Active Learning Methods for Efficient Hybrid Biophysical Variable Retrieval
Kernel-based machine learning regression algorithms (MLRAs) are potentially powerful methods for being implemented into operational biophysical variable retrieval schemes. However, they face difficulties in coping with large training data sets. With the increasing amount of optical remote sensing da...
Gespeichert in:
| Veröffentlicht in: | IEEE geoscience and remote sensing letters Jg. 13; H. 7; S. 1012 - 1016 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1545-598X, 1558-0571 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Kernel-based machine learning regression algorithms (MLRAs) are potentially powerful methods for being implemented into operational biophysical variable retrieval schemes. However, they face difficulties in coping with large training data sets. With the increasing amount of optical remote sensing data made available for analysis and the possibility of using a large amount of simulated data from radiative transfer models (RTMs) to train kernel MLRAs, efficient data reduction techniques will need to be implemented. Active learning (AL) methods enable to select the most informative samples in a data set. This letter introduces six AL methods for achieving optimized biophysical variable estimation with a manageable training data set, and their implementation into a Matlab-based MLRA toolbox for semiautomatic use. The AL methods were analyzed on their efficiency of improving the estimation accuracy of the leaf area index and chlorophyll content based on PROSAIL simulations. Each of the implemented methods outperformed random sampling, improving retrieval accuracy with lower sampling rates. Practically, AL methods open opportunities to feed advanced MLRAs with RTM-generated training data for the development of operational retrieval models. |
|---|---|
| AbstractList | Kernel-based machine learning regression algorithms (MLRAs) are potentially powerful methods for being implemented into operational biophysical variable retrieval schemes. However, they face difficulties in coping with large training data sets. With the increasing amount of optical remote sensing data made available for analysis and the possibility of using a large amount of simulated data from radiative transfer models (RTMs) to train kernel MLRAs, efficient data reduction techniques will need to be implemented. Active learning (AL) methods enable to select the most informative samples in a data set. This letter introduces six AL methods for achieving optimized biophysical variable estimation with a manageable training data set, and their implementation into a Matlab-based MLRA toolbox for semiautomatic use. The AL methods were analyzed on their efficiency of improving the estimation accuracy of the leaf area index and chlorophyll content based on PROSAIL simulations. Each of the implemented methods outperformed random sampling, improving retrieval accuracy with lower sampling rates. Practically, AL methods open opportunities to feed advanced MLRAs with RTM-generated training data for the development of operational retrieval models. |
| Author | Verrelst, Jochem Munoz-Mari, Jordi Rivera, Juan Pablo Dethier, Sara Moreno, Jose Camps-Valls, Gustau |
| Author_xml | – sequence: 1 givenname: Jochem surname: Verrelst fullname: Verrelst, Jochem email: jochem.verrelst@uv.es organization: Image Process. Lab., Univ. de Valencia, València, Spain – sequence: 2 givenname: Sara surname: Dethier fullname: Dethier, Sara email: sara.dethier11@imperial.ac.uk organization: Dept. of Phys., Imperial Coll. London, London, UK – sequence: 3 givenname: Juan Pablo surname: Rivera fullname: Rivera, Juan Pablo email: juan.rivera@uv.es organization: Image Process. Lab., Univ. de Valencia, València, Spain – sequence: 4 givenname: Jordi surname: Munoz-Mari fullname: Munoz-Mari, Jordi email: jordi.munoz@uv.es organization: Image Process. Lab., Univ. de Valencia, València, Spain – sequence: 5 givenname: Gustau surname: Camps-Valls fullname: Camps-Valls, Gustau email: gustau.camps@uv.es organization: Image Process. Lab., Univ. de Valencia, València, Spain – sequence: 6 givenname: Jose surname: Moreno fullname: Moreno, Jose email: jose.moreno@uv.es organization: Image Process. Lab., Univ. de Valencia, València, Spain |
| BookMark | eNqNkctKAzEUQINU8PkB4mbAjZupyczktaxSW7Ei1AfuQjJzo5FxUpNU6N_bocWFC3GTm8U5Fy7nAA063wFCJwQPCcHyYjaZPwwLTNiwoAxzKXfQPqFU5JhyMuj_Fc2pFC976CDGd4yLSgi-j25HdXJfkM1Ah851r9kdpDffxMz6kI2tdbWDLmXTlQmuyS6dX7ytoqt1mz3r4LRpIZtDCg6-dHuEdq1uIxxv5yF6uh4_Xk3z2f3k5mo0y-uSypRTbhptG5BFSSyrONUV48bIQmPLTGOlFIC5NRIMM5UR2jSE1ZWmTDeWyKY8ROebvYvgP5cQk_pwsYa21R34ZVREFJSuH0z-gWLBMSloj579Qt_9MnTrQxThUmDGKCvXFN9QdfAxBrCqdkkn57sUtGsVwarvofoequ-htj3WJvllLoL70GH1p3O6cRwA_PC84oJSWX4DgPuYKA |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_3390_rs11121468 crossref_primary_10_3390_rs13081589 crossref_primary_10_3390_drones6030073 crossref_primary_10_3389_fpls_2024_1470719 crossref_primary_10_1080_22797254_2022_2117650 crossref_primary_10_1016_j_isprsjprs_2025_05_022 crossref_primary_10_3390_rs13091748 crossref_primary_10_1016_j_compag_2023_108165 crossref_primary_10_1080_10106049_2024_2387087 crossref_primary_10_1016_j_compag_2023_107671 crossref_primary_10_1016_j_rse_2024_114072 crossref_primary_10_1016_j_rse_2022_113385 crossref_primary_10_1016_j_rse_2022_113023 crossref_primary_10_1016_j_rse_2022_113386 crossref_primary_10_1016_j_rse_2024_114118 crossref_primary_10_1016_j_isprsjprs_2022_09_003 crossref_primary_10_1016_j_rse_2025_114797 crossref_primary_10_3390_rs13030403 crossref_primary_10_3390_rs12162574 crossref_primary_10_1007_s41064_024_00323_w crossref_primary_10_1007_s11119_024_10207_z crossref_primary_10_1016_j_compag_2020_105321 crossref_primary_10_1016_j_atech_2022_100067 crossref_primary_10_1016_j_isprsjprs_2017_08_012 crossref_primary_10_1016_j_fcr_2023_108859 crossref_primary_10_3390_rs13040648 crossref_primary_10_3390_rs14081792 crossref_primary_10_3390_rs16071211 crossref_primary_10_1109_TGRS_2025_3544343 crossref_primary_10_3390_rs15071784 crossref_primary_10_3390_rs14225801 crossref_primary_10_1016_j_rse_2025_114784 crossref_primary_10_1016_j_rse_2020_112101 crossref_primary_10_1016_j_compag_2023_108308 crossref_primary_10_1016_j_jag_2020_102174 crossref_primary_10_3390_rs11050481 crossref_primary_10_1016_j_rse_2022_112958 crossref_primary_10_1109_LGRS_2020_3014676 crossref_primary_10_3390_rs14153515 crossref_primary_10_3390_rs14102448 crossref_primary_10_1109_TGRS_2018_2864517 crossref_primary_10_1016_j_jag_2024_104076 crossref_primary_10_1016_j_compag_2025_110983 crossref_primary_10_1080_01431161_2025_2546152 crossref_primary_10_1016_j_asr_2025_02_052 crossref_primary_10_1016_j_jag_2021_102454 crossref_primary_10_3390_rs14010146 crossref_primary_10_1016_j_atech_2025_100960 crossref_primary_10_1016_j_compag_2023_108020 crossref_primary_10_1109_TGRS_2025_3578534 crossref_primary_10_3390_rs11131614 crossref_primary_10_1007_s10712_018_9478_y crossref_primary_10_1016_j_isprsjprs_2021_06_017 crossref_primary_10_1016_j_srs_2025_100253 crossref_primary_10_1080_01431161_2021_2024912 crossref_primary_10_1016_j_fcr_2024_109660 crossref_primary_10_1016_j_rse_2021_112353 crossref_primary_10_1016_j_compag_2024_108942 crossref_primary_10_1080_01431161_2024_2370503 crossref_primary_10_1016_j_compag_2023_107669 crossref_primary_10_1016_j_rse_2020_112168 crossref_primary_10_1016_j_ecoinf_2025_103351 crossref_primary_10_1016_j_isprsjprs_2020_07_004 crossref_primary_10_1109_ACCESS_2020_3035670 crossref_primary_10_3390_rs13020287 crossref_primary_10_1080_01431161_2024_2413027 crossref_primary_10_3390_rs15235496 crossref_primary_10_3847_PSJ_abe3fd crossref_primary_10_1109_LGRS_2022_3141497 crossref_primary_10_1016_j_cja_2024_05_044 crossref_primary_10_1109_JSTARS_2024_3375624 crossref_primary_10_1016_j_isprsjprs_2024_06_007 crossref_primary_10_3390_agronomy13123071 crossref_primary_10_1016_j_jag_2024_103905 crossref_primary_10_3390_rs14184531 crossref_primary_10_1016_j_ecolind_2025_113597 crossref_primary_10_1109_LGRS_2019_2951800 crossref_primary_10_1016_j_rse_2020_112241 crossref_primary_10_1016_j_isprsjprs_2024_11_005 crossref_primary_10_3390_rs10010085 crossref_primary_10_1016_j_rse_2023_113475 |
| Cites_doi | 10.3390/rs4092866 10.1109/TGRS.2010.2072929 10.1016/j.rse.2011.11.002 10.1016/j.rse.2008.01.026 10.1109/JSTARS.2014.2298752 10.3390/rs5073280 10.1162/neco.1992.4.4.590 10.1016/j.apenergy.2012.09.055 10.1016/j.rse.2009.03.001 10.1016/j.patcog.2014.02.001 10.1049/iet-cvi.2014.0140 10.1109/TGRS.2007.895845 10.1016/j.rse.2012.12.027 10.1109/TGRS.2011.2168962 10.1109/JSTSP.2011.2139193 10.1109/TGRS.2012.2187906 10.1016/j.isprsjprs.2015.04.013 10.1016/j.chemolab.2011.07.007 10.1109/MSP.2013.2250591 10.1109/JPROC.2012.2231951 10.1109/TGRS.2012.2185504 10.1016/j.rse.2007.02.018 10.1023/A:1018628609742 10.1109/TGRS.2013.2258676 10.1016/j.patrec.2012.01.015 10.1016/j.isprsjprs.2015.05.005 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D F28 |
| DOI | 10.1109/LGRS.2016.2560799 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 1016 |
| ExternalDocumentID | 4094691681 10_1109_LGRS_2016_2560799 7478559 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European Space Agency funderid: 10.13039/501100000844 – fundername: Spanish Ministry of Economy and Competitiveness grantid: TIN2015-64210-R – fundername: European Research Council (ERC) funderid: 10.13039/501100000781 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D RIG F28 |
| ID | FETCH-LOGICAL-c359t-57bdafde9231f6475a467bb92a0f6bdf998e07fb9eb6b4b8abd16c4a56adf19d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 90 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379718600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Sat Sep 27 19:30:17 EDT 2025 Tue Oct 07 09:28:44 EDT 2025 Mon Jun 30 08:41:25 EDT 2025 Sat Nov 29 05:53:49 EST 2025 Tue Nov 18 22:43:57 EST 2025 Tue Aug 26 16:43:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | kernel methods PROSAIL hybrid retrieval methods machine learning regression algorithms (MLRAs) Sentinel-3 Active learning (AL) |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-57bdafde9231f6475a467bb92a0f6bdf998e07fb9eb6b4b8abd16c4a56adf19d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6313-2081 |
| PQID | 1798066563 |
| PQPubID | 75725 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_7478559 proquest_miscellaneous_1825518201 crossref_citationtrail_10_1109_LGRS_2016_2560799 proquest_journals_1798066563 proquest_miscellaneous_1808701251 crossref_primary_10_1109_LGRS_2016_2560799 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-July 2016-7-00 20160701 |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 07 year: 2016 text: 2016-July |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref18 bazi (ref19) 2013; 103 rasmussen (ref8) 2006 ref24 ref23 ref25 ref20 ref22 ref21 camps-valls (ref26) 2013 ref27 ref29 ref7 ref9 ref4 ref3 ref6 ref5 schölkopf (ref28) 2002 |
| References_xml | – ident: ref24 doi: 10.3390/rs4092866 – ident: ref22 doi: 10.1109/TGRS.2010.2072929 – ident: ref7 doi: 10.1016/j.rse.2011.11.002 – ident: ref5 doi: 10.1016/j.rse.2008.01.026 – ident: ref25 doi: 10.1109/JSTARS.2014.2298752 – ident: ref27 doi: 10.3390/rs5073280 – ident: ref12 doi: 10.1162/neco.1992.4.4.590 – volume: 103 start-page: 328 year: 2013 ident: ref19 article-title: Kernel ridge regression with active learning for wind speed prediction publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.09.055 – ident: ref1 doi: 10.1016/j.rse.2009.03.001 – ident: ref29 doi: 10.1016/j.patcog.2014.02.001 – ident: ref20 doi: 10.1049/iet-cvi.2014.0140 – ident: ref18 doi: 10.1109/TGRS.2007.895845 – ident: ref4 doi: 10.1016/j.rse.2012.12.027 – ident: ref9 doi: 10.1109/TGRS.2011.2168962 – year: 2013 ident: ref26 publication-title: simpleR A simple educational Matlab toolbox for statistical regression – ident: ref13 doi: 10.1109/JSTSP.2011.2139193 – ident: ref17 doi: 10.1109/TGRS.2012.2187906 – ident: ref10 doi: 10.1016/j.isprsjprs.2015.04.013 – year: 2002 ident: ref28 publication-title: Learning With Kernels-Support Vector Machines Regularization Optimization and Beyond – ident: ref21 doi: 10.1016/j.chemolab.2011.07.007 – ident: ref11 doi: 10.1109/MSP.2013.2250591 – ident: ref15 doi: 10.1109/JPROC.2012.2231951 – ident: ref14 doi: 10.1109/TGRS.2012.2185504 – ident: ref3 doi: 10.1016/j.rse.2007.02.018 – ident: ref6 doi: 10.1023/A:1018628609742 – ident: ref16 doi: 10.1109/TGRS.2013.2258676 – year: 2006 ident: ref8 publication-title: Gaussian Processes for Machine Learning – ident: ref23 doi: 10.1016/j.patrec.2012.01.015 – ident: ref2 doi: 10.1016/j.isprsjprs.2015.05.005 |
| SSID | ssj0024887 |
| Score | 2.4393532 |
| Snippet | Kernel-based machine learning regression algorithms (MLRAs) are potentially powerful methods for being implemented into operational biophysical variable... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1012 |
| SubjectTerms | Accuracy Active learning (AL) Biological system modeling Chlorophylls Computational modeling Computer simulation Data models Data reduction Estimation Feature extraction hybrid retrieval methods Kernel kernel methods Learning machine learning regression algorithms (MLRAs) Mathematical models PROSAIL Radiative transfer Remote sensing Retrieval Sentinel-3 Training Training data |
| Title | Active Learning Methods for Efficient Hybrid Biophysical Variable Retrieval |
| URI | https://ieeexplore.ieee.org/document/7478559 https://www.proquest.com/docview/1798066563 https://www.proquest.com/docview/1808701251 https://www.proquest.com/docview/1825518201 |
| Volume | 13 |
| WOSCitedRecordID | wos000379718600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB5qUfTFW6wXEXwSV_fIZjePKtqCB-JF35acKkgrPYT-ezNpWh8UwbeFzG7CTDKZ7GS-D-BAU8uNizSinCsaUZGISJZaR4pKpTNjTJpJTzZR3N6W7Ta_q8HRtBbGNfvLZ-YYH30uX3fVEH-VnSDWu4uAZ2CmKNi4VusbV6_0ZHgYEbh-y3bIYCYxP7lu3j_gJS52jPt74WFev_cgT6rywxP77eVy6X8DW4bFEEaS07HdV6BmOqswHxjNX0erMNf0lL2jNbg69S6NBCTVF3LjSaP7xIWr5MIjSLiPk9YIa7fI2Vv3I5iOPLtzNFZWkXtPu-Xm5Do8XV48nreiQKEQqSzngygvpBZWGwzjLKNFLpxjlJKnIrZMausOWyYurORGMkllKaROmKIiZ0LbhOtsA-qdbsdsAklTYxWjUiBfseWloCWnhZHUaJ3oWDQgnii1UgFfHGku3it_zoh5hXao0A5VsEMDDqevfIzBNf4SXkPFTwWDzhuwM7FcFZZfv0IUNswpsawB-9Nmt3AwGyI6pjt0MmXsfBXGd3_JpIhY54ax9Xvv27CAYxzf392B-qA3NLswqz4Hb_3enp-hX0vd5Rk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB48qS_eYj0j-CSu7pE98lhFrViLeNG3JacWpJUeQv-9mTTWB0XwbSGzmzCTTCY7me8DOFTUMG0jjSBlkgaURzwQhVKBpEKqRGsdJ8KRTeTNZtFqsbspOJ7Uwthmd_lMn-Cjy-Wrrhzir7JTxHq3EfA0zKaUxuG4WusbWa9wdHgYE9iei5bPYUYhO21c3T_gNa7sBHf43AG9fu9Cjlblhy92G8zl0v-GtgyLPpAktbHlV2BKd1ah4jnNX0erMH_lSHtHa3BTc06NeCzVF3LraKP7xAas5MJhSNiPk_oIq7fIWbv77o1Hnu1JGmuryL0j3rKzch2eLi8ez-uBJ1EIZJKyQZDmQnGjNAZyJqN5yq1rFILFPDSZUMYet3SYG8G0yAQVBRcqyiTlacaViZhKNmCm0-3oTSBxrI3MqODIWGxYwWnBaK4F1UpFKuRVCL-UWkqPMI5EF2-lO2mErEQ7lGiH0tuhCkeTV97H8Bp_Ca-h4ieCXudV2PmyXOkXYL9EHDbMKmVJFQ4mzXbpYD6Ed3R3aGWK0HorjPD-kokRs84OY-v33vehUn-8bZSN6-bNNizgeMe3eXdgZtAb6l2Ykx-Ddr-352brJ1qT6GA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Learning+Methods+for+Efficient+Hybrid+Biophysical+Variable+Retrieval&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Verrelst%2C+Jochem&rft.au=Dethier%2C+Sara&rft.au=Rivera%2C+Juan+Pablo&rft.au=Munoz-Mari%2C+Jordi&rft.date=2016-07-01&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=13&rft.issue=7&rft.spage=1012&rft.epage=1016&rft_id=info:doi/10.1109%2FLGRS.2016.2560799&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |