An efficient numerical method for solving the Boltzmann equation in multidimensions

In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 [26]) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics Vol. 353; pp. 46 - 81
Main Authors: Dimarco, Giacomo, Loubère, Raphaël, Narski, Jacek, Rey, Thomas
Format: Journal Article
Language:English
Published: Cambridge Elsevier Inc 15.01.2018
Elsevier Science Ltd
Elsevier
Subjects:
ISSN:0021-9991, 1090-2716
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 [26]) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3D×3D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2017.10.010