 10.1109/TPAMI.2011.165 10.1109/MAP.2003.1232163 10.1145/2348543.2348580 10.1109/INFCOM.2000.832252 10.1109/TPAMI.2007.1078 10.1109/TMC.2014.2320254 10.1109/TMC.2007.1025 10.1109/PERCOMW.2017.7917559 10.1109/JIOT.2015.2442956 10.1145/2079296.2079299 10.1002/wcm.2678 10.1109/MWC.2016.7498078 10.1109/PERCOMW.2016.7457140 10.1109/JSAC.2015.2430281 10.1162/neco.1996.8.1.129 10.1109/INFCOMW.2017.8116393 10.1109/34.990138 10.1016/j.ipm.2009.03.002 10.1109/INFOCOM.2015.7218637 10.1109/MCOM.2016.1600546CM 10.1109/34.232078 10.2307/2346806 10.1145/1859995.1860016 10.1109/GlobalSIP.2017.8309074 10.1111/j.2517-6161.1977.tb01600.x 10.1109/TVT.2016.2545523 10.1109/TMC.2014.2343636 10.1109/TMC.2015.2506585 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2018.2810808 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 4713 |
| ExternalDocumentID | 10_1109_JIOT_2018_2810808 8305452 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: IBM Faculty Award |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-5a03cc0a2acb25f19a13bea7519c24b92865cc665a9f7afa5801d540f71e5a023 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456475500044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Sun Nov 09 08:13:10 EST 2025 Sat Nov 29 06:16:43 EST 2025 Tue Nov 18 20:55:37 EST 2025 Wed Aug 27 03:02:50 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-5a03cc0a2acb25f19a13bea7519c24b92865cc665a9f7afa5801d540f71e5a023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5102-0090 |
| PQID | 2169437847 |
| PQPubID | 2040421 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_8305452 crossref_primary_10_1109_JIOT_2018_2810808 proquest_journals_2169437847 crossref_citationtrail_10_1109_JIOT_2018_2810808 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-01 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 sikeridis (ref27) 2017 ref34 ref37 ref15 ref36 ref14 liu (ref4) 2013 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 mohammadi (ref16) 0 ref18 wu (ref8) 2013; 24 chen (ref24) 2008; 49 murphy (ref19) 2012 sikeridis (ref31) 2018 ref45 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 (ref28) 2018 ref29 ref7 ref9 ref3 ref6 ref5 ref40 (ref12) 2014 |
| References_xml | – ident: ref20 doi: 10.1023/A:1007413511361 – ident: ref11 doi: 10.1109/ICC.2017.7996508 – ident: ref43 doi: 10.1109/TITS.2016.2594479 – volume: 24 start-page: 839 year: 2013 ident: ref8 article-title: WILL: Wireless indoor localization without site survey publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2012.179 – ident: ref18 doi: 10.1109/INFOCOM.2015.7218669 – ident: ref41 doi: 10.1145/2979683.2979687 – start-page: 1 year: 2013 ident: ref4 article-title: Indoor localization on mobile phone platforms using embedded inertial sensors publication-title: Proc IEEE Workshop on Position Nav Commun (WPNC) – ident: ref1 doi: 10.1109/JIOT.2015.2506258 – ident: ref30 doi: 10.1145/3083187.3083213 – ident: ref29 doi: 10.1109/IPIN.2016.7743684 – volume: 49 year: 2008 ident: ref24 publication-title: Correlative Learning A Basis for Brain and Adaptive Systems – ident: ref39 doi: 10.1109/TPAMI.2011.165 – ident: ref13 doi: 10.1109/MAP.2003.1232163 – ident: ref7 doi: 10.1145/2348543.2348580 – ident: ref9 doi: 10.1109/INFCOM.2000.832252 – start-page: 40 year: 2017 ident: ref27 article-title: A cloud-assisted infrastructure for occupancy tracking in smart facilities publication-title: Proc IBM Cloud Acad Conf (ICA CON) – ident: ref33 doi: 10.1109/TPAMI.2007.1078 – ident: ref45 doi: 10.1109/TMC.2014.2320254 – ident: ref37 doi: 10.1109/TMC.2007.1025 – ident: ref15 doi: 10.1109/PERCOMW.2017.7917559 – year: 2018 ident: ref28 publication-title: MQ Telemetry Transport – year: 0 ident: ref16 article-title: Semi-supervised deep reinforcement learning in support of IoT and smart city services publication-title: IEEE Internet of Things Journal – ident: ref17 doi: 10.1109/JIOT.2015.2442956 – year: 2014 ident: ref12 publication-title: Apple ibeacon – ident: ref5 doi: 10.1145/2079296.2079299 – ident: ref40 doi: 10.1002/wcm.2678 – ident: ref44 doi: 10.1109/MWC.2016.7498078 – year: 2012 ident: ref19 publication-title: Machine Learning A Probabilistic Perspective – ident: ref2 doi: 10.1109/PERCOMW.2016.7457140 – ident: ref6 doi: 10.1109/JSAC.2015.2430281 – ident: ref25 doi: 10.1162/neco.1996.8.1.129 – ident: ref26 doi: 10.1109/INFCOMW.2017.8116393 – ident: ref22 doi: 10.1109/34.990138 – ident: ref32 doi: 10.1016/j.ipm.2009.03.002 – ident: ref10 doi: 10.1109/INFOCOM.2015.7218637 – ident: ref42 doi: 10.1109/MCOM.2016.1600546CM – ident: ref34 doi: 10.1109/34.232078 – ident: ref23 doi: 10.2307/2346806 – ident: ref36 doi: 10.1145/1859995.1860016 – ident: ref3 doi: 10.1109/GlobalSIP.2017.8309074 – ident: ref21 doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref35 doi: 10.1109/TVT.2016.2545523 – ident: ref38 doi: 10.1109/TMC.2014.2343636 – year: 2018 ident: ref31 article-title: BLEBeacon: A real-subject trial dataset from mobile Bluetooth low energy beacons publication-title: arXiv preprint arxiv 1802 05807 – ident: ref14 doi: 10.1109/TMC.2015.2506585 |
| SSID | ssj0001105196 |
| Score | 2.3257954 |
| Snippet | The accelerated evolution of Internet of Things (IoT) architectures and their incorporation in vehicles, buildings, or cities provide the ideal environment for... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4699 |
| SubjectTerms | Accuracy Bluetooth low energy (BLE) Computational modeling Computer architecture crowdsensing Edge computing Fingerprinting Fingerprints Indoor environments indoor localization Infrastructure Internet of Things Internet of Things (IoT) Localization location-aware infrastructure Machine learning Microprocessors Position (location) Probabilistic logic Sensors Signal strength smart environment unsupervised learning Wireless communication |
| Title | Unsupervised Crowd-Assisted Learning Enabling Location-Aware Facilities |
| URI | https://ieeexplore.ieee.org/document/8305452 https://www.proquest.com/docview/2169437847 |
| Volume | 5 |
| WOSCitedRecordID | wos000456475500044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4cGLU6c4ndKDJzFbmzZNcxxj8wOZHjbYraRpIoJ0Yx_675vXZhNRBG855JXyfsn7yvsAuKImilguGGHMZCSSTBLJmBWGVtcblcU6Vn45bIKPRsl0Kp5rcLOthdFal8lnuoPL8i0_n6k1hsq6iT2cEbMCd4fzuKrV-oqnBGiMxO7hMvBF9-H-aYy5W0mHJphJl3xTPeUslR8CuNQqw8b__ucA9p316PUquA-hposjaGwmM3juojbhdlIs13MUA0ude33raufEAoGQ5p5rqfriDbBuChePsypwR3ofcqG9oVSYMWt96GOYDAfj_h1xIxOICplYESb9UClfUqkyykwgZBBmWnLLGkWjTGAdqlJxzKQwXBrJrILKrdFmeKAtLQ1PoF7MCn0KHrPqLaeZkgK7CgaJlJRzo6x5l-kkykwL_A03U-X6ieNYi7e09Ct8kSIAKQKQOgBacL0lmVfNNP7a3ESObzc6ZregvYEsdddtmdIgFlHIraY9-53qHPbw21UeShvqq8VaX8Cuel-9LheX5Un6BBYQxyg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8haqIXUdGIou7gyTjYunZbj4SAoIgeIOG2dF1rTAwQPvTft28rGKMx8dZDX7a8X_u--j4ArommlGWcuYzp1KWCCVcwZoSh0fVapqEKpZcPm4gGg3g85s8luN3Uwiil8uQzVcdl_pafTeUKQ2WN2BxOyozA3WaUEq-o1vqKqPhojoT26dL3eOO-9zTE7K24TmLMpYu_KZ98msoPEZzrlU75f390APvWfnSaBeCHUFKTIyivZzM49qpW4G40WaxmKAgWKnNaxtnOXAMFgpo5tqnqi9PGyilc9KdF6M5tfoi5cjpCYs6s8aKPYdRpD1td1w5NcGXA-NJlwguk9AQRMiVM-1z4QapEZFgjCU05VqJKGYZMcB0JLZhRUZkx23TkK0NLghPYmkwn6hQcZhRcRlIpOPYV9GMhSBRpaQy8VMU01VXw1txMpO0ojoMt3pLcs_B4ggAkCEBiAajCzYZkVrTT-GtzBTm-2WiZXYXaGrLEXrhFQvyQ0yAyuvbsd6or2O0OH_tJvzd4OIc9_E6RlVKDreV8pS5gR74vXxfzy_xUfQKbkMpv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Crowd-Assisted+Learning+Enabling+Location-Aware+Facilities&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Sikeridis%2C+Dimitrios&rft.au=Rimal%2C+Bhaskar+Prasad&rft.au=Papapanagiotou%2C+Ioannis&rft.au=Devetsikiotis%2C+Michael&rft.date=2018-12-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=5&rft.issue=6&rft.spage=4699&rft.epage=4713&rft_id=info:doi/10.1109%2FJIOT.2018.2810808&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2018_2810808 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |