Active Learning Methods for Efficient Hybrid Biophysical Variable Retrieval

Kernel-based machine learning regression algorithms (MLRAs) are potentially powerful methods for being implemented into operational biophysical variable retrieval schemes. However, they face difficulties in coping with large training data sets. With the increasing amount of optical remote sensing da...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE geoscience and remote sensing letters Ročník 13; číslo 7; s. 1012 - 1016
Hlavní autori: Verrelst, Jochem, Dethier, Sara, Rivera, Juan Pablo, Munoz-Mari, Jordi, Camps-Valls, Gustau, Moreno, Jose
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1545-598X, 1558-0571
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Kernel-based machine learning regression algorithms (MLRAs) are potentially powerful methods for being implemented into operational biophysical variable retrieval schemes. However, they face difficulties in coping with large training data sets. With the increasing amount of optical remote sensing data made available for analysis and the possibility of using a large amount of simulated data from radiative transfer models (RTMs) to train kernel MLRAs, efficient data reduction techniques will need to be implemented. Active learning (AL) methods enable to select the most informative samples in a data set. This letter introduces six AL methods for achieving optimized biophysical variable estimation with a manageable training data set, and their implementation into a Matlab-based MLRA toolbox for semiautomatic use. The AL methods were analyzed on their efficiency of improving the estimation accuracy of the leaf area index and chlorophyll content based on PROSAIL simulations. Each of the implemented methods outperformed random sampling, improving retrieval accuracy with lower sampling rates. Practically, AL methods open opportunities to feed advanced MLRAs with RTM-generated training data for the development of operational retrieval models.
AbstractList Kernel-based machine learning regression algorithms (MLRAs) are potentially powerful methods for being implemented into operational biophysical variable retrieval schemes. However, they face difficulties in coping with large training data sets. With the increasing amount of optical remote sensing data made available for analysis and the possibility of using a large amount of simulated data from radiative transfer models (RTMs) to train kernel MLRAs, efficient data reduction techniques will need to be implemented. Active learning (AL) methods enable to select the most informative samples in a data set. This letter introduces six AL methods for achieving optimized biophysical variable estimation with a manageable training data set, and their implementation into a Matlab-based MLRA toolbox for semiautomatic use. The AL methods were analyzed on their efficiency of improving the estimation accuracy of the leaf area index and chlorophyll content based on PROSAIL simulations. Each of the implemented methods outperformed random sampling, improving retrieval accuracy with lower sampling rates. Practically, AL methods open opportunities to feed advanced MLRAs with RTM-generated training data for the development of operational retrieval models.
Author Verrelst, Jochem
Munoz-Mari, Jordi
Rivera, Juan Pablo
Dethier, Sara
Moreno, Jose
Camps-Valls, Gustau
Author_xml – sequence: 1
  givenname: Jochem
  surname: Verrelst
  fullname: Verrelst, Jochem
  email: jochem.verrelst@uv.es
  organization: Image Process. Lab., Univ. de Valencia, València, Spain
– sequence: 2
  givenname: Sara
  surname: Dethier
  fullname: Dethier, Sara
  email: sara.dethier11@imperial.ac.uk
  organization: Dept. of Phys., Imperial Coll. London, London, UK
– sequence: 3
  givenname: Juan Pablo
  surname: Rivera
  fullname: Rivera, Juan Pablo
  email: juan.rivera@uv.es
  organization: Image Process. Lab., Univ. de Valencia, València, Spain
– sequence: 4
  givenname: Jordi
  surname: Munoz-Mari
  fullname: Munoz-Mari, Jordi
  email: jordi.munoz@uv.es
  organization: Image Process. Lab., Univ. de Valencia, València, Spain
– sequence: 5
  givenname: Gustau
  surname: Camps-Valls
  fullname: Camps-Valls, Gustau
  email: gustau.camps@uv.es
  organization: Image Process. Lab., Univ. de Valencia, València, Spain
– sequence: 6
  givenname: Jose
  surname: Moreno
  fullname: Moreno, Jose
  email: jose.moreno@uv.es
  organization: Image Process. Lab., Univ. de Valencia, València, Spain
BookMark eNqNkctKAzEUQINU8PkB4mbAjZupyczktaxSW7Ei1AfuQjJzo5FxUpNU6N_bocWFC3GTm8U5Fy7nAA063wFCJwQPCcHyYjaZPwwLTNiwoAxzKXfQPqFU5JhyMuj_Fc2pFC976CDGd4yLSgi-j25HdXJfkM1Ah851r9kdpDffxMz6kI2tdbWDLmXTlQmuyS6dX7ytoqt1mz3r4LRpIZtDCg6-dHuEdq1uIxxv5yF6uh4_Xk3z2f3k5mo0y-uSypRTbhptG5BFSSyrONUV48bIQmPLTGOlFIC5NRIMM5UR2jSE1ZWmTDeWyKY8ROebvYvgP5cQk_pwsYa21R34ZVREFJSuH0z-gWLBMSloj579Qt_9MnTrQxThUmDGKCvXFN9QdfAxBrCqdkkn57sUtGsVwarvofoequ-htj3WJvllLoL70GH1p3O6cRwA_PC84oJSWX4DgPuYKA
CODEN IGRSBY
CitedBy_id crossref_primary_10_3390_rs11121468
crossref_primary_10_3390_rs13081589
crossref_primary_10_3390_drones6030073
crossref_primary_10_3389_fpls_2024_1470719
crossref_primary_10_1080_22797254_2022_2117650
crossref_primary_10_1016_j_isprsjprs_2025_05_022
crossref_primary_10_3390_rs13091748
crossref_primary_10_1016_j_compag_2023_108165
crossref_primary_10_1080_10106049_2024_2387087
crossref_primary_10_1016_j_compag_2023_107671
crossref_primary_10_1016_j_rse_2024_114072
crossref_primary_10_1016_j_rse_2022_113385
crossref_primary_10_1016_j_rse_2022_113023
crossref_primary_10_1016_j_rse_2022_113386
crossref_primary_10_1016_j_rse_2024_114118
crossref_primary_10_1016_j_isprsjprs_2022_09_003
crossref_primary_10_1016_j_rse_2025_114797
crossref_primary_10_3390_rs13030403
crossref_primary_10_3390_rs12162574
crossref_primary_10_1007_s41064_024_00323_w
crossref_primary_10_1007_s11119_024_10207_z
crossref_primary_10_1016_j_compag_2020_105321
crossref_primary_10_1016_j_atech_2022_100067
crossref_primary_10_1016_j_isprsjprs_2017_08_012
crossref_primary_10_1016_j_fcr_2023_108859
crossref_primary_10_3390_rs13040648
crossref_primary_10_3390_rs14081792
crossref_primary_10_3390_rs16071211
crossref_primary_10_1109_TGRS_2025_3544343
crossref_primary_10_3390_rs15071784
crossref_primary_10_3390_rs14225801
crossref_primary_10_1016_j_rse_2025_114784
crossref_primary_10_1016_j_rse_2020_112101
crossref_primary_10_1016_j_compag_2023_108308
crossref_primary_10_1016_j_jag_2020_102174
crossref_primary_10_3390_rs11050481
crossref_primary_10_1016_j_rse_2022_112958
crossref_primary_10_1109_LGRS_2020_3014676
crossref_primary_10_3390_rs14153515
crossref_primary_10_3390_rs14102448
crossref_primary_10_1109_TGRS_2018_2864517
crossref_primary_10_1016_j_jag_2024_104076
crossref_primary_10_1016_j_compag_2025_110983
crossref_primary_10_1080_01431161_2025_2546152
crossref_primary_10_1016_j_asr_2025_02_052
crossref_primary_10_1016_j_jag_2021_102454
crossref_primary_10_3390_rs14010146
crossref_primary_10_1016_j_atech_2025_100960
crossref_primary_10_1016_j_compag_2023_108020
crossref_primary_10_1109_TGRS_2025_3578534
crossref_primary_10_3390_rs11131614
crossref_primary_10_1007_s10712_018_9478_y
crossref_primary_10_1016_j_isprsjprs_2021_06_017
crossref_primary_10_1016_j_srs_2025_100253
crossref_primary_10_1080_01431161_2021_2024912
crossref_primary_10_1016_j_fcr_2024_109660
crossref_primary_10_1016_j_rse_2021_112353
crossref_primary_10_1016_j_compag_2024_108942
crossref_primary_10_1080_01431161_2024_2370503
crossref_primary_10_1016_j_compag_2023_107669
crossref_primary_10_1016_j_rse_2020_112168
crossref_primary_10_1016_j_ecoinf_2025_103351
crossref_primary_10_1016_j_isprsjprs_2020_07_004
crossref_primary_10_1109_ACCESS_2020_3035670
crossref_primary_10_3390_rs13020287
crossref_primary_10_1080_01431161_2024_2413027
crossref_primary_10_3390_rs15235496
crossref_primary_10_3847_PSJ_abe3fd
crossref_primary_10_1109_LGRS_2022_3141497
crossref_primary_10_1016_j_cja_2024_05_044
crossref_primary_10_1109_JSTARS_2024_3375624
crossref_primary_10_1016_j_isprsjprs_2024_06_007
crossref_primary_10_3390_agronomy13123071
crossref_primary_10_1016_j_jag_2024_103905
crossref_primary_10_3390_rs14184531
crossref_primary_10_1016_j_ecolind_2025_113597
crossref_primary_10_1109_LGRS_2019_2951800
crossref_primary_10_1016_j_rse_2020_112241
crossref_primary_10_1016_j_isprsjprs_2024_11_005
crossref_primary_10_3390_rs10010085
crossref_primary_10_1016_j_rse_2023_113475
Cites_doi 10.3390/rs4092866
10.1109/TGRS.2010.2072929
10.1016/j.rse.2011.11.002
10.1016/j.rse.2008.01.026
10.1109/JSTARS.2014.2298752
10.3390/rs5073280
10.1162/neco.1992.4.4.590
10.1016/j.apenergy.2012.09.055
10.1016/j.rse.2009.03.001
10.1016/j.patcog.2014.02.001
10.1049/iet-cvi.2014.0140
10.1109/TGRS.2007.895845
10.1016/j.rse.2012.12.027
10.1109/TGRS.2011.2168962
10.1109/JSTSP.2011.2139193
10.1109/TGRS.2012.2187906
10.1016/j.isprsjprs.2015.04.013
10.1016/j.chemolab.2011.07.007
10.1109/MSP.2013.2250591
10.1109/JPROC.2012.2231951
10.1109/TGRS.2012.2185504
10.1016/j.rse.2007.02.018
10.1023/A:1018628609742
10.1109/TGRS.2013.2258676
10.1016/j.patrec.2012.01.015
10.1016/j.isprsjprs.2015.05.005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
F28
DOI 10.1109/LGRS.2016.2560799
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 1016
ExternalDocumentID 4094691681
10_1109_LGRS_2016_2560799
7478559
Genre orig-research
GrantInformation_xml – fundername: European Space Agency
  funderid: 10.13039/501100000844
– fundername: Spanish Ministry of Economy and Competitiveness
  grantid: TIN2015-64210-R
– fundername: European Research Council (ERC)
  funderid: 10.13039/501100000781
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
RIG
F28
ID FETCH-LOGICAL-c359t-57bdafde9231f6475a467bb92a0f6bdf998e07fb9eb6b4b8abd16c4a56adf19d3
IEDL.DBID RIE
ISICitedReferencesCount 90
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379718600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Sat Sep 27 19:30:17 EDT 2025
Tue Oct 07 09:28:44 EDT 2025
Mon Jun 30 08:41:25 EDT 2025
Sat Nov 29 05:53:49 EST 2025
Tue Nov 18 22:43:57 EST 2025
Tue Aug 26 16:43:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords kernel methods
PROSAIL
hybrid retrieval methods
machine learning regression algorithms (MLRAs)
Sentinel-3
Active learning (AL)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-57bdafde9231f6475a467bb92a0f6bdf998e07fb9eb6b4b8abd16c4a56adf19d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6313-2081
PQID 1798066563
PQPubID 75725
PageCount 5
ParticipantIDs ieee_primary_7478559
proquest_miscellaneous_1825518201
crossref_citationtrail_10_1109_LGRS_2016_2560799
proquest_journals_1798066563
proquest_miscellaneous_1808701251
crossref_primary_10_1109_LGRS_2016_2560799
PublicationCentury 2000
PublicationDate 2016-July
2016-7-00
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-July
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref18
bazi (ref19) 2013; 103
rasmussen (ref8) 2006
ref24
ref23
ref25
ref20
ref22
ref21
camps-valls (ref26) 2013
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
schölkopf (ref28) 2002
References_xml – ident: ref24
  doi: 10.3390/rs4092866
– ident: ref22
  doi: 10.1109/TGRS.2010.2072929
– ident: ref7
  doi: 10.1016/j.rse.2011.11.002
– ident: ref5
  doi: 10.1016/j.rse.2008.01.026
– ident: ref25
  doi: 10.1109/JSTARS.2014.2298752
– ident: ref27
  doi: 10.3390/rs5073280
– ident: ref12
  doi: 10.1162/neco.1992.4.4.590
– volume: 103
  start-page: 328
  year: 2013
  ident: ref19
  article-title: Kernel ridge regression with active learning for wind speed prediction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.09.055
– ident: ref1
  doi: 10.1016/j.rse.2009.03.001
– ident: ref29
  doi: 10.1016/j.patcog.2014.02.001
– ident: ref20
  doi: 10.1049/iet-cvi.2014.0140
– ident: ref18
  doi: 10.1109/TGRS.2007.895845
– ident: ref4
  doi: 10.1016/j.rse.2012.12.027
– ident: ref9
  doi: 10.1109/TGRS.2011.2168962
– year: 2013
  ident: ref26
  publication-title: simpleR A simple educational Matlab toolbox for statistical regression
– ident: ref13
  doi: 10.1109/JSTSP.2011.2139193
– ident: ref17
  doi: 10.1109/TGRS.2012.2187906
– ident: ref10
  doi: 10.1016/j.isprsjprs.2015.04.013
– year: 2002
  ident: ref28
  publication-title: Learning With Kernels-Support Vector Machines Regularization Optimization and Beyond
– ident: ref21
  doi: 10.1016/j.chemolab.2011.07.007
– ident: ref11
  doi: 10.1109/MSP.2013.2250591
– ident: ref15
  doi: 10.1109/JPROC.2012.2231951
– ident: ref14
  doi: 10.1109/TGRS.2012.2185504
– ident: ref3
  doi: 10.1016/j.rse.2007.02.018
– ident: ref6
  doi: 10.1023/A:1018628609742
– ident: ref16
  doi: 10.1109/TGRS.2013.2258676
– year: 2006
  ident: ref8
  publication-title: Gaussian Processes for Machine Learning
– ident: ref23
  doi: 10.1016/j.patrec.2012.01.015
– ident: ref2
  doi: 10.1016/j.isprsjprs.2015.05.005
SSID ssj0024887
Score 2.4392729
Snippet Kernel-based machine learning regression algorithms (MLRAs) are potentially powerful methods for being implemented into operational biophysical variable...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1012
SubjectTerms Accuracy
Active learning (AL)
Biological system modeling
Chlorophylls
Computational modeling
Computer simulation
Data models
Data reduction
Estimation
Feature extraction
hybrid retrieval methods
Kernel
kernel methods
Learning
machine learning regression algorithms (MLRAs)
Mathematical models
PROSAIL
Radiative transfer
Remote sensing
Retrieval
Sentinel-3
Training
Training data
Title Active Learning Methods for Efficient Hybrid Biophysical Variable Retrieval
URI https://ieeexplore.ieee.org/document/7478559
https://www.proquest.com/docview/1798066563
https://www.proquest.com/docview/1808701251
https://www.proquest.com/docview/1825518201
Volume 13
WOSCitedRecordID wos000379718600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7aoujFVxXriwiexG23291kc1RpK_hAfNHbkmQTLUhb-hD6782ksT0oBW8LO7sbZpLJZGfm-wDOpEpZJMM4kJKrIBZRPZCM6YAarrBwXGjtcGbv2MND2unwxwJczHthtNau-ExX8dLl8vO-muCvshpivdsIuAhFxuisV2uBq5c6MjyMCIKEpx2fwayHvHbXfnrGIi5axf2dOZjXxR7kSFV-eWK3vbQ2_zewLdjwYSS5nNl9Gwq6twNrntH8Y7oDq21H2Tstw-2lc2nEI6m-k3tHGj0iNlwlTYcgYV9ObqbYu0Wuuv2BNx15s-do7KwiT452y87JXXhtNV-ubwJPoRBYTfNxkDCZC5NrDOMMjVkirGO0ZolEaKjMjT1s6ZAZybWkMpapkHmdqlgkVOSmzvPGHpR6_Z7eBxJTkyRSmZzbmCU1lBsaRXgaUTIxccwrEP4oNVMeXxxpLj4zd84IeYZ2yNAOmbdDBc7njwxm4BrLhMuo-Lmg13kFjn4sl_nlN8oQhQ1zSrRRgdP5bbtwMBsiero_sTJpaH0VxnfLZCJErLPDOPj764ewjmOc1e8eQWk8nOhjWFFf4-5oeOJm6DcGsOPx
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8RF_82BTnZwSfxM6upmnzqDKdbA7RKXsrSZqoIJu4Tdh_by7Ltgdl4Fuh1zbcJZdL7-73AziRKk0iGdJASq4CKqJKIJNEB8xwhYXjQmuHM9tIms203eYPc3A26YXRWrviM13GS5fLz7tqgL_KzhHr3UbA87AYUxqFo26tKbJe6ujwMCYIYp62fQ6zEvLzxu3jE5ZxsTLu8IkDep3uQo5W5ZcvdhvMzfr_hrYBaz6QJJcjy2_CnO4UYMVzmr8NC7B860h7h0WoXzqnRjyW6iu5d7TRPWIDVlJ1GBL25aQ2xO4tcvXe_fTGIy_2JI29VeTREW_ZWbkFzzfV1nUt8CQKgdU17wdxInNhco2BnGE0iYV1jdYwkQgNk7mxxy0dJkZyLZmkMhUyrzBFRcxEbio8v9iGhU63o3eAUGbiWCqTcxu1pIZxw6IIzyNKxoZSXoJwrNRMeYRxJLr4yNxJI-QZ2iFDO2TeDiU4nTzyOYLXmCVcRMVPBL3OS7A_tlzmF2AvQxw2zCqxixIcT27bpYP5ENHR3YGVSUPrrTDCmyUTIWadHcbu318_gpVa676RNe6a9T1YxfGOqnn3YaH_NdAHsKS----9r0M3W38ABnLnOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Learning+Methods+for+Efficient+Hybrid+Biophysical+Variable+Retrieval&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Verrelst%2C+Jochem&rft.au=Dethier%2C+Sara&rft.au=Juan+Pablo+Rivera&rft.au=Munoz-Mari%2C+Jordi&rft.date=2016-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=13&rft.issue=7&rft.spage=1012&rft_id=info:doi/10.1109%2FLGRS.2016.2560799&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4094691681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon