Integrating Hyperspectral, Thermal, and Ground Data with Machine Learning Algorithms Enhances the Prediction of Grapevine Yield and Berry Composition
Accurately predicting grapevine yield and quality is critical for optimising vineyard management and ensuring economic viability. Numerous studies have reported the complexity in modelling grapevine yield and quality due to variability in the canopy structure, challenges in incorporating soil and mi...
Saved in:
| Published in: | Remote sensing (Basel, Switzerland) Vol. 16; no. 23; p. 4539 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.12.2024
|
| Subjects: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurately predicting grapevine yield and quality is critical for optimising vineyard management and ensuring economic viability. Numerous studies have reported the complexity in modelling grapevine yield and quality due to variability in the canopy structure, challenges in incorporating soil and microclimatic factors, and management practices throughout the growing season. The use of multimodal data and machine learning (ML) algorithms could overcome these challenges. Our study aimed to assess the potential of multimodal data (hyperspectral vegetation indices (VIs), thermal indices, and canopy state variables) and ML algorithms to predict grapevine yield components and berry composition parameters. The study was conducted during the 2019/20 and 2020/21 grapevine growing seasons in two South Australian vineyards. Hyperspectral and thermal data of the canopy were collected at several growth stages. Simultaneously, grapevine canopy state variables, including the fractional intercepted photosynthetically active radiation (fiPAR), stem water potential (Ψstem), leaf chlorophyll content (LCC), and leaf gas exchange, were collected. Yield components were recorded at harvest. Berry composition parameters, such as total soluble solids (TSSs), titratable acidity (TA), pH, and the maturation index (IMAD), were measured at harvest. A total of 24 hyperspectral VIs and 3 thermal indices were derived from the proximal hyperspectral and thermal data. These data, together with the canopy state variable data, were then used as inputs for the modelling. Both linear and non-linear regression models, such as ridge (RR), Bayesian ridge (BRR), random forest (RF), gradient boosting (GB), K-Nearest Neighbour (KNN), and decision trees (DTs), were employed to model grape yield components and berry composition parameters. The results indicated that the GB model consistently outperformed the other models. The GB model had the best performance for the total number of clusters per vine (R2 = 0.77; RMSE = 0.56), average cluster weight (R2 = 0.93; RMSE = 0.00), average berry weight (R2 = 0.95; RMSE = 0.00), cluster weight (R2 = 0.95; RMSE = 0.13), and average berries per bunch (R2 = 0.93; RMSE = 0.83). For the yield, the RF model performed the best (R2 = 0.97; RMSE = 0.55). The GB model performed the best for the TSSs (R2 = 0.83; RMSE = 0.34), pH (R2 = 0.93; RMSE = 0.02), and IMAD (R2 = 0.88; RMSE = 0.19). However, the RF model performed best for the TA (R2 = 0.83; RMSE = 0.33). Our results also revealed the top 10 predictor variables for grapevine yield components and quality parameters, namely, the canopy temperature depression, LCC, fiPAR, normalised difference infrared index, Ψstem, stomatal conductance (gs), net photosynthesis (Pn), modified triangular vegetation index, modified red-edge simple ratio, and ANTgitelson index. These predictors significantly influence the grapevine growth, berry quality, and yield. The identification of these predictors of the grapevine yield and fruit composition can assist growers in improving vineyard management decisions and ultimately increase profitability. |
|---|---|
| AbstractList | Accurately predicting grapevine yield and quality is critical for optimising vineyard management and ensuring economic viability. Numerous studies have reported the complexity in modelling grapevine yield and quality due to variability in the canopy structure, challenges in incorporating soil and microclimatic factors, and management practices throughout the growing season. The use of multimodal data and machine learning (ML) algorithms could overcome these challenges. Our study aimed to assess the potential of multimodal data (hyperspectral vegetation indices (VIs), thermal indices, and canopy state variables) and ML algorithms to predict grapevine yield components and berry composition parameters. The study was conducted during the 2019/20 and 2020/21 grapevine growing seasons in two South Australian vineyards. Hyperspectral and thermal data of the canopy were collected at several growth stages. Simultaneously, grapevine canopy state variables, including the fractional intercepted photosynthetically active radiation (fiPAR), stem water potential (Ψ[sub.stem]), leaf chlorophyll content (LCC), and leaf gas exchange, were collected. Yield components were recorded at harvest. Berry composition parameters, such as total soluble solids (TSSs), titratable acidity (TA), pH, and the maturation index (IMAD), were measured at harvest. A total of 24 hyperspectral VIs and 3 thermal indices were derived from the proximal hyperspectral and thermal data. These data, together with the canopy state variable data, were then used as inputs for the modelling. Both linear and non-linear regression models, such as ridge (RR), Bayesian ridge (BRR), random forest (RF), gradient boosting (GB), K-Nearest Neighbour (KNN), and decision trees (DTs), were employed to model grape yield components and berry composition parameters. The results indicated that the GB model consistently outperformed the other models. The GB model had the best performance for the total number of clusters per vine (R[sup.2] = 0.77; RMSE = 0.56), average cluster weight (R[sup.2] = 0.93; RMSE = 0.00), average berry weight (R[sup.2] = 0.95; RMSE = 0.00), cluster weight (R[sup.2] = 0.95; RMSE = 0.13), and average berries per bunch (R[sup.2] = 0.93; RMSE = 0.83). For the yield, the RF model performed the best (R[sup.2] = 0.97; RMSE = 0.55). The GB model performed the best for the TSSs (R[sup.2] = 0.83; RMSE = 0.34), pH (R[sup.2] = 0.93; RMSE = 0.02), and IMAD (R[sup.2] = 0.88; RMSE = 0.19). However, the RF model performed best for the TA (R[sup.2] = 0.83; RMSE = 0.33). Our results also revealed the top 10 predictor variables for grapevine yield components and quality parameters, namely, the canopy temperature depression, LCC, fiPAR, normalised difference infrared index, Ψ[sub.stem], stomatal conductance (g[sub.s]), net photosynthesis (P[sub.n]), modified triangular vegetation index, modified red-edge simple ratio, and ANT[sub.gitelson] index. These predictors significantly influence the grapevine growth, berry quality, and yield. The identification of these predictors of the grapevine yield and fruit composition can assist growers in improving vineyard management decisions and ultimately increase profitability. Accurately predicting grapevine yield and quality is critical for optimising vineyard management and ensuring economic viability. Numerous studies have reported the complexity in modelling grapevine yield and quality due to variability in the canopy structure, challenges in incorporating soil and microclimatic factors, and management practices throughout the growing season. The use of multimodal data and machine learning (ML) algorithms could overcome these challenges. Our study aimed to assess the potential of multimodal data (hyperspectral vegetation indices (VIs), thermal indices, and canopy state variables) and ML algorithms to predict grapevine yield components and berry composition parameters. The study was conducted during the 2019/20 and 2020/21 grapevine growing seasons in two South Australian vineyards. Hyperspectral and thermal data of the canopy were collected at several growth stages. Simultaneously, grapevine canopy state variables, including the fractional intercepted photosynthetically active radiation (fiPAR), stem water potential (Ψstem), leaf chlorophyll content (LCC), and leaf gas exchange, were collected. Yield components were recorded at harvest. Berry composition parameters, such as total soluble solids (TSSs), titratable acidity (TA), pH, and the maturation index (IMAD), were measured at harvest. A total of 24 hyperspectral VIs and 3 thermal indices were derived from the proximal hyperspectral and thermal data. These data, together with the canopy state variable data, were then used as inputs for the modelling. Both linear and non-linear regression models, such as ridge (RR), Bayesian ridge (BRR), random forest (RF), gradient boosting (GB), K-Nearest Neighbour (KNN), and decision trees (DTs), were employed to model grape yield components and berry composition parameters. The results indicated that the GB model consistently outperformed the other models. The GB model had the best performance for the total number of clusters per vine (R2 = 0.77; RMSE = 0.56), average cluster weight (R2 = 0.93; RMSE = 0.00), average berry weight (R2 = 0.95; RMSE = 0.00), cluster weight (R2 = 0.95; RMSE = 0.13), and average berries per bunch (R2 = 0.93; RMSE = 0.83). For the yield, the RF model performed the best (R2 = 0.97; RMSE = 0.55). The GB model performed the best for the TSSs (R2 = 0.83; RMSE = 0.34), pH (R2 = 0.93; RMSE = 0.02), and IMAD (R2 = 0.88; RMSE = 0.19). However, the RF model performed best for the TA (R2 = 0.83; RMSE = 0.33). Our results also revealed the top 10 predictor variables for grapevine yield components and quality parameters, namely, the canopy temperature depression, LCC, fiPAR, normalised difference infrared index, Ψstem, stomatal conductance (gs), net photosynthesis (Pn), modified triangular vegetation index, modified red-edge simple ratio, and ANTgitelson index. These predictors significantly influence the grapevine growth, berry quality, and yield. The identification of these predictors of the grapevine yield and fruit composition can assist growers in improving vineyard management decisions and ultimately increase profitability. |
| Audience | Academic |
| Author | Sparkes, Debbie Murchie, Erik Jewan, Shaikh Singh, Ajit Cogato, Alessia Gautam, Deepak Billa, Lawal Pagay, Vinay |
| Author_xml | – sequence: 1 givenname: Shaikh orcidid: 0000-0003-2367-6196 surname: Jewan fullname: Jewan, Shaikh – sequence: 2 givenname: Deepak orcidid: 0000-0003-2852-4204 surname: Gautam fullname: Gautam, Deepak – sequence: 3 givenname: Debbie surname: Sparkes fullname: Sparkes, Debbie – sequence: 4 givenname: Ajit orcidid: 0000-0002-4159-4795 surname: Singh fullname: Singh, Ajit – sequence: 5 givenname: Lawal orcidid: 0000-0002-6894-5145 surname: Billa fullname: Billa, Lawal – sequence: 6 givenname: Alessia orcidid: 0000-0001-8354-7324 surname: Cogato fullname: Cogato, Alessia – sequence: 7 givenname: Erik surname: Murchie fullname: Murchie, Erik – sequence: 8 givenname: Vinay orcidid: 0000-0003-1916-2758 surname: Pagay fullname: Pagay, Vinay |
| BookMark | eNpNkc1u1DAUhSNUJErphiewxA4xxX9x4uUwLe1Ig2BRFqwix75OPMrYwfaA5kF4X5wOAuzFvbo-59OVz8vqwgcPVfWa4BvGJH4fExGU8ZrJZ9UlxQ1dcSrpxX_9i-o6pT0uhzEiMb-sfm19hiGq7PyAHk4zxDSDzlFN79DjCPGwNMobdB_DsZRblRX66fKIPik9Og9oByr6xb2ehhDLyyGhOz8qryGhPAL6EsE4nV3wKNjCUTP8WIzfHEzmif0BYjyhTTjMIblF-Kp6btWU4PpPvaq-frx73Dysdp_vt5v1bqVZLfOqbmlvaKMbSSylum-EFVArbDk2NWm0Aao01w20hoHgvcXUAhCwpqdaUMOuqu2Za4Lad3N0BxVPXVCuexqEOHQqZqcn6JjifS1U3WvecoKlFELqVrBWN6olTBbWmzNrjuH7EVLu9uEYfVm_Y4RzUrdMtkV1c1YNqkCdt6H8tS7XwMHpkqd1Zb5uiZQ151wUw9uzQceQUgT7d02CuyX27l_s7Ddd56KQ |
| Cites_doi | 10.1016/j.isprsjprs.2015.09.003 10.1023/A:1010933404324 10.1109/ICMLA51294.2020.00054 10.1002/agj2.21133 10.3390/agronomy12081819 10.3390/agriculture8070094 10.1111/j.1755-0238.1995.tb00086.x 10.1046/j.1469-8137.1999.00424.x 10.3390/agronomy11091789 10.1016/0034-4257(92)90089-3 10.3390/rs14133052 10.1007/s00271-021-00758-8 10.1016/S0034-4257(02)00010-X 10.1016/j.foodchem.2022.134321 10.1016/j.eja.2021.126339 10.3390/rs11070740 10.1016/j.agee.2010.09.007 10.1086/336486 10.1016/S0034-4257(00)00148-6 10.1016/0034-4257(95)00186-7 10.3390/app10144943 10.1080/014311697217396 10.1016/S0034-4257(01)00299-1 10.1016/j.compag.2020.105807 10.1093/jxb/erh213 10.1007/978-3-030-89010-0 10.20870/oeno-one.2017.51.1.1314 10.1046/j.1365-3040.1999.00468.x 10.3390/agronomy11101940 10.1016/j.biosystemseng.2023.06.001 10.1109/TIT.1967.1053964 10.1080/014311698215919 10.1186/s40538-015-0037-1 10.1016/S0168-1923(99)00030-1 10.1080/01621459.1979.10481600 10.20870/oeno-one.2020.54.3.2984 10.3390/rs10020202 10.1214/aos/1013203451 10.1016/j.scienta.2018.01.014 10.3389/fpls.2022.898722 10.3390/agronomy9110682 10.3390/agronomy12092091 10.3390/agriculture11080697 10.1016/0034-4257(91)90009-U 10.20870/oeno-one.2009.43.3.798 10.3390/s150408284 10.1111/ajgw.12298 10.1016/1011-1344(93)06963-4 10.5194/isprs-annals-V-3-2020-33-2020 10.1016/j.compag.2022.107089 10.1016/j.rse.2011.11.021 10.3390/plants11182419 10.1063/1.5016665 10.1016/j.rse.2005.05.006 10.1007/s11119-022-09950-y 10.1080/01431169308954010 10.3390/s22093249 10.3389/fpls.2022.835425 10.3390/agriculture11020127 10.1111/j.1755-0238.2011.00139.x 10.1016/j.compag.2022.106812 10.1016/j.rse.2005.09.002 10.1080/15538362.2018.1555509 10.20870/oeno-one.2023.57.2.7239 10.1111/aab.12155 10.2307/1936256 10.1016/j.rse.2003.12.013 10.1016/S0034-4257(00)00149-8 10.1078/0176-1617-00887 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.3390/rs16234539 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database (ProQuest) ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_3a4b56a5bc4841099669c8638c7a8139 A819954446 10_3390_rs16234539 |
| GeographicLocations | Australia United States |
| GeographicLocations_xml | – name: Australia – name: United States |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c359t-582bd27c791f22cb76f6e5a0f40d517cde2ac4c7e8d3e64bf02fee1efdb2c62d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001377653900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:44:25 EDT 2025 Fri Jul 25 11:37:43 EDT 2025 Tue Nov 04 18:25:26 EST 2025 Sat Nov 29 07:17:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-582bd27c791f22cb76f6e5a0f40d517cde2ac4c7e8d3e64bf02fee1efdb2c62d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6894-5145 0000-0003-2367-6196 0000-0003-1916-2758 0000-0001-8354-7324 0000-0003-2852-4204 0000-0002-4159-4795 |
| OpenAccessLink | https://doaj.org/article/3a4b56a5bc4841099669c8638c7a8139 |
| PQID | 3144158398 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3a4b56a5bc4841099669c8638c7a8139 proquest_journals_3144158398 gale_infotracacademiconefile_A819954446 crossref_primary_10_3390_rs16234539 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Ferro (ref_27) 2023; 231 Jones (ref_38) 1999; 22 Jiang (ref_44) 2020; 3 Blackburn (ref_58) 1998; 19 ref_13 ref_12 ref_11 ref_10 Chappelle (ref_57) 1992; 39 Laurent (ref_7) 2021; 130 Palacios (ref_8) 2022; 24 Gao (ref_18) 2020; 179 Serrano (ref_74) 2010; 139 ref_17 ref_15 Box (ref_64) 1979; 74 Tuccio (ref_72) 2011; 17 Poudyal (ref_14) 2022; 14 Rapaport (ref_1) 2015; 109 Dobrowski (ref_52) 2005; 97 Haboudane (ref_49) 2004; 90 Sims (ref_53) 2002; 81 Baret (ref_61) 1991; 35 ref_25 ref_69 ref_24 ref_23 ref_21 Friedman (ref_66) 2001; 29 Serrano (ref_4) 2012; 118 ref_20 (ref_63) 2018; 13 Liu (ref_16) 2022; 198 He (ref_6) 2022; 195 Armstrong (ref_70) 2023; 403 Vanzo (ref_78) 2023; 57 Anderson (ref_22) 2016; Volume 9866 Hardisky (ref_42) 1983; 49 Efendi (ref_68) 2017; 1913 Buttrose (ref_3) 1969; 130 Gamon (ref_59) 1999; 143 Arab (ref_28) 2021; 22 Somkuwar (ref_75) 2019; 19 Font (ref_26) 2015; 15 Cover (ref_67) 1967; 13 Penuelas (ref_41) 1997; 18 ref_71 Miller (ref_51) 2000; 74 Wang (ref_34) 2020; 54 Gitelson (ref_54) 1994; 22 ref_36 ref_33 Mohite (ref_19) 2017; Volume 10217 ref_31 ref_73 Gitelson (ref_60) 2003; 160 Molitor (ref_30) 2014; 165 Shellie (ref_32) 2018; 232 ref_39 Breiman (ref_65) 2001; 45 Jordan (ref_48) 1969; 50 Tregoat (ref_77) 2009; 43 Penuelas (ref_45) 1993; 14 Miller (ref_50) 2000; 74 Jones (ref_40) 1999; 95 Pagay (ref_35) 2022; 40 ref_46 Strachan (ref_43) 2002; 80 Zufferey (ref_76) 2017; 51 Rondeaux (ref_55) 1996; 55 Jones (ref_62) 2004; 55 Moran (ref_29) 2017; 23 ref_2 Penuelas (ref_56) 1995; 31 Coombe (ref_37) 1995; 1 ref_9 ref_5 Miller (ref_47) 2005; 99 |
| References_xml | – volume: 109 start-page: 88 year: 2015 ident: ref_1 article-title: Combining leaf physiology, hyperspectral imaging and partial least squares-regression (PLS-R) for grapevine water status assessment publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.09.003 – volume: 45 start-page: 5 year: 2001 ident: ref_65 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 13 start-page: 359 year: 2018 ident: ref_63 article-title: Ridge Regression and multicollinearity: An in-depth review publication-title: Model Assist. Stat. Appl. – ident: ref_20 doi: 10.1109/ICMLA51294.2020.00054 – volume: 14 start-page: 2320 year: 2022 ident: ref_14 article-title: Sugarcane yield prediction and genotype selection using unmanned aerial vehicle-based hyperspectral imaging and machine learning publication-title: Agron. J. doi: 10.1002/agj2.21133 – ident: ref_23 doi: 10.3390/agronomy12081819 – ident: ref_17 doi: 10.3390/agriculture8070094 – volume: 1 start-page: 104 year: 1995 ident: ref_37 article-title: Growth Stages of the Grapevine: Adoption of a system for identifying grapevine growth stages publication-title: Aust. J. Grape Wine Res. doi: 10.1111/j.1755-0238.1995.tb00086.x – volume: 143 start-page: 105 year: 1999 ident: ref_59 article-title: Assessing leaf pigment content and activity with a reflectometer publication-title: New Phytol. doi: 10.1046/j.1469-8137.1999.00424.x – ident: ref_11 doi: 10.3390/agronomy11091789 – volume: 39 start-page: 239 year: 1992 ident: ref_57 article-title: Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(92)90089-3 – ident: ref_15 doi: 10.3390/rs14133052 – volume: 40 start-page: 45 year: 2022 ident: ref_35 article-title: Evaluating a novel microtensiometer for continuous trunk water potential measurements in field-grown irrigated grapevines publication-title: Irrig. Sci. doi: 10.1007/s00271-021-00758-8 – volume: 81 start-page: 337 year: 2002 ident: ref_53 article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00010-X – volume: 403 start-page: 134321 year: 2023 ident: ref_70 article-title: Machine learning for classifying and predicting grape maturity indices using absorbance and fluorescence spectra publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.134321 – volume: 130 start-page: 126339 year: 2021 ident: ref_7 article-title: A review of the issues, methods and perspectives for yield estimation, prediction and forecasting in viticulture publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2021.126339 – ident: ref_9 doi: 10.3390/rs11070740 – volume: 139 start-page: 490 year: 2010 ident: ref_74 article-title: Assessing vineyard water status using the reflectance based Water Index publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.09.007 – volume: 130 start-page: 166 year: 1969 ident: ref_3 article-title: Fruitfulness in Grapevines: Effects of Light Intensity and Temperature publication-title: Bot. Gaz. doi: 10.1086/336486 – volume: 74 start-page: 582 year: 2000 ident: ref_51 article-title: Chlorophyll Fluorescence Effects on Vegetation Apparent Reflectance: I. Leaf-Level Measurements and Model Simulation publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00148-6 – volume: 55 start-page: 95 year: 1996 ident: ref_55 article-title: Optimization of soil-adjusted vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00186-7 – ident: ref_13 doi: 10.3390/app10144943 – volume: Volume 9866 start-page: 70 year: 2016 ident: ref_22 article-title: Vanden Detection of wine grape nutrient levels using visible and near infrared 1 nm spectral resolution remote sensing publication-title: Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping – volume: 18 start-page: 2869 year: 1997 ident: ref_41 article-title: Estimation of plant water concentration by the reflectance Water Index WI (R900/R970) publication-title: Int. J. Remote. Sens. doi: 10.1080/014311697217396 – volume: 80 start-page: 213 year: 2002 ident: ref_43 article-title: Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00299-1 – volume: 179 start-page: 105807 year: 2020 ident: ref_18 article-title: Early detection of grapevine leafroll disease in a red-berried wine grape cultivar using hyperspectral imaging publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105807 – volume: 22 start-page: 100485 year: 2021 ident: ref_28 article-title: Prediction of grape yields from time-series vegetation indices using satellite remote sensing and a machine-learning approach publication-title: Remote Sens. Appl. Soc. Environ. – volume: 55 start-page: 2427 year: 2004 ident: ref_62 article-title: Irrigation scheduling: Advantages and pitfalls of plant-based methods publication-title: J. Exp. Bot. doi: 10.1093/jxb/erh213 – ident: ref_71 doi: 10.1007/978-3-030-89010-0 – volume: 51 start-page: 37 year: 2017 ident: ref_76 article-title: The influence of water stress on plant hydraulics, gas exchange, berry composition and quality of Pinot Noir wines in Switzerland publication-title: OENO One doi: 10.20870/oeno-one.2017.51.1.1314 – volume: 22 start-page: 1043 year: 1999 ident: ref_38 article-title: Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces publication-title: Plant. Cell Environ. doi: 10.1046/j.1365-3040.1999.00468.x – ident: ref_24 doi: 10.3390/agronomy11101940 – volume: 231 start-page: 36 year: 2023 ident: ref_27 article-title: Assessment of vineyard vigour and yield spatio-temporal variability based on UAV high resolution multispectral images publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2023.06.001 – volume: 13 start-page: 21 year: 1967 ident: ref_67 article-title: Nearest Neighbor Pattern Classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – volume: 19 start-page: 657 year: 1998 ident: ref_58 article-title: Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves publication-title: Int. J. Remote Sens. doi: 10.1080/014311698215919 – ident: ref_73 doi: 10.1186/s40538-015-0037-1 – volume: 95 start-page: 139 year: 1999 ident: ref_40 article-title: Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(99)00030-1 – volume: 74 start-page: 1 year: 1979 ident: ref_64 article-title: Some Problems of Statistics and Everyday Life publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1979.10481600 – volume: 54 start-page: 469 year: 2020 ident: ref_34 article-title: Shoot thinning of Semillon in a hot climate did not improve yield and berry and wine quality publication-title: OENO One doi: 10.20870/oeno-one.2020.54.3.2984 – ident: ref_21 doi: 10.3390/rs10020202 – volume: 29 start-page: 1189 year: 2001 ident: ref_66 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Statist. doi: 10.1214/aos/1013203451 – volume: 232 start-page: 226 year: 2018 ident: ref_32 article-title: Water deficit severity during berry development alters timing of dormancy transitions in wine grape cultivar Malbec publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.01.014 – ident: ref_25 doi: 10.3389/fpls.2022.898722 – ident: ref_39 doi: 10.3390/agronomy9110682 – ident: ref_5 doi: 10.3390/agronomy12092091 – ident: ref_10 doi: 10.3390/agriculture11080697 – volume: 35 start-page: 161 year: 1991 ident: ref_61 article-title: Potentials and limits of vegetation indices for LAI and APAR assessment publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(91)90009-U – volume: 43 start-page: 121 year: 2009 ident: ref_77 article-title: Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? publication-title: OENO One doi: 10.20870/oeno-one.2009.43.3.798 – volume: 15 start-page: 8284 year: 2015 ident: ref_26 article-title: Vineyard yield estimation based on the analysis of high resolution images obtained with artificial illumination at night publication-title: Sensors doi: 10.3390/s150408284 – volume: 23 start-page: 390 year: 2017 ident: ref_29 article-title: Late pruning and carry-over effects on phenology, yield components and berry traits in Shiraz publication-title: Aust. J. Grape Wine Res. doi: 10.1111/ajgw.12298 – volume: 22 start-page: 247 year: 1994 ident: ref_54 article-title: Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/1011-1344(93)06963-4 – volume: 3 start-page: 33 year: 2020 ident: ref_44 article-title: A new index for identifying water body from sentinel-2 satellite remote sensing imagery publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-annals-V-3-2020-33-2020 – volume: 198 start-page: 107089 year: 2022 ident: ref_16 article-title: Remote-sensing estimation of potato above-ground biomass based on spectral and spatial features extracted from high-definition digital camera images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107089 – volume: 118 start-page: 249 year: 2012 ident: ref_4 article-title: Assessment of grape yield and composition using the reflectance based Water Index in Mediterranean rainfed vineyards publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.021 – ident: ref_69 doi: 10.3390/plants11182419 – volume: 1913 start-page: 20031 year: 2017 ident: ref_68 article-title: Effrihan A simulation study on Bayesian Ridge regression models for several collinearity levels publication-title: AIP Conf. Proc. doi: 10.1063/1.5016665 – volume: Volume 10217 start-page: 192 year: 2017 ident: ref_19 article-title: Detection of pesticide (Cyantraniliprole) residue on grapes using hyperspectral sensing publication-title: Sensing for Agriculture and Food Quality and Safety IX – volume: 97 start-page: 403 year: 2005 ident: ref_52 article-title: Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.05.006 – ident: ref_33 – volume: 31 start-page: 221 year: 1995 ident: ref_56 article-title: Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance publication-title: Photosynthetica – volume: 49 start-page: 77 year: 1983 ident: ref_42 article-title: The Influence of Soil Salinity, Growth Form, and Leaf Moisture on-the Spectral Radiance of partin a alterniflora Canopies publication-title: Photogramm. Eng. Remote Sens. – ident: ref_46 – volume: 24 start-page: 407 year: 2022 ident: ref_8 article-title: Early yield prediction in different grapevine varieties using computer vision and machine learning publication-title: Precis. Agric. doi: 10.1007/s11119-022-09950-y – volume: 14 start-page: 1887 year: 1993 ident: ref_45 article-title: The reflectance at the 950–970 nm region as an indicator of plant water status publication-title: Int. J. Remote. Sens. doi: 10.1080/01431169308954010 – ident: ref_12 doi: 10.3390/s22093249 – ident: ref_2 doi: 10.3389/fpls.2022.835425 – ident: ref_31 doi: 10.3390/agriculture11020127 – volume: 17 start-page: 181 year: 2011 ident: ref_72 article-title: Rapid and non-destructive method to assess in the vineyard grape berry anthocyanins under different seasonal and water conditions publication-title: Aust. J. Grape Wine Res. doi: 10.1111/j.1755-0238.2011.00139.x – volume: 195 start-page: 106812 year: 2022 ident: ref_6 article-title: Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106812 – volume: 99 start-page: 271 year: 2005 ident: ref_47 article-title: Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.09.002 – volume: 19 start-page: 437 year: 2019 ident: ref_75 article-title: Canopy Modification Influences Growth, Yield, Quality, and Powdery Mildew Incidence in Tas-A-Ganesh Grapevine publication-title: Int. J. Fruit Sci. doi: 10.1080/15538362.2018.1555509 – ident: ref_36 – volume: 57 start-page: 231 year: 2023 ident: ref_78 article-title: An investigation of vine water status as a major factor in the quality of Merlot wine produced in terraced and non-terraced vineyards in the Vipava Valley, Slovenia publication-title: OENO One doi: 10.20870/oeno-one.2023.57.2.7239 – volume: 165 start-page: 305 year: 2014 ident: ref_30 article-title: Epidemiology, identification and disease management of grape black rot and potentially useful metabolites of black rot pathogens for industrial applications—A review publication-title: Ann. Appl. Biol. doi: 10.1111/aab.12155 – volume: 50 start-page: 663 year: 1969 ident: ref_48 article-title: Derivation of Leaf-Area Index from Quality of Light on the Forest Floor publication-title: Ecology doi: 10.2307/1936256 – volume: 90 start-page: 337 year: 2004 ident: ref_49 article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.12.013 – volume: 74 start-page: 596 year: 2000 ident: ref_50 article-title: Chlorophyll Fluorescence Effects on Vegetation Apparent Reflectance: II. Laboratory and Airborne Canopy-Level Measurements with Hyperspectral Data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00149-8 – volume: 160 start-page: 271 year: 2003 ident: ref_60 article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-00887 |
| SSID | ssj0000331904 |
| Score | 2.3901286 |
| Snippet | Accurately predicting grapevine yield and quality is critical for optimising vineyard management and ensuring economic viability. Numerous studies have... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 4539 |
| SubjectTerms | Acidity Algorithms Bayesian analysis Berries Canopies canopy state variables Chlorophyll Clusters Composition Crop yields Data mining Decision trees Economics Fruits Gas exchange grapevine composition grapevine yield Grapevines Growing season International economic relations Learning algorithms Leaves Machine learning Mathematical models Modelling Parameters Photosynthesis Photosynthetically active radiation Physiology Predictions proximal sensing Regression analysis Regression models Sensors Soil structure State variable Stomata Stomatal conductance Vegetation Vegetation index vegetation indices Vineyards Water potential Weight Wine industry Wineries Wineries & vineyards Yield |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMGFN2KhIEsgcSFq4ji2c0JbaFUOVJUAqZyiydjZrVSySxKQ-kP4v8x4vS0XuHCKlYdlZT7Py_MQ4pXxbQkIeaYLVJkOlc7AWshCrjCQhMXa-Nhswh4fu9PT-iQ53MYUVrnliZFR-xWyj3yvjJo_iXP3dv09465RfLqaWmhcFze4SkIRQ_c-XfpY8pIAlutNVdKSrPu9YSxI3uuKe4P_IYdiuf6_MeUoaQ7v_u8a74k7SceU8w0o7otroX8gbm1TkEcap9bny4uH4teHVDCCZJg8Iqt0k3w5wPkbSRgivk0D6L1kLxVd3sMEkr238mOMwwwylWhdyPn5glYzLb-N8qBfMpxGSfqlPBn4NIgRIFcdzQNrksb04VeOnotz74dhuJDMm1IM2SPx5fDg87ujLPVqyLCs6imrnGq9smjrolMKW2s6EyrIO537qrDogwLUaIPzZTC67XLVhVCEzrcKjfLlY7HTr_rwRMjC5FB3rc0dWI3BgVJFi5VxNShbG5yJl1vKNetNSY6GTBmmb3NF35nYZ6JevsFltOON1bBo0q5sStBtZaBqUTvNZ4TG1OiIJaEFV_AkrxkSDW92-vEIKWeBFspls5q54wx3TSb1TOxuIdEkLjA2V3h4-u_Hz8RtRcrSJkxmV-xMw4_wXNzEn9PZOLyIoP4NH-EDcA priority: 102 providerName: ProQuest |
| Title | Integrating Hyperspectral, Thermal, and Ground Data with Machine Learning Algorithms Enhances the Prediction of Grapevine Yield and Berry Composition |
| URI | https://www.proquest.com/docview/3144158398 https://doaj.org/article/3a4b56a5bc4841099669c8638c7a8139 |
| Volume | 16 |
| WOSCitedRecordID | wos001377653900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database (ProQuest) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlLbSX0ifdJl0ELfRSE1vWy8fddENyyGL6gKQXMx7LSSD1BnsbyCX_Iv83M7bT7qX00ottLFsIfaN52KNvhPhgqzIFhDjSCapIB6MjcA6iECsMZGExs1VfbMItl_74OMs3Sn1xTthADzxM3G4KujQWTInaa_6NY22GnqQGHXhyX1j7xi7bCKZ6HZySaMV64CNNKa7fbbuELL02XBV8wwL1RP1_U8e9jdl_Jp6OzqGcDYN6Lh6E5oV4PNYpP7t-KW4PR3YHMjjygELIYadkCxefJAFOSpYuoKkkf1Ki02dYg-RPrfKoT5oMcuRTPZWzi9NVSy0_O7lozhj7TpIzKPOWf90wXHJVUz9wSaaTXjzhVLe-73lo22vJimRM-Holvu8vvu0dRGNhhQhTk60j41VZKYcuS2qlsHS2tsFAXOu4MonDKihAjS74Kg1Wl3Ws6hCSUFelQquq9LXYalZNeCNkYmPI6tLFHpzG4EGppERjfQbKZRYn4v39ZBeXA39GQXEHQ1L8gWQi5ozD7yeY87q_QZJQjJJQ_EsSJuIjo1jwyqSJRxg3GNBAmeOqmHnejq4p_p2InXugi3HJdkXah5bkL_q3_2M02-KJIv9nyHzZEVvr9ld4Jx7h1fq8a6fi4XyxzL9Me6mdcsLpVz7eLOiYmx_Unh8e5Sd3Btn2tQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLbKFKlc2BEDBSwB4kLUxHFs54DQlLaaUTujORSpPRnHdmaQSmZIAmh-CH-D38h7WVoucOuBU6wsT4nz-W1-CyGvhMtiY00Y8MiygPuEB0ZKE_iQWQ8S1qbCNc0m5Gymzs7S-Rb51efCYFhlzxMbRu1WFn3ke3Gj-YM4V-_XXwPsGoW7q30LjRYWx37zA0y26t3kAP7va8aODk8_jIOuq0Bg4yStg0SxzDFpZRrljNlMilz4xIQ5D10SSes8M5Zb6ZWLveBZHrLc-8jnLmNWMBcD3RtkmyPYB2R7PpnOzy-9OmEMkA55Wwc1jtNwr6wi0DB4gt3I_5B8TYOAv4mBRrYd3fnfZuUuud1p0XTUwv4e2fLFfbLTJ1lXMO6auy83D8jPSVcSA6Q0HYPd3aaXlubiLYVVApIJBqZwFP1wcDgwtaHon6bTJtLU064I7YKOLhbw9fXyS0UPiyUumIqCBk3nJe53IcbpKgc6Zg36Bjx4jvGBDe19X5Ybity3i5J7SD5eyww9IoNiVfjHhEYiNGmeyVAZya1XhrEos4lQqWEyFXZIXvZI0eu26IgGYw3xpK_wNCT7CKLLO7BQeHNiVS50x3d0bHiWCJNkliuOu6BCpFYB07XSqAiJvEEIamRnMPHWdFkZ8KJYGEyPFObwc87FkOz2ENQdn6v0Ff6e_PvyC7IzPp2e6JPJ7PgpucVANWyDgnbJoC6_-Wfkpv1ef67K592SouTTdeP1N3g4ZXk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFLWGAQEb3ojCAJYAsSGq4zi2s0CoQ6eaaqDqAqSBTXBsp0Ua2pIEUD-En-HruDdxZtjAbhasYuVhJc65T98HIU-lKxJjDYtEbHkkfCoio5SJPOPWg4S1mXRtswk1m-nj42y-Q371uTAYVtnzxJZRu7VFH_kwaTV_EOd6WIawiPl48mrzNcIOUrjT2rfT6CBy5Lc_wHyrX07H8K-fcT45ePf6MAodBiKbpFkTpZoXjiursrjk3BZKltKnhpWCuTRW1nlurLDKa5d4KYqS8dL72Jeu4FZyl8C8F8hFBTYmhhPO04-n_h2WALiZ6CqiJknGhlUdg64hUuxL_ocMbFsF_E0gtFJucv1_Xp8b5FrQremoI4abZMevbpErfep1DePQ8n25vU1-TkOhDJDd9BCs8S7ptDInLyjQDsgrGJiVo-idg8PYNIai15q-beNPPQ2laRd0dLKAr2-WX2p6sFoiGdUU9Go6r3AXDJFP1yXMYzaghcCDHzBqsJ1731fVliJPDrFzd8j7c1mhu2R3tV75e4TGkpmsLBTTRgnrteE8LmwqdWa4yqQdkCc9avJNV4okBxMOsZWfYWtA9hFQp3dg-fD2xLpa5IEb5YkRRSpNWlihBe6NSplZDazYKqNjnOQ5wjFHJgcLb03I1YAXxXJh-UhjZr8QQg7IXg_HPHC_Oj_D4v1_X35MLgNI8zfT2dEDcpWDvthFCu2R3ab65h-SS_Z787muHrW0Rcmn8wbrb8y1bNw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Hyperspectral%2C+Thermal%2C+and+Ground+Data+with+Machine+Learning+Algorithms+Enhances+the+Prediction+of+Grapevine+Yield+and+Berry+Composition&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Shaikh+Yassir+Yousouf+Jewan&rft.au=Deepak+Gautam&rft.au=Debbie+Sparkes&rft.au=Ajit+Singh&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=23&rft.spage=4539&rft_id=info:doi/10.3390%2Frs16234539&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3a4b56a5bc4841099669c8638c7a8139 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |