Integrating Hyperspectral, Thermal, and Ground Data with Machine Learning Algorithms Enhances the Prediction of Grapevine Yield and Berry Composition

Accurately predicting grapevine yield and quality is critical for optimising vineyard management and ensuring economic viability. Numerous studies have reported the complexity in modelling grapevine yield and quality due to variability in the canopy structure, challenges in incorporating soil and mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 16; H. 23; S. 4539
Hauptverfasser: Jewan, Shaikh, Gautam, Deepak, Sparkes, Debbie, Singh, Ajit, Billa, Lawal, Cogato, Alessia, Murchie, Erik, Pagay, Vinay
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.12.2024
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurately predicting grapevine yield and quality is critical for optimising vineyard management and ensuring economic viability. Numerous studies have reported the complexity in modelling grapevine yield and quality due to variability in the canopy structure, challenges in incorporating soil and microclimatic factors, and management practices throughout the growing season. The use of multimodal data and machine learning (ML) algorithms could overcome these challenges. Our study aimed to assess the potential of multimodal data (hyperspectral vegetation indices (VIs), thermal indices, and canopy state variables) and ML algorithms to predict grapevine yield components and berry composition parameters. The study was conducted during the 2019/20 and 2020/21 grapevine growing seasons in two South Australian vineyards. Hyperspectral and thermal data of the canopy were collected at several growth stages. Simultaneously, grapevine canopy state variables, including the fractional intercepted photosynthetically active radiation (fiPAR), stem water potential (Ψstem), leaf chlorophyll content (LCC), and leaf gas exchange, were collected. Yield components were recorded at harvest. Berry composition parameters, such as total soluble solids (TSSs), titratable acidity (TA), pH, and the maturation index (IMAD), were measured at harvest. A total of 24 hyperspectral VIs and 3 thermal indices were derived from the proximal hyperspectral and thermal data. These data, together with the canopy state variable data, were then used as inputs for the modelling. Both linear and non-linear regression models, such as ridge (RR), Bayesian ridge (BRR), random forest (RF), gradient boosting (GB), K-Nearest Neighbour (KNN), and decision trees (DTs), were employed to model grape yield components and berry composition parameters. The results indicated that the GB model consistently outperformed the other models. The GB model had the best performance for the total number of clusters per vine (R2 = 0.77; RMSE = 0.56), average cluster weight (R2 = 0.93; RMSE = 0.00), average berry weight (R2 = 0.95; RMSE = 0.00), cluster weight (R2 = 0.95; RMSE = 0.13), and average berries per bunch (R2 = 0.93; RMSE = 0.83). For the yield, the RF model performed the best (R2 = 0.97; RMSE = 0.55). The GB model performed the best for the TSSs (R2 = 0.83; RMSE = 0.34), pH (R2 = 0.93; RMSE = 0.02), and IMAD (R2 = 0.88; RMSE = 0.19). However, the RF model performed best for the TA (R2 = 0.83; RMSE = 0.33). Our results also revealed the top 10 predictor variables for grapevine yield components and quality parameters, namely, the canopy temperature depression, LCC, fiPAR, normalised difference infrared index, Ψstem, stomatal conductance (gs), net photosynthesis (Pn), modified triangular vegetation index, modified red-edge simple ratio, and ANTgitelson index. These predictors significantly influence the grapevine growth, berry quality, and yield. The identification of these predictors of the grapevine yield and fruit composition can assist growers in improving vineyard management decisions and ultimately increase profitability.
AbstractList Accurately predicting grapevine yield and quality is critical for optimising vineyard management and ensuring economic viability. Numerous studies have reported the complexity in modelling grapevine yield and quality due to variability in the canopy structure, challenges in incorporating soil and microclimatic factors, and management practices throughout the growing season. The use of multimodal data and machine learning (ML) algorithms could overcome these challenges. Our study aimed to assess the potential of multimodal data (hyperspectral vegetation indices (VIs), thermal indices, and canopy state variables) and ML algorithms to predict grapevine yield components and berry composition parameters. The study was conducted during the 2019/20 and 2020/21 grapevine growing seasons in two South Australian vineyards. Hyperspectral and thermal data of the canopy were collected at several growth stages. Simultaneously, grapevine canopy state variables, including the fractional intercepted photosynthetically active radiation (fiPAR), stem water potential (Ψ[sub.stem]), leaf chlorophyll content (LCC), and leaf gas exchange, were collected. Yield components were recorded at harvest. Berry composition parameters, such as total soluble solids (TSSs), titratable acidity (TA), pH, and the maturation index (IMAD), were measured at harvest. A total of 24 hyperspectral VIs and 3 thermal indices were derived from the proximal hyperspectral and thermal data. These data, together with the canopy state variable data, were then used as inputs for the modelling. Both linear and non-linear regression models, such as ridge (RR), Bayesian ridge (BRR), random forest (RF), gradient boosting (GB), K-Nearest Neighbour (KNN), and decision trees (DTs), were employed to model grape yield components and berry composition parameters. The results indicated that the GB model consistently outperformed the other models. The GB model had the best performance for the total number of clusters per vine (R[sup.2] = 0.77; RMSE = 0.56), average cluster weight (R[sup.2] = 0.93; RMSE = 0.00), average berry weight (R[sup.2] = 0.95; RMSE = 0.00), cluster weight (R[sup.2] = 0.95; RMSE = 0.13), and average berries per bunch (R[sup.2] = 0.93; RMSE = 0.83). For the yield, the RF model performed the best (R[sup.2] = 0.97; RMSE = 0.55). The GB model performed the best for the TSSs (R[sup.2] = 0.83; RMSE = 0.34), pH (R[sup.2] = 0.93; RMSE = 0.02), and IMAD (R[sup.2] = 0.88; RMSE = 0.19). However, the RF model performed best for the TA (R[sup.2] = 0.83; RMSE = 0.33). Our results also revealed the top 10 predictor variables for grapevine yield components and quality parameters, namely, the canopy temperature depression, LCC, fiPAR, normalised difference infrared index, Ψ[sub.stem], stomatal conductance (g[sub.s]), net photosynthesis (P[sub.n]), modified triangular vegetation index, modified red-edge simple ratio, and ANT[sub.gitelson] index. These predictors significantly influence the grapevine growth, berry quality, and yield. The identification of these predictors of the grapevine yield and fruit composition can assist growers in improving vineyard management decisions and ultimately increase profitability.
Accurately predicting grapevine yield and quality is critical for optimising vineyard management and ensuring economic viability. Numerous studies have reported the complexity in modelling grapevine yield and quality due to variability in the canopy structure, challenges in incorporating soil and microclimatic factors, and management practices throughout the growing season. The use of multimodal data and machine learning (ML) algorithms could overcome these challenges. Our study aimed to assess the potential of multimodal data (hyperspectral vegetation indices (VIs), thermal indices, and canopy state variables) and ML algorithms to predict grapevine yield components and berry composition parameters. The study was conducted during the 2019/20 and 2020/21 grapevine growing seasons in two South Australian vineyards. Hyperspectral and thermal data of the canopy were collected at several growth stages. Simultaneously, grapevine canopy state variables, including the fractional intercepted photosynthetically active radiation (fiPAR), stem water potential (Ψstem), leaf chlorophyll content (LCC), and leaf gas exchange, were collected. Yield components were recorded at harvest. Berry composition parameters, such as total soluble solids (TSSs), titratable acidity (TA), pH, and the maturation index (IMAD), were measured at harvest. A total of 24 hyperspectral VIs and 3 thermal indices were derived from the proximal hyperspectral and thermal data. These data, together with the canopy state variable data, were then used as inputs for the modelling. Both linear and non-linear regression models, such as ridge (RR), Bayesian ridge (BRR), random forest (RF), gradient boosting (GB), K-Nearest Neighbour (KNN), and decision trees (DTs), were employed to model grape yield components and berry composition parameters. The results indicated that the GB model consistently outperformed the other models. The GB model had the best performance for the total number of clusters per vine (R2 = 0.77; RMSE = 0.56), average cluster weight (R2 = 0.93; RMSE = 0.00), average berry weight (R2 = 0.95; RMSE = 0.00), cluster weight (R2 = 0.95; RMSE = 0.13), and average berries per bunch (R2 = 0.93; RMSE = 0.83). For the yield, the RF model performed the best (R2 = 0.97; RMSE = 0.55). The GB model performed the best for the TSSs (R2 = 0.83; RMSE = 0.34), pH (R2 = 0.93; RMSE = 0.02), and IMAD (R2 = 0.88; RMSE = 0.19). However, the RF model performed best for the TA (R2 = 0.83; RMSE = 0.33). Our results also revealed the top 10 predictor variables for grapevine yield components and quality parameters, namely, the canopy temperature depression, LCC, fiPAR, normalised difference infrared index, Ψstem, stomatal conductance (gs), net photosynthesis (Pn), modified triangular vegetation index, modified red-edge simple ratio, and ANTgitelson index. These predictors significantly influence the grapevine growth, berry quality, and yield. The identification of these predictors of the grapevine yield and fruit composition can assist growers in improving vineyard management decisions and ultimately increase profitability.
Audience Academic
Author Sparkes, Debbie
Murchie, Erik
Jewan, Shaikh
Singh, Ajit
Cogato, Alessia
Gautam, Deepak
Billa, Lawal
Pagay, Vinay
Author_xml – sequence: 1
  givenname: Shaikh
  orcidid: 0000-0003-2367-6196
  surname: Jewan
  fullname: Jewan, Shaikh
– sequence: 2
  givenname: Deepak
  orcidid: 0000-0003-2852-4204
  surname: Gautam
  fullname: Gautam, Deepak
– sequence: 3
  givenname: Debbie
  surname: Sparkes
  fullname: Sparkes, Debbie
– sequence: 4
  givenname: Ajit
  orcidid: 0000-0002-4159-4795
  surname: Singh
  fullname: Singh, Ajit
– sequence: 5
  givenname: Lawal
  orcidid: 0000-0002-6894-5145
  surname: Billa
  fullname: Billa, Lawal
– sequence: 6
  givenname: Alessia
  orcidid: 0000-0001-8354-7324
  surname: Cogato
  fullname: Cogato, Alessia
– sequence: 7
  givenname: Erik
  surname: Murchie
  fullname: Murchie, Erik
– sequence: 8
  givenname: Vinay
  orcidid: 0000-0003-1916-2758
  surname: Pagay
  fullname: Pagay, Vinay
BookMark eNpNkc1u1DAUhSNUJErphiewxA4xxX9x4uUwLe1Ig2BRFqwix75OPMrYwfaA5kF4X5wOAuzFvbo-59OVz8vqwgcPVfWa4BvGJH4fExGU8ZrJZ9UlxQ1dcSrpxX_9i-o6pT0uhzEiMb-sfm19hiGq7PyAHk4zxDSDzlFN79DjCPGwNMobdB_DsZRblRX66fKIPik9Og9oByr6xb2ehhDLyyGhOz8qryGhPAL6EsE4nV3wKNjCUTP8WIzfHEzmif0BYjyhTTjMIblF-Kp6btWU4PpPvaq-frx73Dysdp_vt5v1bqVZLfOqbmlvaKMbSSylum-EFVArbDk2NWm0Aao01w20hoHgvcXUAhCwpqdaUMOuqu2Za4Lad3N0BxVPXVCuexqEOHQqZqcn6JjifS1U3WvecoKlFELqVrBWN6olTBbWmzNrjuH7EVLu9uEYfVm_Y4RzUrdMtkV1c1YNqkCdt6H8tS7XwMHpkqd1Zb5uiZQ151wUw9uzQceQUgT7d02CuyX27l_s7Ddd56KQ
Cites_doi 10.1016/j.isprsjprs.2015.09.003
10.1023/A:1010933404324
10.1109/ICMLA51294.2020.00054
10.1002/agj2.21133
10.3390/agronomy12081819
10.3390/agriculture8070094
10.1111/j.1755-0238.1995.tb00086.x
10.1046/j.1469-8137.1999.00424.x
10.3390/agronomy11091789
10.1016/0034-4257(92)90089-3
10.3390/rs14133052
10.1007/s00271-021-00758-8
10.1016/S0034-4257(02)00010-X
10.1016/j.foodchem.2022.134321
10.1016/j.eja.2021.126339
10.3390/rs11070740
10.1016/j.agee.2010.09.007
10.1086/336486
10.1016/S0034-4257(00)00148-6
10.1016/0034-4257(95)00186-7
10.3390/app10144943
10.1080/014311697217396
10.1016/S0034-4257(01)00299-1
10.1016/j.compag.2020.105807
10.1093/jxb/erh213
10.1007/978-3-030-89010-0
10.20870/oeno-one.2017.51.1.1314
10.1046/j.1365-3040.1999.00468.x
10.3390/agronomy11101940
10.1016/j.biosystemseng.2023.06.001
10.1109/TIT.1967.1053964
10.1080/014311698215919
10.1186/s40538-015-0037-1
10.1016/S0168-1923(99)00030-1
10.1080/01621459.1979.10481600
10.20870/oeno-one.2020.54.3.2984
10.3390/rs10020202
10.1214/aos/1013203451
10.1016/j.scienta.2018.01.014
10.3389/fpls.2022.898722
10.3390/agronomy9110682
10.3390/agronomy12092091
10.3390/agriculture11080697
10.1016/0034-4257(91)90009-U
10.20870/oeno-one.2009.43.3.798
10.3390/s150408284
10.1111/ajgw.12298
10.1016/1011-1344(93)06963-4
10.5194/isprs-annals-V-3-2020-33-2020
10.1016/j.compag.2022.107089
10.1016/j.rse.2011.11.021
10.3390/plants11182419
10.1063/1.5016665
10.1016/j.rse.2005.05.006
10.1007/s11119-022-09950-y
10.1080/01431169308954010
10.3390/s22093249
10.3389/fpls.2022.835425
10.3390/agriculture11020127
10.1111/j.1755-0238.2011.00139.x
10.1016/j.compag.2022.106812
10.1016/j.rse.2005.09.002
10.1080/15538362.2018.1555509
10.20870/oeno-one.2023.57.2.7239
10.1111/aab.12155
10.2307/1936256
10.1016/j.rse.2003.12.013
10.1016/S0034-4257(00)00149-8
10.1078/0176-1617-00887
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs16234539
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_3a4b56a5bc4841099669c8638c7a8139
A819954446
10_3390_rs16234539
GeographicLocations Australia
United States
GeographicLocations_xml – name: Australia
– name: United States
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c359t-582bd27c791f22cb76f6e5a0f40d517cde2ac4c7e8d3e64bf02fee1efdb2c62d3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001377653900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:44:25 EDT 2025
Fri Jul 25 11:37:43 EDT 2025
Tue Nov 04 18:25:26 EST 2025
Sat Nov 29 07:17:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-582bd27c791f22cb76f6e5a0f40d517cde2ac4c7e8d3e64bf02fee1efdb2c62d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6894-5145
0000-0003-2367-6196
0000-0003-1916-2758
0000-0001-8354-7324
0000-0003-2852-4204
0000-0002-4159-4795
OpenAccessLink https://doaj.org/article/3a4b56a5bc4841099669c8638c7a8139
PQID 3144158398
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_3a4b56a5bc4841099669c8638c7a8139
proquest_journals_3144158398
gale_infotracacademiconefile_A819954446
crossref_primary_10_3390_rs16234539
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ferro (ref_27) 2023; 231
Jones (ref_38) 1999; 22
Jiang (ref_44) 2020; 3
Blackburn (ref_58) 1998; 19
ref_13
ref_12
ref_11
ref_10
Chappelle (ref_57) 1992; 39
Laurent (ref_7) 2021; 130
Palacios (ref_8) 2022; 24
Gao (ref_18) 2020; 179
Serrano (ref_74) 2010; 139
ref_17
ref_15
Box (ref_64) 1979; 74
Tuccio (ref_72) 2011; 17
Poudyal (ref_14) 2022; 14
Rapaport (ref_1) 2015; 109
Dobrowski (ref_52) 2005; 97
Haboudane (ref_49) 2004; 90
Sims (ref_53) 2002; 81
Baret (ref_61) 1991; 35
ref_25
ref_69
ref_24
ref_23
ref_21
Friedman (ref_66) 2001; 29
Serrano (ref_4) 2012; 118
ref_20
(ref_63) 2018; 13
Liu (ref_16) 2022; 198
He (ref_6) 2022; 195
Armstrong (ref_70) 2023; 403
Vanzo (ref_78) 2023; 57
Anderson (ref_22) 2016; Volume 9866
Hardisky (ref_42) 1983; 49
Efendi (ref_68) 2017; 1913
Buttrose (ref_3) 1969; 130
Gamon (ref_59) 1999; 143
Arab (ref_28) 2021; 22
Somkuwar (ref_75) 2019; 19
Font (ref_26) 2015; 15
Cover (ref_67) 1967; 13
Penuelas (ref_41) 1997; 18
ref_71
Miller (ref_51) 2000; 74
Wang (ref_34) 2020; 54
Gitelson (ref_54) 1994; 22
ref_36
ref_33
Mohite (ref_19) 2017; Volume 10217
ref_31
ref_73
Gitelson (ref_60) 2003; 160
Molitor (ref_30) 2014; 165
Shellie (ref_32) 2018; 232
ref_39
Breiman (ref_65) 2001; 45
Jordan (ref_48) 1969; 50
Tregoat (ref_77) 2009; 43
Penuelas (ref_45) 1993; 14
Miller (ref_50) 2000; 74
Jones (ref_40) 1999; 95
Pagay (ref_35) 2022; 40
ref_46
Strachan (ref_43) 2002; 80
Zufferey (ref_76) 2017; 51
Rondeaux (ref_55) 1996; 55
Jones (ref_62) 2004; 55
Moran (ref_29) 2017; 23
ref_2
Penuelas (ref_56) 1995; 31
Coombe (ref_37) 1995; 1
ref_9
ref_5
Miller (ref_47) 2005; 99
References_xml – volume: 109
  start-page: 88
  year: 2015
  ident: ref_1
  article-title: Combining leaf physiology, hyperspectral imaging and partial least squares-regression (PLS-R) for grapevine water status assessment
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.09.003
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_65
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 13
  start-page: 359
  year: 2018
  ident: ref_63
  article-title: Ridge Regression and multicollinearity: An in-depth review
  publication-title: Model Assist. Stat. Appl.
– ident: ref_20
  doi: 10.1109/ICMLA51294.2020.00054
– volume: 14
  start-page: 2320
  year: 2022
  ident: ref_14
  article-title: Sugarcane yield prediction and genotype selection using unmanned aerial vehicle-based hyperspectral imaging and machine learning
  publication-title: Agron. J.
  doi: 10.1002/agj2.21133
– ident: ref_23
  doi: 10.3390/agronomy12081819
– ident: ref_17
  doi: 10.3390/agriculture8070094
– volume: 1
  start-page: 104
  year: 1995
  ident: ref_37
  article-title: Growth Stages of the Grapevine: Adoption of a system for identifying grapevine growth stages
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/j.1755-0238.1995.tb00086.x
– volume: 143
  start-page: 105
  year: 1999
  ident: ref_59
  article-title: Assessing leaf pigment content and activity with a reflectometer
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.1999.00424.x
– ident: ref_11
  doi: 10.3390/agronomy11091789
– volume: 39
  start-page: 239
  year: 1992
  ident: ref_57
  article-title: Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(92)90089-3
– ident: ref_15
  doi: 10.3390/rs14133052
– volume: 40
  start-page: 45
  year: 2022
  ident: ref_35
  article-title: Evaluating a novel microtensiometer for continuous trunk water potential measurements in field-grown irrigated grapevines
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-021-00758-8
– volume: 81
  start-page: 337
  year: 2002
  ident: ref_53
  article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00010-X
– volume: 403
  start-page: 134321
  year: 2023
  ident: ref_70
  article-title: Machine learning for classifying and predicting grape maturity indices using absorbance and fluorescence spectra
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.134321
– volume: 130
  start-page: 126339
  year: 2021
  ident: ref_7
  article-title: A review of the issues, methods and perspectives for yield estimation, prediction and forecasting in viticulture
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2021.126339
– ident: ref_9
  doi: 10.3390/rs11070740
– volume: 139
  start-page: 490
  year: 2010
  ident: ref_74
  article-title: Assessing vineyard water status using the reflectance based Water Index
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.09.007
– volume: 130
  start-page: 166
  year: 1969
  ident: ref_3
  article-title: Fruitfulness in Grapevines: Effects of Light Intensity and Temperature
  publication-title: Bot. Gaz.
  doi: 10.1086/336486
– volume: 74
  start-page: 582
  year: 2000
  ident: ref_51
  article-title: Chlorophyll Fluorescence Effects on Vegetation Apparent Reflectance: I. Leaf-Level Measurements and Model Simulation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00148-6
– volume: 55
  start-page: 95
  year: 1996
  ident: ref_55
  article-title: Optimization of soil-adjusted vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(95)00186-7
– ident: ref_13
  doi: 10.3390/app10144943
– volume: Volume 9866
  start-page: 70
  year: 2016
  ident: ref_22
  article-title: Vanden Detection of wine grape nutrient levels using visible and near infrared 1 nm spectral resolution remote sensing
  publication-title: Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping
– volume: 18
  start-page: 2869
  year: 1997
  ident: ref_41
  article-title: Estimation of plant water concentration by the reflectance Water Index WI (R900/R970)
  publication-title: Int. J. Remote. Sens.
  doi: 10.1080/014311697217396
– volume: 80
  start-page: 213
  year: 2002
  ident: ref_43
  article-title: Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00299-1
– volume: 179
  start-page: 105807
  year: 2020
  ident: ref_18
  article-title: Early detection of grapevine leafroll disease in a red-berried wine grape cultivar using hyperspectral imaging
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105807
– volume: 22
  start-page: 100485
  year: 2021
  ident: ref_28
  article-title: Prediction of grape yields from time-series vegetation indices using satellite remote sensing and a machine-learning approach
  publication-title: Remote Sens. Appl. Soc. Environ.
– volume: 55
  start-page: 2427
  year: 2004
  ident: ref_62
  article-title: Irrigation scheduling: Advantages and pitfalls of plant-based methods
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erh213
– ident: ref_71
  doi: 10.1007/978-3-030-89010-0
– volume: 51
  start-page: 37
  year: 2017
  ident: ref_76
  article-title: The influence of water stress on plant hydraulics, gas exchange, berry composition and quality of Pinot Noir wines in Switzerland
  publication-title: OENO One
  doi: 10.20870/oeno-one.2017.51.1.1314
– volume: 22
  start-page: 1043
  year: 1999
  ident: ref_38
  article-title: Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces
  publication-title: Plant. Cell Environ.
  doi: 10.1046/j.1365-3040.1999.00468.x
– ident: ref_24
  doi: 10.3390/agronomy11101940
– volume: 231
  start-page: 36
  year: 2023
  ident: ref_27
  article-title: Assessment of vineyard vigour and yield spatio-temporal variability based on UAV high resolution multispectral images
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2023.06.001
– volume: 13
  start-page: 21
  year: 1967
  ident: ref_67
  article-title: Nearest Neighbor Pattern Classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 19
  start-page: 657
  year: 1998
  ident: ref_58
  article-title: Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698215919
– ident: ref_73
  doi: 10.1186/s40538-015-0037-1
– volume: 95
  start-page: 139
  year: 1999
  ident: ref_40
  article-title: Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(99)00030-1
– volume: 74
  start-page: 1
  year: 1979
  ident: ref_64
  article-title: Some Problems of Statistics and Everyday Life
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1979.10481600
– volume: 54
  start-page: 469
  year: 2020
  ident: ref_34
  article-title: Shoot thinning of Semillon in a hot climate did not improve yield and berry and wine quality
  publication-title: OENO One
  doi: 10.20870/oeno-one.2020.54.3.2984
– ident: ref_21
  doi: 10.3390/rs10020202
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_66
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1013203451
– volume: 232
  start-page: 226
  year: 2018
  ident: ref_32
  article-title: Water deficit severity during berry development alters timing of dormancy transitions in wine grape cultivar Malbec
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2018.01.014
– ident: ref_25
  doi: 10.3389/fpls.2022.898722
– ident: ref_39
  doi: 10.3390/agronomy9110682
– ident: ref_5
  doi: 10.3390/agronomy12092091
– ident: ref_10
  doi: 10.3390/agriculture11080697
– volume: 35
  start-page: 161
  year: 1991
  ident: ref_61
  article-title: Potentials and limits of vegetation indices for LAI and APAR assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90009-U
– volume: 43
  start-page: 121
  year: 2009
  ident: ref_77
  article-title: Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes?
  publication-title: OENO One
  doi: 10.20870/oeno-one.2009.43.3.798
– volume: 15
  start-page: 8284
  year: 2015
  ident: ref_26
  article-title: Vineyard yield estimation based on the analysis of high resolution images obtained with artificial illumination at night
  publication-title: Sensors
  doi: 10.3390/s150408284
– volume: 23
  start-page: 390
  year: 2017
  ident: ref_29
  article-title: Late pruning and carry-over effects on phenology, yield components and berry traits in Shiraz
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/ajgw.12298
– volume: 22
  start-page: 247
  year: 1994
  ident: ref_54
  article-title: Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/1011-1344(93)06963-4
– volume: 3
  start-page: 33
  year: 2020
  ident: ref_44
  article-title: A new index for identifying water body from sentinel-2 satellite remote sensing imagery
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-annals-V-3-2020-33-2020
– volume: 198
  start-page: 107089
  year: 2022
  ident: ref_16
  article-title: Remote-sensing estimation of potato above-ground biomass based on spectral and spatial features extracted from high-definition digital camera images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107089
– volume: 118
  start-page: 249
  year: 2012
  ident: ref_4
  article-title: Assessment of grape yield and composition using the reflectance based Water Index in Mediterranean rainfed vineyards
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.021
– ident: ref_69
  doi: 10.3390/plants11182419
– volume: 1913
  start-page: 20031
  year: 2017
  ident: ref_68
  article-title: Effrihan A simulation study on Bayesian Ridge regression models for several collinearity levels
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5016665
– volume: Volume 10217
  start-page: 192
  year: 2017
  ident: ref_19
  article-title: Detection of pesticide (Cyantraniliprole) residue on grapes using hyperspectral sensing
  publication-title: Sensing for Agriculture and Food Quality and Safety IX
– volume: 97
  start-page: 403
  year: 2005
  ident: ref_52
  article-title: Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.05.006
– ident: ref_33
– volume: 31
  start-page: 221
  year: 1995
  ident: ref_56
  article-title: Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance
  publication-title: Photosynthetica
– volume: 49
  start-page: 77
  year: 1983
  ident: ref_42
  article-title: The Influence of Soil Salinity, Growth Form, and Leaf Moisture on-the Spectral Radiance of partin a alterniflora Canopies
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref_46
– volume: 24
  start-page: 407
  year: 2022
  ident: ref_8
  article-title: Early yield prediction in different grapevine varieties using computer vision and machine learning
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-022-09950-y
– volume: 14
  start-page: 1887
  year: 1993
  ident: ref_45
  article-title: The reflectance at the 950–970 nm region as an indicator of plant water status
  publication-title: Int. J. Remote. Sens.
  doi: 10.1080/01431169308954010
– ident: ref_12
  doi: 10.3390/s22093249
– ident: ref_2
  doi: 10.3389/fpls.2022.835425
– ident: ref_31
  doi: 10.3390/agriculture11020127
– volume: 17
  start-page: 181
  year: 2011
  ident: ref_72
  article-title: Rapid and non-destructive method to assess in the vineyard grape berry anthocyanins under different seasonal and water conditions
  publication-title: Aust. J. Grape Wine Res.
  doi: 10.1111/j.1755-0238.2011.00139.x
– volume: 195
  start-page: 106812
  year: 2022
  ident: ref_6
  article-title: Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106812
– volume: 99
  start-page: 271
  year: 2005
  ident: ref_47
  article-title: Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.09.002
– volume: 19
  start-page: 437
  year: 2019
  ident: ref_75
  article-title: Canopy Modification Influences Growth, Yield, Quality, and Powdery Mildew Incidence in Tas-A-Ganesh Grapevine
  publication-title: Int. J. Fruit Sci.
  doi: 10.1080/15538362.2018.1555509
– ident: ref_36
– volume: 57
  start-page: 231
  year: 2023
  ident: ref_78
  article-title: An investigation of vine water status as a major factor in the quality of Merlot wine produced in terraced and non-terraced vineyards in the Vipava Valley, Slovenia
  publication-title: OENO One
  doi: 10.20870/oeno-one.2023.57.2.7239
– volume: 165
  start-page: 305
  year: 2014
  ident: ref_30
  article-title: Epidemiology, identification and disease management of grape black rot and potentially useful metabolites of black rot pathogens for industrial applications—A review
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/aab.12155
– volume: 50
  start-page: 663
  year: 1969
  ident: ref_48
  article-title: Derivation of Leaf-Area Index from Quality of Light on the Forest Floor
  publication-title: Ecology
  doi: 10.2307/1936256
– volume: 90
  start-page: 337
  year: 2004
  ident: ref_49
  article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.12.013
– volume: 74
  start-page: 596
  year: 2000
  ident: ref_50
  article-title: Chlorophyll Fluorescence Effects on Vegetation Apparent Reflectance: II. Laboratory and Airborne Canopy-Level Measurements with Hyperspectral Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00149-8
– volume: 160
  start-page: 271
  year: 2003
  ident: ref_60
  article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-00887
SSID ssj0000331904
Score 2.390176
Snippet Accurately predicting grapevine yield and quality is critical for optimising vineyard management and ensuring economic viability. Numerous studies have...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 4539
SubjectTerms Acidity
Algorithms
Bayesian analysis
Berries
Canopies
canopy state variables
Chlorophyll
Clusters
Composition
Crop yields
Data mining
Decision trees
Economics
Fruits
Gas exchange
grapevine composition
grapevine yield
Grapevines
Growing season
International economic relations
Learning algorithms
Leaves
Machine learning
Mathematical models
Modelling
Parameters
Photosynthesis
Photosynthetically active radiation
Physiology
Predictions
proximal sensing
Regression analysis
Regression models
Sensors
Soil structure
State variable
Stomata
Stomatal conductance
Vegetation
Vegetation index
vegetation indices
Vineyards
Water potential
Weight
Wine industry
Wineries
Wineries & vineyards
Yield
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB60CvriXVytMqDgi6E798mTbLWlgpaCCvUpzC27Qs2uSRT6Q_y_njOZbX3RF58yJJNhyPlybnMuhLyQXkfvWawCc7qSoPBX1rG6UsJwG4NjQeRE4ffm-NientYnxeE2lLDKLU_MjDquA_rI90TW_EGc29eb7xV2jcLT1dJC4yq5hlUSWA7d-3jhY5kLANhcTlVJBVj3e_3AQN5Lhb3B_5BDuVz_35hyljSHt_93j3fIraJj0sUEirvkSurukRvbFOQBxqX1-er8Pvn1rhSMABlGj8AqnZIve3f2igKGgG_DwHWRopcKLm_d6Ch6b-mHHIeZaCnRuqSLsyXsZlx9G-hBt0I4DRT0S3rS42kQIoCuW1jHbUAaw4tfMHour72f-v6cIm8qMWQPyOfDg09vjqrSq6EKQtVjpSz3kZtgatZyHrzRrU7KzVs5j4qZEBN3QQaTbBRJS9_OeZsSS230PGgexUOy06279IjQVqkknIkMpkrdemuEr1ViOjlQb4WfkedbyjWbqSRHA6YM0re5pO-M7CNRL2ZgGe18Y90vm_JXNsJJr7RTPkgr8YxQ6zpYYEnBOMtwkZcIiQZ_dvjwwZWcBdgols1qFhYz3CWY1DOyu4VEU7jA0Fzi4fG_Hz8hNzkoS1OYzC7ZGfsf6Sm5Hn6OX4f-WQb1b6wjA20
  priority: 102
  providerName: ProQuest
Title Integrating Hyperspectral, Thermal, and Ground Data with Machine Learning Algorithms Enhances the Prediction of Grapevine Yield and Berry Composition
URI https://www.proquest.com/docview/3144158398
https://doaj.org/article/3a4b56a5bc4841099669c8638c7a8139
Volume 16
WOSCitedRecordID wos001377653900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQQYIL4imWlpUlkLgQdf12jruwVSvRVcRDarlEfqVFKtkq2SL1wr_g_zLjpLAXxIWLE8WOZfkbz8OeGRPySnodvWexCMzpQoLCX1jHykIJw20MjgWRA4Xfm9XKnpyU1dZVX-gTNqQHHiZuXzjplXbKB2klHuNoXQYLVBOMs6C-IPedmXLLmMo8WABpzeSQj1SAXb_f9QwkvVR4K_iWBMqJ-v_GjrOMOXhA7o_KIZ0Pg3pIbqX2Ebk73lN-fv2Y_DwaszuAwKGHYEIOkZKdu3hDAXBgsvDi2khxSwke79zGUdxqpcfZaTLRMZ_qGZ1fnK07qPnW02V7jtj3FJRBWnV4dINw0XUD_bhLEJ3w4ym6uuW-F6nrrikyktHh6wn5fLD89PawGC9WKIJQ5aZQlvvITTAlazgP3uhGJ-VmjZxFxUyIibsgg0k2iqSlb2a8SYmlJnoeNI_iKdlp1216RmijVBLORAZNpW68NcKXKjGdHOiiwk_Iy5vJri-H_Bk12B0ISf0HkglZIA6_W2DO6_wBKKEeKaH-FyVMyGtEscaVCRMf3BhgAAPFHFf13GI4ugT7d0L2boCuxyXb1yKblqAv2uf_YzS75B5H95fs-bJHdjbdVXpB7oTvm699NyW3F8tV9WGaqXaKDqcfsfyxhLJSX6C-OjquTn8Bog_2rw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFKlceCMCBVYCxAWr3ofX6wNCKW2VqEmVQ5Hak9mXE6SSBDuA8kP4G_xGZvxoucCtB0627PXKXn878-3sPAh5Ja3y1jIfOWZUJIHwR9qwLEpEyrV3hjlRBwqP05MTfXaWTbfIry4WBt0qO5lYC2q_dGgj3xM18wd1rt-vvkZYNQp3V7sSGg0sjsPmByzZqnejA_i_rzk_Ojz9MIzaqgKRE0m2jhLNreepSzNWcO5sqgoVEhMXMvYJS50P3Djp0qC9CEraIuZFCCwU3nKnuBfQ7w2yLRHsPbI9HU2m55dWnVgApGPZ5EEVIov3yooBw5AJViP_Q_PVBQL-pgZq3XZ0538blbvkdsui6aCB_T2yFRb3yU4XZF3BeVvcfb55QH6O2pQYoKXpENbdTXhpaS7eUpgloJngxCw8RTscHA7M2lC0T9NJ7WkaaJuEdkYHFzP4-vX8S0UPF3OcMBUFBk2nJe53IcbpsoB-zAr4Bjx4jv6Bdd_7oSw3FKVv6yX3kHy8lhF6RHqL5SI8JrRIkiBM6hk0laqwOhU2SwJTwQCBF7ZPXnZIyVdN0pEcFmuIp_wKT32yjyC6bIGJwusLy3KWt3InF0baRJnEOqkl7oIqlTkNQtelRjPs5A1CMEdxBgPvTBuVAS-KicHygcYYfiml6pPdDoJ5K-eq_Ap_T_59-wXZGZ5Oxvl4dHL8lNziQA0bp6Bd0luX38IzctN9X3-uyuftlKLk03Xj9TfWIWV2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB6VguDEjggUGAkQF6x4VtsHhFLSqFFLlANIhYuZzQlSSYJtQPkh_Bl-He95abnArQdOtuzxyB5_b523EPJMWu2tZT5yzOhIgsIfpYZlkRIJT70zzIkmUfg4mc3Sk5NsvkN-9bkwGFbZ88SGUfu1Qx_5UDSaP4jzdFh0YRHz8eT15muEHaRwp7Vvp9FC5Chsf4D5Vr2ajuFfP-d8cvDuzWHUdRiInFBZHamUW88Tl2Ss4NzZRBc6KBMXMvaKJc4Hbpx0SUi9CFraIuZFCCwU3nKnuRcw7yVyOQEbE8MJ5-rjmX8nFgDuWLYVUYXI4mFZMdA1pMK-5H_IwKZVwN8EQiPlJjf-5_W5Sa53ujUdtcRwi-yE1W1yrU-9ruC8a_m-3N4hP6ddoQyQ3fQQrPE26bQ0py8p0A7IKzgxK0_ROweHsakNRa81fdvEnwbalaZd0NHpAr6-Xn6p6MFqiWRUUdCr6bzEXTBEPl0XMI_ZgBYCD37AqMFm7v1QlluKPLmLnbtL3l_ICt0ju6v1KtwntFAqCJN4BkOlLmyaCJupwHQwoNYLOyBPe9Tkm7YUSQ4mHGIrP8fWgOwjoM5GYPnw5sK6XOQdN8qFkVZpo6yTqcS9Ua0zlwIrdolJGU7yAuGYI5ODhXemy9WAF8VyYfkoxcx-KaUekL0ejnnH_ar8HIsP_n37CbkKIM2Pp7Ojh-gxYbyNFNoju3X5LTwiV9z3-nNVPm5oi5JPFw3W3yPNbNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Hyperspectral%2C+Thermal%2C+and+Ground+Data+with+Machine+Learning+Algorithms+Enhances+the+Prediction+of+Grapevine+Yield+and+Berry+Composition&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Jewan%2C+Shaikh&rft.au=Gautam%2C+Deepak&rft.au=Sparkes%2C+Debbie&rft.au=Singh%2C+Ajit&rft.date=2024-12-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=16&rft.issue=23&rft.spage=4539&rft_id=info:doi/10.3390%2Frs16234539&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs16234539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon