Giant Faraday rotation in single- and multilayer graphene
The rotation of polarized light in certain materials when subject to a magnetic field is known as the Faraday effect. Remarkably, just one atomic layer of graphene exhibits Faraday rotations that would only be measurable in other materials many hundreds of micrometres thick. The rotation of the pola...
Uloženo v:
| Vydáno v: | Nature physics Ročník 7; číslo 1; s. 48 - 51 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.01.2011
Nature Publishing Group |
| Témata: | |
| ISSN: | 1745-2473, 1745-2481 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The rotation of polarized light in certain materials when subject to a magnetic field is known as the Faraday effect. Remarkably, just one atomic layer of graphene exhibits Faraday rotations that would only be measurable in other materials many hundreds of micrometres thick.
The rotation of the polarization of light after passing a medium in a magnetic field, discovered by Faraday
1
, is an optical analogue of the Hall effect, which combines sensitivity to the carrier type with access to a broad energy range. Up to now the thinnest structures showing the Faraday rotation were several-nanometre-thick two-dimensional electron gases
2
. As the rotation angle is proportional to the distance travelled by the light, an intriguing issue is the scale of this effect in two-dimensional atomic crystals or films—the ultimately thin objects in condensed matter physics. Here we demonstrate that a single atomic layer of carbon—graphene—turns the polarization by several degrees in modest magnetic fields. Such a strong rotation is due to the resonances originating from the cyclotron effect in the classical regime and the inter-Landau-level transitions in the quantum regime. Combined with the possibility of ambipolar doping
3
, this opens pathways to use graphene in fast tunable ultrathin infrared magneto-optical devices. |
|---|---|
| AbstractList | The rotation of polarized light in certain materials when subject to a magnetic field is known as the Faraday effect. Remarkably, just one atomic layer of graphene exhibits Faraday rotations that would only be measurable in other materials many hundreds of micrometres thick.
The rotation of the polarization of light after passing a medium in a magnetic field, discovered by Faraday
1
, is an optical analogue of the Hall effect, which combines sensitivity to the carrier type with access to a broad energy range. Up to now the thinnest structures showing the Faraday rotation were several-nanometre-thick two-dimensional electron gases
2
. As the rotation angle is proportional to the distance travelled by the light, an intriguing issue is the scale of this effect in two-dimensional atomic crystals or films—the ultimately thin objects in condensed matter physics. Here we demonstrate that a single atomic layer of carbon—graphene—turns the polarization by several degrees in modest magnetic fields. Such a strong rotation is due to the resonances originating from the cyclotron effect in the classical regime and the inter-Landau-level transitions in the quantum regime. Combined with the possibility of ambipolar doping
3
, this opens pathways to use graphene in fast tunable ultrathin infrared magneto-optical devices. The rotation of the polarization of light after passing a medium in a magnetic field, discovered by Faraday, is an optical analogue of the Hall effect, which combines sensitivity to the carrier type with access to a broad energy range. Up to now the thinnest structures showing the Faraday rotation were several-nanometre-thick two-dimensional electron gases. As the rotation angle is proportional to the distance travelled by the light, an intriguing issue is the scale of this effect in two-dimensional atomic crystals or films--the ultimately thin objects in condensed matter physics. Here we demonstrate that a single atomic layer of carbon--graphene--turns the polarization by several degrees in modest magnetic fields. Such a strong rotation is due to the resonances originating from the cyclotron effect in the classical regime and the inter-Landau-level transitions in the quantum regime. Combined with the possibility of ambipolar doping, this opens pathways to use graphene in fast tunable ultrathin infrared magneto-optical devices. The rotation of the polarization of light after passing a medium in a magnetic eld, discovered by Faraday, is an optical analogue of the Hall effect, which combines sensitivity to the carrier type with access to a broad energy range. Up to now the thinnest structures showing the Faraday rotation were several-nanometre-thick two-dimensional electron gases. |
| Author | Levallois, Julien Rotenberg, Eli Kuzmenko, Alexey B. van der Marel, Dirk Crassee, Iris Walter, Andrew L. Bostwick, Aaron Seyller, Thomas Ostler, Markus |
| Author_xml | – sequence: 1 givenname: Iris surname: Crassee fullname: Crassee, Iris organization: Département de Physique de la Matière Condensée, Université de Genève – sequence: 2 givenname: Julien surname: Levallois fullname: Levallois, Julien organization: Département de Physique de la Matière Condensée, Université de Genève – sequence: 3 givenname: Andrew L. surname: Walter fullname: Walter, Andrew L. organization: Department of Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, E. O. Lawrence Berkeley Laboratory, Advanced Light Source – sequence: 4 givenname: Markus surname: Ostler fullname: Ostler, Markus organization: Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg – sequence: 5 givenname: Aaron surname: Bostwick fullname: Bostwick, Aaron organization: E. O. Lawrence Berkeley Laboratory, Advanced Light Source – sequence: 6 givenname: Eli surname: Rotenberg fullname: Rotenberg, Eli organization: E. O. Lawrence Berkeley Laboratory, Advanced Light Source – sequence: 7 givenname: Thomas surname: Seyller fullname: Seyller, Thomas organization: Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg – sequence: 8 givenname: Dirk surname: van der Marel fullname: van der Marel, Dirk organization: Département de Physique de la Matière Condensée, Université de Genève – sequence: 9 givenname: Alexey B. surname: Kuzmenko fullname: Kuzmenko, Alexey B. email: Alexey.Kuzmenko@unige.ch organization: Département de Physique de la Matière Condensée, Université de Genève |
| BookMark | eNptkE1Lw0AURQepYK0u_AfBlQqx85mZLKXYKhTc6Dq8zEzbKekkziSL_HsjkQrV1XuLcy-Xc4kmvvYWoRuCHwlmau6bXR-JItkZmhLJRUq5IpPjL9kFuoxxjzGnGWFTlK8c-DZZQgADfRLqFlpX-8T5JDq_rWyagDfJoataV0FvQ7IN0Oyst1fofANVtNc_d4Y-ls_vi5d0_bZ6XTytU81E3qZcK5sLKRkWQhtCJTAQROOSM4W5oRnXNDcGhGEbXVIwslTUiCzTWCqal2yG7sbeJtSfnY1tcXBR26oCb-suFiSThHKeSzygtyfovu6CH9YViuSZxJkSA3Q_QjrUMQa7KZrgDhD6guDi22FxdDiw8xNWu1FQG8BV_yYexkQcWv3Wht8Jf-Evfb2EPA |
| CitedBy_id | crossref_primary_10_1088_1751_8113_48_6_065402 crossref_primary_10_1103_PhysRevResearch_2_043281 crossref_primary_10_3390_app12147049 crossref_primary_10_1088_1361_648X_aa85fe crossref_primary_10_1063_1_4891818 crossref_primary_10_1002_adom_201701212 crossref_primary_10_1016_j_cpc_2014_12_007 crossref_primary_10_1016_j_jqsrt_2019_04_025 crossref_primary_10_1016_j_ssc_2012_04_036 crossref_primary_10_1016_j_physe_2023_115876 crossref_primary_10_1088_1742_6596_456_1_012028 crossref_primary_10_1063_5_0123722 crossref_primary_10_1038_srep12646 crossref_primary_10_1038_srep23897 crossref_primary_10_1063_1_4916884 crossref_primary_10_1038_srep13615 crossref_primary_10_1063_1_3605593 crossref_primary_10_1038_srep03143 crossref_primary_10_1109_TAP_2015_2456977 crossref_primary_10_1088_0953_8984_25_30_305801 crossref_primary_10_1039_C5CP06581J crossref_primary_10_1038_s41467_021_25881_0 crossref_primary_10_1063_1_4729134 crossref_primary_10_1016_j_mseb_2023_116887 crossref_primary_10_1088_1361_6463_acda45 crossref_primary_10_1016_j_carbon_2024_119895 crossref_primary_10_1038_nnano_2012_59 crossref_primary_10_1109_JPROC_2013_2250892 crossref_primary_10_3390_cryst13040553 crossref_primary_10_1038_ncomms7334 crossref_primary_10_1088_2040_8986_ab3c3b crossref_primary_10_1364_AO_53_000B22 crossref_primary_10_1016_j_optmat_2022_112172 crossref_primary_10_1364_OME_568069 crossref_primary_10_1016_j_scitotenv_2020_141225 crossref_primary_10_1049_iet_map_2018_5590 crossref_primary_10_1063_1_4913828 crossref_primary_10_1063_1_4960378 crossref_primary_10_1002_asna_201512245 crossref_primary_10_1515_nanoph_2021_0783 crossref_primary_10_1109_JPHOT_2021_3132795 crossref_primary_10_1016_j_apsusc_2022_152455 crossref_primary_10_1088_1402_4896_ab461d crossref_primary_10_1007_s11595_024_2979_2 crossref_primary_10_1080_09500340_2014_971081 crossref_primary_10_1007_s11082_019_2128_x crossref_primary_10_1134_S0021364014180118 crossref_primary_10_1038_srep38141 crossref_primary_10_1016_j_physleta_2015_10_044 crossref_primary_10_1063_5_0173081 crossref_primary_10_1016_j_carbon_2019_10_044 crossref_primary_10_1002_mmce_22035 crossref_primary_10_3390_photonics2010013 crossref_primary_10_1016_j_jqsrt_2024_109328 crossref_primary_10_1016_j_jmmm_2023_171201 crossref_primary_10_1038_nphoton_2013_134 crossref_primary_10_1063_1_5130435 crossref_primary_10_1016_j_optcom_2015_02_032 crossref_primary_10_1038_srep24301 crossref_primary_10_29026_oea_2022_200098 crossref_primary_10_1016_j_physleta_2022_128103 crossref_primary_10_1016_j_jmmm_2012_02_057 crossref_primary_10_1016_j_jmmm_2021_168132 crossref_primary_10_1002_adom_201901381 crossref_primary_10_1088_1674_1056_acd68a crossref_primary_10_1088_1674_1056_ac051f crossref_primary_10_1088_0953_8984_25_21_215301 crossref_primary_10_1088_1361_648X_aab81d crossref_primary_10_1016_j_sna_2014_09_025 crossref_primary_10_1143_JPSJ_80_064703 crossref_primary_10_1016_j_physrep_2019_09_002 crossref_primary_10_1016_j_physleta_2024_129356 crossref_primary_10_1016_j_spmi_2016_10_016 crossref_primary_10_1140_epjp_s13360_022_03549_y crossref_primary_10_1103_PhysRevResearch_1_033049 crossref_primary_10_1209_0295_5075_134_57003 crossref_primary_10_1063_1_4906282 crossref_primary_10_1088_1361_6463_ac8da0 crossref_primary_10_1088_1361_6463_ad9ebf crossref_primary_10_1007_s10762_013_0019_y crossref_primary_10_1109_ACCESS_2020_2999623 crossref_primary_10_1364_JOSAB_32_002467 crossref_primary_10_1016_j_carbon_2015_11_020 crossref_primary_10_1016_j_jmmm_2018_08_033 crossref_primary_10_3390_ma14123354 crossref_primary_10_1002_adom_201200011 crossref_primary_10_1103_PhysRevLett_129_046801 crossref_primary_10_1038_ncomms2866 crossref_primary_10_1134_S0021364018170058 crossref_primary_10_1109_TAP_2016_2633163 crossref_primary_10_1038_s41598_020_65049_2 crossref_primary_10_1063_1_4794169 crossref_primary_10_1364_JOSAB_30_001085 crossref_primary_10_1038_s41565_023_01488_y crossref_primary_10_3390_math9121429 crossref_primary_10_1063_1_4895545 crossref_primary_10_1088_2053_1583_aa5f8b crossref_primary_10_1002_adfm_202312214 crossref_primary_10_7566_JPSJ_82_074717 crossref_primary_10_1063_1_4963276 crossref_primary_10_1088_0256_307X_42_1_014201 crossref_primary_10_1038_nature11458 crossref_primary_10_1088_1361_6633_aad6a8 crossref_primary_10_1063_1_5008775 crossref_primary_10_1088_2053_1591_2_12_125005 crossref_primary_10_1103_PhysRevApplied_13_064042 crossref_primary_10_1364_JOSAB_32_000157 crossref_primary_10_1063_1_4945310 crossref_primary_10_1016_j_spmi_2021_107021 crossref_primary_10_1515_nanoph_2015_0018 crossref_primary_10_1088_1361_6463_ac7a72 crossref_primary_10_1007_s10762_012_9916_8 crossref_primary_10_1016_j_commatsci_2011_07_029 crossref_primary_10_1016_j_carbon_2012_11_038 crossref_primary_10_1016_j_carbon_2018_03_094 crossref_primary_10_1016_j_optcom_2024_131101 crossref_primary_10_1134_S1063776112130031 crossref_primary_10_1002_lpor_201900098 crossref_primary_10_1063_1_4930065 crossref_primary_10_1002_jemt_22668 crossref_primary_10_1515_nanoph_2025_0001 crossref_primary_10_1109_TTHZ_2015_2399105 crossref_primary_10_1088_1674_1056_25_6_064201 crossref_primary_10_1109_TTHZ_2013_2263805 crossref_primary_10_1140_epjb_e2012_30685_9 crossref_primary_10_1680_jemmr_22_00087 crossref_primary_10_1016_j_ijleo_2017_01_030 crossref_primary_10_1109_TNANO_2018_2889522 crossref_primary_10_1088_0268_1242_27_12_124004 crossref_primary_10_1134_S0021364011210053 crossref_primary_10_1016_j_ijleo_2020_164267 crossref_primary_10_1103_PhysRevB_111_064428 crossref_primary_10_1016_j_jmmm_2021_168219 crossref_primary_10_1088_0953_8984_24_24_245601 crossref_primary_10_1002_lpor_202300643 crossref_primary_10_1088_1612_2011_12_4_045202 crossref_primary_10_1016_j_physleta_2014_05_009 crossref_primary_10_1038_s41467_024_47294_5 crossref_primary_10_1209_0295_5075_101_58002 crossref_primary_10_1063_1_4931704 crossref_primary_10_1002_adpr_202000104 crossref_primary_10_1016_j_physrep_2015_12_006 crossref_primary_10_1364_OE_19_022248 crossref_primary_10_1063_1_4737614 crossref_primary_10_1063_5_0006448 crossref_primary_10_1063_1_4769095 crossref_primary_10_1016_j_physb_2022_414073 crossref_primary_10_1038_s41598_025_93843_3 crossref_primary_10_1039_c3cp43994a crossref_primary_10_1002_nano_202000032 crossref_primary_10_1109_TMTT_2011_2182205 crossref_primary_10_1364_AO_497603 crossref_primary_10_1002_adom_202301330 crossref_primary_10_1109_TTHZ_2021_3122580 crossref_primary_10_1049_iet_map_2013_0019 crossref_primary_10_1088_2053_1583_aa76bb crossref_primary_10_1088_1674_1056_26_11_117801 crossref_primary_10_1038_s41467_017_01205_z crossref_primary_10_1088_0256_307X_32_2_024204 crossref_primary_10_1002_adom_201701175 crossref_primary_10_1109_TMAG_2018_2883850 crossref_primary_10_1038_s41598_022_15841_z crossref_primary_10_1038_nphoton_2014_109 crossref_primary_10_1038_s41565_019_0489_8 crossref_primary_10_1140_epjb_e2014_50291_1 crossref_primary_10_1088_2040_8978_16_12_125203 crossref_primary_10_3390_sym12081365 crossref_primary_10_1364_JOSAB_34_001684 crossref_primary_10_1038_nphys3164 crossref_primary_10_1088_1361_6463_abaced crossref_primary_10_1038_srep04190 crossref_primary_10_1364_AO_56_005914 crossref_primary_10_1063_1_3665944 crossref_primary_10_1109_TAP_2020_3044591 crossref_primary_10_1364_AO_396879 crossref_primary_10_1016_j_physb_2022_413754 crossref_primary_10_1063_5_0078416 crossref_primary_10_3390_bios15090630 crossref_primary_10_3367_UFNr_0182_201211i_1223 crossref_primary_10_1088_0953_8984_25_12_125303 crossref_primary_10_1038_s41524_019_0170_7 crossref_primary_10_1007_s10825_025_02379_2 crossref_primary_10_1016_j_tsf_2012_10_127 crossref_primary_10_1088_2040_8978_15_11_114004 crossref_primary_10_1016_j_optmat_2024_115045 crossref_primary_10_1088_1361_648X_aac96e crossref_primary_10_1103_PhysRevApplied_11_054033 crossref_primary_10_1109_TIM_2023_3284943 crossref_primary_10_1002_lpor_202200509 crossref_primary_10_1080_09205071_2017_1323016 crossref_primary_10_1155_2013_843702 crossref_primary_10_1002_adom_201900550 crossref_primary_10_1063_5_0207377 crossref_primary_10_1002_adfm_202404881 crossref_primary_10_1103_PhysRevB_106_195110 crossref_primary_10_1016_j_ijleo_2016_06_026 crossref_primary_10_1088_1402_4896_abff84 crossref_primary_10_1016_j_physe_2017_08_001 crossref_primary_10_1088_0953_8984_28_37_375802 crossref_primary_10_1103_PhysRevApplied_10_047001 crossref_primary_10_1209_0295_5075_96_27008 crossref_primary_10_1016_j_carbon_2018_09_033 crossref_primary_10_1016_j_optmat_2016_04_005 crossref_primary_10_1063_5_0046178 crossref_primary_10_1016_j_aop_2017_06_013 crossref_primary_10_1063_1_4914846 crossref_primary_10_1109_TAP_2023_3278833 crossref_primary_10_1364_JOSAB_29_001406 crossref_primary_10_1063_1_4804437 crossref_primary_10_1038_s41467_025_61249_4 crossref_primary_10_1063_1_4980038 crossref_primary_10_1088_1612_2011_13_1_015204 crossref_primary_10_1088_1612_2011_13_12_125201 crossref_primary_10_1063_1_5111775 crossref_primary_10_1103_d9wj_v62g crossref_primary_10_1016_j_physleta_2022_128293 crossref_primary_10_1080_09205071_2019_1575288 crossref_primary_10_1109_TAP_2024_3416053 crossref_primary_10_1140_epjb_e2017_80263_8 crossref_primary_10_1088_1367_2630_16_12_123021 crossref_primary_10_1002_adfm_201706587 crossref_primary_10_1002_lpor_202500375 crossref_primary_10_1016_j_physb_2014_07_014 crossref_primary_10_1063_1_4974951 crossref_primary_10_1007_s11082_018_1604_z crossref_primary_10_1016_j_physb_2016_06_014 crossref_primary_10_1088_0031_8949_91_1_015502 crossref_primary_10_1063_1_5083995 crossref_primary_10_1364_AO_53_008374 crossref_primary_10_1063_5_0251550 crossref_primary_10_1002_mop_32035 crossref_primary_10_1016_j_physleta_2016_05_013 crossref_primary_10_1063_1_5057372 crossref_primary_10_1109_LAWP_2016_2521835 crossref_primary_10_1109_JPROC_2020_3012381 crossref_primary_10_1109_JLT_2018_2818712 crossref_primary_10_1002_mop_29468 crossref_primary_10_1002_adom_201800572 crossref_primary_10_1039_C8NR05692G crossref_primary_10_1063_1_4867743 crossref_primary_10_3390_photonics12070658 crossref_primary_10_1038_srep19087 crossref_primary_10_1038_s41598_023_39644_y crossref_primary_10_1109_LAWP_2015_2510818 crossref_primary_10_35848_1882_0786_ad46f2 crossref_primary_10_1039_D5TC01540E crossref_primary_10_1038_ncomms11216 crossref_primary_10_1080_09205071_2021_1947391 crossref_primary_10_1063_1_4907564 crossref_primary_10_1038_s41598_020_65505_z crossref_primary_10_1134_S1063774514040105 crossref_primary_10_1088_0953_8984_25_5_054203 crossref_primary_10_1002_adpr_202000168 crossref_primary_10_1140_epjp_i2017_11468_x crossref_primary_10_1038_nphoton_2016_15 crossref_primary_10_1002_adom_201900623 crossref_primary_10_1016_j_physb_2022_413835 crossref_primary_10_1002_adma_201606128 crossref_primary_10_1007_s00340_013_5715_8 crossref_primary_10_1002_adma_202000250 crossref_primary_10_1016_j_micrna_2025_208235 crossref_primary_10_1007_s12648_015_0821_6 crossref_primary_10_1063_5_0249987 crossref_primary_10_1063_1_4945715 crossref_primary_10_1063_1_4967802 crossref_primary_10_1140_epjp_i2016_16293_1 crossref_primary_10_1016_j_ijleo_2020_165191 crossref_primary_10_1016_j_jmmm_2018_09_110 crossref_primary_10_1016_j_optmat_2020_109809 crossref_primary_10_1039_C9MH00295B crossref_primary_10_1088_1361_6455_ace395 crossref_primary_10_1140_epjp_s13360_024_05602_4 crossref_primary_10_1016_j_optmat_2021_111944 crossref_primary_10_1103_PhysRevApplied_13_044040 crossref_primary_10_1364_OME_551411 crossref_primary_10_1088_1361_6528_abacf6 crossref_primary_10_1063_1_4800949 crossref_primary_10_1007_s11082_018_1534_9 crossref_primary_10_1016_j_mseb_2025_118337 crossref_primary_10_1364_AO_55_005095 crossref_primary_10_3390_coatings13030601 crossref_primary_10_1088_2399_6528_aa90c8 crossref_primary_10_1016_j_physe_2016_09_015 crossref_primary_10_1038_ncomms14626 crossref_primary_10_1088_0957_4484_25_32_322001 crossref_primary_10_1103_PhysRevApplied_11_054020 crossref_primary_10_1002_adom_202001313 crossref_primary_10_1016_j_physb_2022_414581 crossref_primary_10_1016_j_spmi_2019_05_001 crossref_primary_10_1038_s41598_019_42710_z crossref_primary_10_1016_j_physe_2021_115011 crossref_primary_10_1016_j_physb_2024_416200 crossref_primary_10_1016_j_compositesa_2017_06_016 crossref_primary_10_1063_1_4871674 crossref_primary_10_1021_jacs_2c01983 crossref_primary_10_1364_AO_408531 crossref_primary_10_1088_1361_6463_abe0de crossref_primary_10_1038_s41586_022_04520_8 crossref_primary_10_1007_s00894_012_1356_9 crossref_primary_10_1007_s11082_021_03284_1 crossref_primary_10_1088_1361_6463_acbc2f crossref_primary_10_1016_j_jlumin_2015_09_031 crossref_primary_10_1063_1_4728183 crossref_primary_10_1515_nanoph_2022_0820 crossref_primary_10_1063_1_4883765 crossref_primary_10_1038_nphys2857 crossref_primary_10_1038_s41598_025_92740_z crossref_primary_10_1016_j_physb_2024_416336 crossref_primary_10_1134_S0021364013070047 crossref_primary_10_1016_j_jmmm_2017_10_017 crossref_primary_10_1017_S1431927615014877 crossref_primary_10_1109_TMAG_2020_3000669 crossref_primary_10_1007_s10825_021_01790_9 crossref_primary_10_1063_1_5022774 crossref_primary_10_1109_TEMC_2016_2533918 crossref_primary_10_1109_TNANO_2014_2387576 |
| Cites_doi | 10.1103/PhysRevLett.101.267601 10.1038/nature04235 10.1088/1367-2630/11/9/095013 10.1103/PhysRevLett.97.266405 10.1103/PhysRevLett.103.116803 10.1088/0953-8984/19/2/026222 10.1103/PhysRevB.81.195434 10.1063/1.3266524 10.1103/PhysRevLett.100.117401 10.1103/PhysRevLett.98.197403 10.1103/RevModPhys.81.109 10.1126/science.1156965 10.1103/PhysRevB.73.125411 10.1063/1.3254329 10.4028/www.scientific.net/MSF.645-648.629 10.1103/PhysRevLett.76.696 10.1103/PhysRevLett.103.246804 10.1038/nmat2382 10.1143/JPSJ.72.3276 10.1103/PhysRevLett.98.206802 10.1038/nmat1849 10.1103/PhysRevLett.95.146801 10.1038/nature04233 10.1103/PhysRevLett.104.256802 10.1126/science.1186489 10.1143/JPSJ.71.1318 10.1021/jp040650f 10.1140/epjb/e2007-00142-3 10.1038/nphys989 10.1088/1751-8113/42/44/442001 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2010 Copyright Nature Publishing Group Jan 2011 |
| Copyright_xml | – notice: Springer Nature Limited 2010 – notice: Copyright Nature Publishing Group Jan 2011 |
| DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1038/nphys1816 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Technology Research Database ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1745-2481 |
| EndPage | 51 |
| ExternalDocumentID | 2219266221 10_1038_nphys1816 |
| Genre | Feature |
| GroupedDBID | 0R~ 123 29M 39C 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFKRA AFSHS AFWHJ AGAYW AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NFIDA NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PHGZT PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ACSTC AEZWR AFFHD AIXLP ATHPR CITATION PHGZM PQGLB 3V. 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c359t-4c8e95773055cd127a3a51c0b43804d264c29dda5d3fcb2ad7b82d566c07829b3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 535 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285501100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1745-2473 |
| IngestDate | Sun Nov 09 10:48:14 EST 2025 Sat Aug 23 13:14:36 EDT 2025 Sat Nov 29 08:00:52 EST 2025 Tue Nov 18 20:53:21 EST 2025 Fri Apr 11 01:29:15 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-4c8e95773055cd127a3a51c0b43804d264c29dda5d3fcb2ad7b82d566c07829b3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.nature.com/articles/nphys1816.pdf |
| PQID | 819670685 |
| PQPubID | 27545 |
| PageCount | 4 |
| ParticipantIDs | proquest_miscellaneous_1671244970 proquest_journals_819670685 crossref_primary_10_1038_nphys1816 crossref_citationtrail_10_1038_nphys1816 springer_journals_10_1038_nphys1816 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-01-01 |
| PublicationDateYYYYMMDD | 2011-01-01 |
| PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature physics |
| PublicationTitleAbbrev | Nature Phys |
| PublicationYear | 2011 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | VA Volkov (BFnphys1816_CR31) 1985; 41 ML Sadowski (BFnphys1816_CR18) 2006; 97 Y Zhang (BFnphys1816_CR8) 2005; 438 T Morimoto (BFnphys1816_CR23) 2009; 103 T Ohta (BFnphys1816_CR30) 2007; 98 AB Kuzmenko (BFnphys1816_CR14) 2008; 100 Z Jiang (BFnphys1816_CR19) 2007; 98 J Jobst (BFnphys1816_CR9) 2010; 81 X Wu (BFnphys1816_CR11) 2009; 95 T Shen (BFnphys1816_CR10) 2009; 95 F Speck (BFnphys1816_CR28) 2010; 645–648 C Riedl (BFnphys1816_CR27) 2009; 103 VP Gusynin (BFnphys1816_CR5) 2005; 95 IV Fialkovsky (BFnphys1816_CR24) 2009; 42 M Suzuki (BFnphys1816_CR2) 2003; 72 LA Falkovsky (BFnphys1816_CR13) 2007; 56 VP Gusynin (BFnphys1816_CR20) 2007; 19 NMR Peres (BFnphys1816_CR6) 2006; 73 RR Nair (BFnphys1816_CR15) 2008; 320 C Berger (BFnphys1816_CR25) 2004; 108 M Faraday (BFnphys1816_CR1) 1846; 136 T Ando (BFnphys1816_CR12) 2002; 71 VP Gusynin (BFnphys1816_CR17) 2009; 11 A Bostwick (BFnphys1816_CR29) 2010; 328 KS Novoselov (BFnphys1816_CR7) 2005; 438 AK Geim (BFnphys1816_CR3) 2007; 6 Y Ikebe (BFnphys1816_CR32) 2010; 104 AH Castro Neto (BFnphys1816_CR4) 2009; 81 ZQ Li (BFnphys1816_CR16) 2008; 4 M Orlita (BFnphys1816_CR21) 2008; 101 KV Emtsev (BFnphys1816_CR26) 2009; 8 SG Kaplan (BFnphys1816_CR22) 1996; 76 |
| References_xml | – volume: 101 start-page: 267601 year: 2008 ident: BFnphys1816_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.267601 – volume: 438 start-page: 201 year: 2005 ident: BFnphys1816_CR8 publication-title: Nature doi: 10.1038/nature04235 – volume: 11 start-page: 095013 year: 2009 ident: BFnphys1816_CR17 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/9/095013 – volume: 97 start-page: 266405 year: 2006 ident: BFnphys1816_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.266405 – volume: 103 start-page: 116803 year: 2009 ident: BFnphys1816_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.116803 – volume: 19 start-page: 026222 year: 2007 ident: BFnphys1816_CR20 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/19/2/026222 – volume: 81 start-page: 195434 year: 2010 ident: BFnphys1816_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.195434 – volume: 95 start-page: 223108 year: 2009 ident: BFnphys1816_CR11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3266524 – volume: 136 start-page: 104 year: 1846 ident: BFnphys1816_CR1 publication-title: Phil. Trans. R. Soc. – volume: 100 start-page: 117401 year: 2008 ident: BFnphys1816_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.117401 – volume: 98 start-page: 197403 year: 2007 ident: BFnphys1816_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.197403 – volume: 41 start-page: 476-478 year: 1985 ident: BFnphys1816_CR31 publication-title: JETP Lett. – volume: 81 start-page: 109 year: 2009 ident: BFnphys1816_CR4 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 320 start-page: 1308 year: 2008 ident: BFnphys1816_CR15 publication-title: Science doi: 10.1126/science.1156965 – volume: 73 start-page: 125411 year: 2006 ident: BFnphys1816_CR6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.125411 – volume: 95 start-page: 172105 year: 2009 ident: BFnphys1816_CR10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3254329 – volume: 645–648 start-page: 629 year: 2010 ident: BFnphys1816_CR28 publication-title: Mat. Sci. Forum doi: 10.4028/www.scientific.net/MSF.645-648.629 – volume: 76 start-page: 696 year: 1996 ident: BFnphys1816_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.696 – volume: 103 start-page: 246804 year: 2009 ident: BFnphys1816_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.246804 – volume: 8 start-page: 203 year: 2009 ident: BFnphys1816_CR26 publication-title: Nature Mater. doi: 10.1038/nmat2382 – volume: 72 start-page: 3276 year: 2003 ident: BFnphys1816_CR2 publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.72.3276 – volume: 98 start-page: 206802 year: 2007 ident: BFnphys1816_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.206802 – volume: 6 start-page: 183 year: 2007 ident: BFnphys1816_CR3 publication-title: Nature Mater. doi: 10.1038/nmat1849 – volume: 95 start-page: 146801 year: 2005 ident: BFnphys1816_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.146801 – volume: 438 start-page: 197 year: 2005 ident: BFnphys1816_CR7 publication-title: Nature doi: 10.1038/nature04233 – volume: 104 start-page: 256802 year: 2010 ident: BFnphys1816_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.256802 – volume: 328 start-page: 999 year: 2010 ident: BFnphys1816_CR29 publication-title: Science doi: 10.1126/science.1186489 – volume: 71 start-page: 1318 year: 2002 ident: BFnphys1816_CR12 publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.71.1318 – volume: 108 start-page: 19912 year: 2004 ident: BFnphys1816_CR25 publication-title: J. Phys. Chem. B doi: 10.1021/jp040650f – volume: 56 start-page: 281 year: 2007 ident: BFnphys1816_CR13 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2007-00142-3 – volume: 4 start-page: 532 year: 2008 ident: BFnphys1816_CR16 publication-title: Nature Phys. doi: 10.1038/nphys989 – volume: 42 start-page: 442001 year: 2009 ident: BFnphys1816_CR24 publication-title: J. Phys. A doi: 10.1088/1751-8113/42/44/442001 |
| SSID | ssj0042613 |
| Score | 2.5552456 |
| Snippet | The rotation of polarized light in certain materials when subject to a magnetic field is known as the Faraday effect. Remarkably, just one atomic layer of... The rotation of the polarization of light after passing a medium in a magnetic eld, discovered by Faraday, is an optical analogue of the Hall effect, which... The rotation of the polarization of light after passing a medium in a magnetic field, discovered by Faraday, is an optical analogue of the Hall effect, which... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 48 |
| SubjectTerms | Atomic Atomic structure Classical and Continuum Physics Complex Systems Condensed Matter Physics Crystals Cyclotron resonance Gases Graphene Infrared letter Magnetic fields Mathematical and Computational Physics Molecular Multilayers Optical and Plasma Physics Physics Physics and Astronomy Polarization Theoretical Two dimensional |
| Title | Giant Faraday rotation in single- and multilayer graphene |
| URI | https://link.springer.com/article/10.1038/nphys1816 https://www.proquest.com/docview/819670685 https://www.proquest.com/docview/1671244970 |
| Volume | 7 |
| WOSCitedRecordID | wos000285501100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1745-2481 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: P5Z dateStart: 20051001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1745-2481 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: PCBAR dateStart: 20051001 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1745-2481 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: BENPR dateStart: 20051001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1745-2481 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: M2P dateStart: 20051001 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50V8GLb7GuLvFx8FK2bZKmPYnKrh50KaKweClp0oWFpV3bXcF_b9LX4gMvQsml6YNJMvNlZvINwIWL7YjbwjIZHzsmIUwvKZeohqtBFkQh3uKg8AMbDr3RyA-q3Jy8SqusdWKhqGUqtI-8pyyXyyzXo1ezN1MXjdLB1aqCxiq0NVEZaUH7pj8MnmpVrLcHuDwRSU2HMFxTC2Gvl2jPgTJv7leDtESZ3wKjhb0ZbP3zT7dhswKa6LqcGTuwEie7sF4kfIp8D_w7NS_maMAzLvkHytIyJI8mCdLeg2lsIp5IVOQbTrnC5aigtlaacR9eBv3n23uzKqNgCkz9uUmEF_uUMc3tJaTtMI45VcMTabJ5IhUiEo4vJacSj0XkcMkiz5EK5gkNH_wIH0ArSZP4EFCkNrRUEPWUkjaj0seWjN3Iog6jJHY9Ay5rWYai4hjXpS6mYRHrxl7YiN2As6brrCTW-K1TpxZxWK2tPGzka8Bpc1ctCh3p4EmcLvLQdpnGLT6zDDivx3H5hh_fOfrzOx3YKD3J-jqG1jxbxCewJt7nkzzrVnOuC6uPTqDagL5-AmQf4fg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R1Lb9Mw-FMZQ-wCjIfoysOMTeISLfEjjg8IIaC06kM9FKm34NieNKlKt6bb1B-1_8jnpGk1mHbrASnKJY5t-fv8vR8ARzGLMh2ZMJD6lAacS3-lYo4vjUA2HCXeMlG4L4fDZDJRowbc1LkwPqyypoklobYz423kJ8i5YhnGifhyfhH4plHeuVp30KiwoueW16ixFZ-73xG8x5S2f4y_dYJVU4HAMKEWATeJU0JKX-nK2IhKzbTAzWa-9Dq3KB8YqqzVwrJTk1FtZZZQi0KP8cxUZQznfQAPOSpC_loN6Kgm_F4ZYVX-pQgol6wuZMSSk9zbKZCZxrfZ30am_csNW3K39tP_7FyewZOVGE2-Vni_Dw2XP4dHZTirKV6A-olYvyBtPddWL8l8VgUckLOceNvI1AVE55aU0ZRTjVoHKQt3I91_Cb-2su9XsJPPcvcaSIbqujAc_4oUl8IqFloXZ6GgUnAXJ034VMMuNasK6r6RxzQtPfksSddgbsLheuh5VTbkrkGtGqTpinIU6RqeTfiw_opX3vtxdO5ml0UaxdJLZUqGTfhY481mhn_WObh3nffwuDMe9NN-d9hrwV5lM_fPG9hZzC_dW9g1V4uzYv6uxHYCv7eNRn8A1yc6xA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R1La9sw-CPr2rHLHu3G0u6h9QG7mNh6WNZhjLEuW2gJOXRQevFkSYFAsLM4belP67_bJz8SupXdchgYXyxLQt_7oe8DOIxZlOnIhIHUYxpwLj1JxRxfGoFsOGq81UXhUzkcJufnatSB2_YujE-rbHlixahtYbyPvIeSK5ZhnIjeuMmKGB33P81-Bb6BlA-0tt00agw5cTfXaL2VHwfHCOojSvtfz758D5oGA4FhQi0CbhKnhJS-6pWxEZWaaYEbz3wZdm5RVzBUWauFZWOTUW1lllCLCpDxglVlDOd9AA8lmpieuEbiohUC3jBh9V1MEVAuWVvUiCW93PssULDGd0XhSr_9IyRbSbr-0__4jJ7Bk0a9Jp9rengOHZdvw1aV5mrKHVDfkBoWpK_n2uobMi_qRAQyyYn3mUxdQHRuSZVlOdVojZCqoDfKgxfwYy37fgkbeZG7V0AyNOOF4fhXpLgUVrHQujgLBZWCuzjpwocWjqlpKqv7Bh_TtIrwsyRdgrwL-8uhs7qcyH2D9lrwpg1HKdMlbLvwfvkVWYGP7-jcFZdlGsXSa2tKhl04aHFoNcNf6-z-c5138AixJz0dDE_24HHtSvfPa9hYzC_dG9g0V4tJOX9bIT6Bn-vGot_ni0Ow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+Faraday+rotation+in+single-+and+multilayer+graphene&rft.jtitle=Nature+physics&rft.au=Crassee%2C+Iris&rft.au=Levallois%2C+Julien&rft.au=Walter%2C+Andrew+L.&rft.au=Ostler%2C+Markus&rft.date=2011-01-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=7&rft.issue=1&rft.spage=48&rft.epage=51&rft_id=info:doi/10.1038%2Fnphys1816&rft.externalDocID=10_1038_nphys1816 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |