Giant Faraday rotation in single- and multilayer graphene

The rotation of polarized light in certain materials when subject to a magnetic field is known as the Faraday effect. Remarkably, just one atomic layer of graphene exhibits Faraday rotations that would only be measurable in other materials many hundreds of micrometres thick. The rotation of the pola...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature physics Ročník 7; číslo 1; s. 48 - 51
Hlavní autoři: Crassee, Iris, Levallois, Julien, Walter, Andrew L., Ostler, Markus, Bostwick, Aaron, Rotenberg, Eli, Seyller, Thomas, van der Marel, Dirk, Kuzmenko, Alexey B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.01.2011
Nature Publishing Group
Témata:
ISSN:1745-2473, 1745-2481
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The rotation of polarized light in certain materials when subject to a magnetic field is known as the Faraday effect. Remarkably, just one atomic layer of graphene exhibits Faraday rotations that would only be measurable in other materials many hundreds of micrometres thick. The rotation of the polarization of light after passing a medium in a magnetic field, discovered by Faraday 1 , is an optical analogue of the Hall effect, which combines sensitivity to the carrier type with access to a broad energy range. Up to now the thinnest structures showing the Faraday rotation were several-nanometre-thick two-dimensional electron gases 2 . As the rotation angle is proportional to the distance travelled by the light, an intriguing issue is the scale of this effect in two-dimensional atomic crystals or films—the ultimately thin objects in condensed matter physics. Here we demonstrate that a single atomic layer of carbon—graphene—turns the polarization by several degrees in modest magnetic fields. Such a strong rotation is due to the resonances originating from the cyclotron effect in the classical regime and the inter-Landau-level transitions in the quantum regime. Combined with the possibility of ambipolar doping 3 , this opens pathways to use graphene in fast tunable ultrathin infrared magneto-optical devices.
AbstractList The rotation of polarized light in certain materials when subject to a magnetic field is known as the Faraday effect. Remarkably, just one atomic layer of graphene exhibits Faraday rotations that would only be measurable in other materials many hundreds of micrometres thick. The rotation of the polarization of light after passing a medium in a magnetic field, discovered by Faraday 1 , is an optical analogue of the Hall effect, which combines sensitivity to the carrier type with access to a broad energy range. Up to now the thinnest structures showing the Faraday rotation were several-nanometre-thick two-dimensional electron gases 2 . As the rotation angle is proportional to the distance travelled by the light, an intriguing issue is the scale of this effect in two-dimensional atomic crystals or films—the ultimately thin objects in condensed matter physics. Here we demonstrate that a single atomic layer of carbon—graphene—turns the polarization by several degrees in modest magnetic fields. Such a strong rotation is due to the resonances originating from the cyclotron effect in the classical regime and the inter-Landau-level transitions in the quantum regime. Combined with the possibility of ambipolar doping 3 , this opens pathways to use graphene in fast tunable ultrathin infrared magneto-optical devices.
The rotation of the polarization of light after passing a medium in a magnetic field, discovered by Faraday, is an optical analogue of the Hall effect, which combines sensitivity to the carrier type with access to a broad energy range. Up to now the thinnest structures showing the Faraday rotation were several-nanometre-thick two-dimensional electron gases. As the rotation angle is proportional to the distance travelled by the light, an intriguing issue is the scale of this effect in two-dimensional atomic crystals or films--the ultimately thin objects in condensed matter physics. Here we demonstrate that a single atomic layer of carbon--graphene--turns the polarization by several degrees in modest magnetic fields. Such a strong rotation is due to the resonances originating from the cyclotron effect in the classical regime and the inter-Landau-level transitions in the quantum regime. Combined with the possibility of ambipolar doping, this opens pathways to use graphene in fast tunable ultrathin infrared magneto-optical devices.
The rotation of the polarization of light after passing a medium in a magnetic eld, discovered by Faraday, is an optical analogue of the Hall effect, which combines sensitivity to the carrier type with access to a broad energy range. Up to now the thinnest structures showing the Faraday rotation were several-nanometre-thick two-dimensional electron gases.
Author Levallois, Julien
Rotenberg, Eli
Kuzmenko, Alexey B.
van der Marel, Dirk
Crassee, Iris
Walter, Andrew L.
Bostwick, Aaron
Seyller, Thomas
Ostler, Markus
Author_xml – sequence: 1
  givenname: Iris
  surname: Crassee
  fullname: Crassee, Iris
  organization: Département de Physique de la Matière Condensée, Université de Genève
– sequence: 2
  givenname: Julien
  surname: Levallois
  fullname: Levallois, Julien
  organization: Département de Physique de la Matière Condensée, Université de Genève
– sequence: 3
  givenname: Andrew L.
  surname: Walter
  fullname: Walter, Andrew L.
  organization: Department of Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, E. O. Lawrence Berkeley Laboratory, Advanced Light Source
– sequence: 4
  givenname: Markus
  surname: Ostler
  fullname: Ostler, Markus
  organization: Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg
– sequence: 5
  givenname: Aaron
  surname: Bostwick
  fullname: Bostwick, Aaron
  organization: E. O. Lawrence Berkeley Laboratory, Advanced Light Source
– sequence: 6
  givenname: Eli
  surname: Rotenberg
  fullname: Rotenberg, Eli
  organization: E. O. Lawrence Berkeley Laboratory, Advanced Light Source
– sequence: 7
  givenname: Thomas
  surname: Seyller
  fullname: Seyller, Thomas
  organization: Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg
– sequence: 8
  givenname: Dirk
  surname: van der Marel
  fullname: van der Marel, Dirk
  organization: Département de Physique de la Matière Condensée, Université de Genève
– sequence: 9
  givenname: Alexey B.
  surname: Kuzmenko
  fullname: Kuzmenko, Alexey B.
  email: Alexey.Kuzmenko@unige.ch
  organization: Département de Physique de la Matière Condensée, Université de Genève
BookMark eNptkE1Lw0AURQepYK0u_AfBlQqx85mZLKXYKhTc6Dq8zEzbKekkziSL_HsjkQrV1XuLcy-Xc4kmvvYWoRuCHwlmau6bXR-JItkZmhLJRUq5IpPjL9kFuoxxjzGnGWFTlK8c-DZZQgADfRLqFlpX-8T5JDq_rWyagDfJoataV0FvQ7IN0Oyst1fofANVtNc_d4Y-ls_vi5d0_bZ6XTytU81E3qZcK5sLKRkWQhtCJTAQROOSM4W5oRnXNDcGhGEbXVIwslTUiCzTWCqal2yG7sbeJtSfnY1tcXBR26oCb-suFiSThHKeSzygtyfovu6CH9YViuSZxJkSA3Q_QjrUMQa7KZrgDhD6guDi22FxdDiw8xNWu1FQG8BV_yYexkQcWv3Wht8Jf-Evfb2EPA
CitedBy_id crossref_primary_10_1088_1751_8113_48_6_065402
crossref_primary_10_1103_PhysRevResearch_2_043281
crossref_primary_10_3390_app12147049
crossref_primary_10_1088_1361_648X_aa85fe
crossref_primary_10_1063_1_4891818
crossref_primary_10_1002_adom_201701212
crossref_primary_10_1016_j_cpc_2014_12_007
crossref_primary_10_1016_j_jqsrt_2019_04_025
crossref_primary_10_1016_j_ssc_2012_04_036
crossref_primary_10_1016_j_physe_2023_115876
crossref_primary_10_1088_1742_6596_456_1_012028
crossref_primary_10_1063_5_0123722
crossref_primary_10_1038_srep12646
crossref_primary_10_1038_srep23897
crossref_primary_10_1063_1_4916884
crossref_primary_10_1038_srep13615
crossref_primary_10_1063_1_3605593
crossref_primary_10_1038_srep03143
crossref_primary_10_1109_TAP_2015_2456977
crossref_primary_10_1088_0953_8984_25_30_305801
crossref_primary_10_1039_C5CP06581J
crossref_primary_10_1038_s41467_021_25881_0
crossref_primary_10_1063_1_4729134
crossref_primary_10_1016_j_mseb_2023_116887
crossref_primary_10_1088_1361_6463_acda45
crossref_primary_10_1016_j_carbon_2024_119895
crossref_primary_10_1038_nnano_2012_59
crossref_primary_10_1109_JPROC_2013_2250892
crossref_primary_10_3390_cryst13040553
crossref_primary_10_1038_ncomms7334
crossref_primary_10_1088_2040_8986_ab3c3b
crossref_primary_10_1364_AO_53_000B22
crossref_primary_10_1016_j_optmat_2022_112172
crossref_primary_10_1364_OME_568069
crossref_primary_10_1016_j_scitotenv_2020_141225
crossref_primary_10_1049_iet_map_2018_5590
crossref_primary_10_1063_1_4913828
crossref_primary_10_1063_1_4960378
crossref_primary_10_1002_asna_201512245
crossref_primary_10_1515_nanoph_2021_0783
crossref_primary_10_1109_JPHOT_2021_3132795
crossref_primary_10_1016_j_apsusc_2022_152455
crossref_primary_10_1088_1402_4896_ab461d
crossref_primary_10_1007_s11595_024_2979_2
crossref_primary_10_1080_09500340_2014_971081
crossref_primary_10_1007_s11082_019_2128_x
crossref_primary_10_1134_S0021364014180118
crossref_primary_10_1038_srep38141
crossref_primary_10_1016_j_physleta_2015_10_044
crossref_primary_10_1063_5_0173081
crossref_primary_10_1016_j_carbon_2019_10_044
crossref_primary_10_1002_mmce_22035
crossref_primary_10_3390_photonics2010013
crossref_primary_10_1016_j_jqsrt_2024_109328
crossref_primary_10_1016_j_jmmm_2023_171201
crossref_primary_10_1038_nphoton_2013_134
crossref_primary_10_1063_1_5130435
crossref_primary_10_1016_j_optcom_2015_02_032
crossref_primary_10_1038_srep24301
crossref_primary_10_29026_oea_2022_200098
crossref_primary_10_1016_j_physleta_2022_128103
crossref_primary_10_1016_j_jmmm_2012_02_057
crossref_primary_10_1016_j_jmmm_2021_168132
crossref_primary_10_1002_adom_201901381
crossref_primary_10_1088_1674_1056_acd68a
crossref_primary_10_1088_1674_1056_ac051f
crossref_primary_10_1088_0953_8984_25_21_215301
crossref_primary_10_1088_1361_648X_aab81d
crossref_primary_10_1016_j_sna_2014_09_025
crossref_primary_10_1143_JPSJ_80_064703
crossref_primary_10_1016_j_physrep_2019_09_002
crossref_primary_10_1016_j_physleta_2024_129356
crossref_primary_10_1016_j_spmi_2016_10_016
crossref_primary_10_1140_epjp_s13360_022_03549_y
crossref_primary_10_1103_PhysRevResearch_1_033049
crossref_primary_10_1209_0295_5075_134_57003
crossref_primary_10_1063_1_4906282
crossref_primary_10_1088_1361_6463_ac8da0
crossref_primary_10_1088_1361_6463_ad9ebf
crossref_primary_10_1007_s10762_013_0019_y
crossref_primary_10_1109_ACCESS_2020_2999623
crossref_primary_10_1364_JOSAB_32_002467
crossref_primary_10_1016_j_carbon_2015_11_020
crossref_primary_10_1016_j_jmmm_2018_08_033
crossref_primary_10_3390_ma14123354
crossref_primary_10_1002_adom_201200011
crossref_primary_10_1103_PhysRevLett_129_046801
crossref_primary_10_1038_ncomms2866
crossref_primary_10_1134_S0021364018170058
crossref_primary_10_1109_TAP_2016_2633163
crossref_primary_10_1038_s41598_020_65049_2
crossref_primary_10_1063_1_4794169
crossref_primary_10_1364_JOSAB_30_001085
crossref_primary_10_1038_s41565_023_01488_y
crossref_primary_10_3390_math9121429
crossref_primary_10_1063_1_4895545
crossref_primary_10_1088_2053_1583_aa5f8b
crossref_primary_10_1002_adfm_202312214
crossref_primary_10_7566_JPSJ_82_074717
crossref_primary_10_1063_1_4963276
crossref_primary_10_1088_0256_307X_42_1_014201
crossref_primary_10_1038_nature11458
crossref_primary_10_1088_1361_6633_aad6a8
crossref_primary_10_1063_1_5008775
crossref_primary_10_1088_2053_1591_2_12_125005
crossref_primary_10_1103_PhysRevApplied_13_064042
crossref_primary_10_1364_JOSAB_32_000157
crossref_primary_10_1063_1_4945310
crossref_primary_10_1016_j_spmi_2021_107021
crossref_primary_10_1515_nanoph_2015_0018
crossref_primary_10_1088_1361_6463_ac7a72
crossref_primary_10_1007_s10762_012_9916_8
crossref_primary_10_1016_j_commatsci_2011_07_029
crossref_primary_10_1016_j_carbon_2012_11_038
crossref_primary_10_1016_j_carbon_2018_03_094
crossref_primary_10_1016_j_optcom_2024_131101
crossref_primary_10_1134_S1063776112130031
crossref_primary_10_1002_lpor_201900098
crossref_primary_10_1063_1_4930065
crossref_primary_10_1002_jemt_22668
crossref_primary_10_1515_nanoph_2025_0001
crossref_primary_10_1109_TTHZ_2015_2399105
crossref_primary_10_1088_1674_1056_25_6_064201
crossref_primary_10_1109_TTHZ_2013_2263805
crossref_primary_10_1140_epjb_e2012_30685_9
crossref_primary_10_1680_jemmr_22_00087
crossref_primary_10_1016_j_ijleo_2017_01_030
crossref_primary_10_1109_TNANO_2018_2889522
crossref_primary_10_1088_0268_1242_27_12_124004
crossref_primary_10_1134_S0021364011210053
crossref_primary_10_1016_j_ijleo_2020_164267
crossref_primary_10_1103_PhysRevB_111_064428
crossref_primary_10_1016_j_jmmm_2021_168219
crossref_primary_10_1088_0953_8984_24_24_245601
crossref_primary_10_1002_lpor_202300643
crossref_primary_10_1088_1612_2011_12_4_045202
crossref_primary_10_1016_j_physleta_2014_05_009
crossref_primary_10_1038_s41467_024_47294_5
crossref_primary_10_1209_0295_5075_101_58002
crossref_primary_10_1063_1_4931704
crossref_primary_10_1002_adpr_202000104
crossref_primary_10_1016_j_physrep_2015_12_006
crossref_primary_10_1364_OE_19_022248
crossref_primary_10_1063_1_4737614
crossref_primary_10_1063_5_0006448
crossref_primary_10_1063_1_4769095
crossref_primary_10_1016_j_physb_2022_414073
crossref_primary_10_1038_s41598_025_93843_3
crossref_primary_10_1039_c3cp43994a
crossref_primary_10_1002_nano_202000032
crossref_primary_10_1109_TMTT_2011_2182205
crossref_primary_10_1364_AO_497603
crossref_primary_10_1002_adom_202301330
crossref_primary_10_1109_TTHZ_2021_3122580
crossref_primary_10_1049_iet_map_2013_0019
crossref_primary_10_1088_2053_1583_aa76bb
crossref_primary_10_1088_1674_1056_26_11_117801
crossref_primary_10_1038_s41467_017_01205_z
crossref_primary_10_1088_0256_307X_32_2_024204
crossref_primary_10_1002_adom_201701175
crossref_primary_10_1109_TMAG_2018_2883850
crossref_primary_10_1038_s41598_022_15841_z
crossref_primary_10_1038_nphoton_2014_109
crossref_primary_10_1038_s41565_019_0489_8
crossref_primary_10_1140_epjb_e2014_50291_1
crossref_primary_10_1088_2040_8978_16_12_125203
crossref_primary_10_3390_sym12081365
crossref_primary_10_1364_JOSAB_34_001684
crossref_primary_10_1038_nphys3164
crossref_primary_10_1088_1361_6463_abaced
crossref_primary_10_1038_srep04190
crossref_primary_10_1364_AO_56_005914
crossref_primary_10_1063_1_3665944
crossref_primary_10_1109_TAP_2020_3044591
crossref_primary_10_1364_AO_396879
crossref_primary_10_1016_j_physb_2022_413754
crossref_primary_10_1063_5_0078416
crossref_primary_10_3390_bios15090630
crossref_primary_10_3367_UFNr_0182_201211i_1223
crossref_primary_10_1088_0953_8984_25_12_125303
crossref_primary_10_1038_s41524_019_0170_7
crossref_primary_10_1007_s10825_025_02379_2
crossref_primary_10_1016_j_tsf_2012_10_127
crossref_primary_10_1088_2040_8978_15_11_114004
crossref_primary_10_1016_j_optmat_2024_115045
crossref_primary_10_1088_1361_648X_aac96e
crossref_primary_10_1103_PhysRevApplied_11_054033
crossref_primary_10_1109_TIM_2023_3284943
crossref_primary_10_1002_lpor_202200509
crossref_primary_10_1080_09205071_2017_1323016
crossref_primary_10_1155_2013_843702
crossref_primary_10_1002_adom_201900550
crossref_primary_10_1063_5_0207377
crossref_primary_10_1002_adfm_202404881
crossref_primary_10_1103_PhysRevB_106_195110
crossref_primary_10_1016_j_ijleo_2016_06_026
crossref_primary_10_1088_1402_4896_abff84
crossref_primary_10_1016_j_physe_2017_08_001
crossref_primary_10_1088_0953_8984_28_37_375802
crossref_primary_10_1103_PhysRevApplied_10_047001
crossref_primary_10_1209_0295_5075_96_27008
crossref_primary_10_1016_j_carbon_2018_09_033
crossref_primary_10_1016_j_optmat_2016_04_005
crossref_primary_10_1063_5_0046178
crossref_primary_10_1016_j_aop_2017_06_013
crossref_primary_10_1063_1_4914846
crossref_primary_10_1109_TAP_2023_3278833
crossref_primary_10_1364_JOSAB_29_001406
crossref_primary_10_1063_1_4804437
crossref_primary_10_1038_s41467_025_61249_4
crossref_primary_10_1063_1_4980038
crossref_primary_10_1088_1612_2011_13_1_015204
crossref_primary_10_1088_1612_2011_13_12_125201
crossref_primary_10_1063_1_5111775
crossref_primary_10_1103_d9wj_v62g
crossref_primary_10_1016_j_physleta_2022_128293
crossref_primary_10_1080_09205071_2019_1575288
crossref_primary_10_1109_TAP_2024_3416053
crossref_primary_10_1140_epjb_e2017_80263_8
crossref_primary_10_1088_1367_2630_16_12_123021
crossref_primary_10_1002_adfm_201706587
crossref_primary_10_1002_lpor_202500375
crossref_primary_10_1016_j_physb_2014_07_014
crossref_primary_10_1063_1_4974951
crossref_primary_10_1007_s11082_018_1604_z
crossref_primary_10_1016_j_physb_2016_06_014
crossref_primary_10_1088_0031_8949_91_1_015502
crossref_primary_10_1063_1_5083995
crossref_primary_10_1364_AO_53_008374
crossref_primary_10_1063_5_0251550
crossref_primary_10_1002_mop_32035
crossref_primary_10_1016_j_physleta_2016_05_013
crossref_primary_10_1063_1_5057372
crossref_primary_10_1109_LAWP_2016_2521835
crossref_primary_10_1109_JPROC_2020_3012381
crossref_primary_10_1109_JLT_2018_2818712
crossref_primary_10_1002_mop_29468
crossref_primary_10_1002_adom_201800572
crossref_primary_10_1039_C8NR05692G
crossref_primary_10_1063_1_4867743
crossref_primary_10_3390_photonics12070658
crossref_primary_10_1038_srep19087
crossref_primary_10_1038_s41598_023_39644_y
crossref_primary_10_1109_LAWP_2015_2510818
crossref_primary_10_35848_1882_0786_ad46f2
crossref_primary_10_1039_D5TC01540E
crossref_primary_10_1038_ncomms11216
crossref_primary_10_1080_09205071_2021_1947391
crossref_primary_10_1063_1_4907564
crossref_primary_10_1038_s41598_020_65505_z
crossref_primary_10_1134_S1063774514040105
crossref_primary_10_1088_0953_8984_25_5_054203
crossref_primary_10_1002_adpr_202000168
crossref_primary_10_1140_epjp_i2017_11468_x
crossref_primary_10_1038_nphoton_2016_15
crossref_primary_10_1002_adom_201900623
crossref_primary_10_1016_j_physb_2022_413835
crossref_primary_10_1002_adma_201606128
crossref_primary_10_1007_s00340_013_5715_8
crossref_primary_10_1002_adma_202000250
crossref_primary_10_1016_j_micrna_2025_208235
crossref_primary_10_1007_s12648_015_0821_6
crossref_primary_10_1063_5_0249987
crossref_primary_10_1063_1_4945715
crossref_primary_10_1063_1_4967802
crossref_primary_10_1140_epjp_i2016_16293_1
crossref_primary_10_1016_j_ijleo_2020_165191
crossref_primary_10_1016_j_jmmm_2018_09_110
crossref_primary_10_1016_j_optmat_2020_109809
crossref_primary_10_1039_C9MH00295B
crossref_primary_10_1088_1361_6455_ace395
crossref_primary_10_1140_epjp_s13360_024_05602_4
crossref_primary_10_1016_j_optmat_2021_111944
crossref_primary_10_1103_PhysRevApplied_13_044040
crossref_primary_10_1364_OME_551411
crossref_primary_10_1088_1361_6528_abacf6
crossref_primary_10_1063_1_4800949
crossref_primary_10_1007_s11082_018_1534_9
crossref_primary_10_1016_j_mseb_2025_118337
crossref_primary_10_1364_AO_55_005095
crossref_primary_10_3390_coatings13030601
crossref_primary_10_1088_2399_6528_aa90c8
crossref_primary_10_1016_j_physe_2016_09_015
crossref_primary_10_1038_ncomms14626
crossref_primary_10_1088_0957_4484_25_32_322001
crossref_primary_10_1103_PhysRevApplied_11_054020
crossref_primary_10_1002_adom_202001313
crossref_primary_10_1016_j_physb_2022_414581
crossref_primary_10_1016_j_spmi_2019_05_001
crossref_primary_10_1038_s41598_019_42710_z
crossref_primary_10_1016_j_physe_2021_115011
crossref_primary_10_1016_j_physb_2024_416200
crossref_primary_10_1016_j_compositesa_2017_06_016
crossref_primary_10_1063_1_4871674
crossref_primary_10_1021_jacs_2c01983
crossref_primary_10_1364_AO_408531
crossref_primary_10_1088_1361_6463_abe0de
crossref_primary_10_1038_s41586_022_04520_8
crossref_primary_10_1007_s00894_012_1356_9
crossref_primary_10_1007_s11082_021_03284_1
crossref_primary_10_1088_1361_6463_acbc2f
crossref_primary_10_1016_j_jlumin_2015_09_031
crossref_primary_10_1063_1_4728183
crossref_primary_10_1515_nanoph_2022_0820
crossref_primary_10_1063_1_4883765
crossref_primary_10_1038_nphys2857
crossref_primary_10_1038_s41598_025_92740_z
crossref_primary_10_1016_j_physb_2024_416336
crossref_primary_10_1134_S0021364013070047
crossref_primary_10_1016_j_jmmm_2017_10_017
crossref_primary_10_1017_S1431927615014877
crossref_primary_10_1109_TMAG_2020_3000669
crossref_primary_10_1007_s10825_021_01790_9
crossref_primary_10_1063_1_5022774
crossref_primary_10_1109_TEMC_2016_2533918
crossref_primary_10_1109_TNANO_2014_2387576
Cites_doi 10.1103/PhysRevLett.101.267601
10.1038/nature04235
10.1088/1367-2630/11/9/095013
10.1103/PhysRevLett.97.266405
10.1103/PhysRevLett.103.116803
10.1088/0953-8984/19/2/026222
10.1103/PhysRevB.81.195434
10.1063/1.3266524
10.1103/PhysRevLett.100.117401
10.1103/PhysRevLett.98.197403
10.1103/RevModPhys.81.109
10.1126/science.1156965
10.1103/PhysRevB.73.125411
10.1063/1.3254329
10.4028/www.scientific.net/MSF.645-648.629
10.1103/PhysRevLett.76.696
10.1103/PhysRevLett.103.246804
10.1038/nmat2382
10.1143/JPSJ.72.3276
10.1103/PhysRevLett.98.206802
10.1038/nmat1849
10.1103/PhysRevLett.95.146801
10.1038/nature04233
10.1103/PhysRevLett.104.256802
10.1126/science.1186489
10.1143/JPSJ.71.1318
10.1021/jp040650f
10.1140/epjb/e2007-00142-3
10.1038/nphys989
10.1088/1751-8113/42/44/442001
ContentType Journal Article
Copyright Springer Nature Limited 2010
Copyright Nature Publishing Group Jan 2011
Copyright_xml – notice: Springer Nature Limited 2010
– notice: Copyright Nature Publishing Group Jan 2011
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1038/nphys1816
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Technology Research Database
ProQuest Central Student
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 51
ExternalDocumentID 2219266221
10_1038_nphys1816
Genre Feature
GroupedDBID 0R~
123
29M
39C
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NFIDA
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PHGZT
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ACSTC
AEZWR
AFFHD
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
3V.
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c359t-4c8e95773055cd127a3a51c0b43804d264c29dda5d3fcb2ad7b82d566c07829b3
IEDL.DBID BENPR
ISICitedReferencesCount 535
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285501100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1745-2473
IngestDate Sun Nov 09 10:48:14 EST 2025
Sat Aug 23 13:14:36 EDT 2025
Sat Nov 29 08:00:52 EST 2025
Tue Nov 18 20:53:21 EST 2025
Fri Apr 11 01:29:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-4c8e95773055cd127a3a51c0b43804d264c29dda5d3fcb2ad7b82d566c07829b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.nature.com/articles/nphys1816.pdf
PQID 819670685
PQPubID 27545
PageCount 4
ParticipantIDs proquest_miscellaneous_1671244970
proquest_journals_819670685
crossref_primary_10_1038_nphys1816
crossref_citationtrail_10_1038_nphys1816
springer_journals_10_1038_nphys1816
PublicationCentury 2000
PublicationDate 2011-01-01
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nature Phys
PublicationYear 2011
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References VA Volkov (BFnphys1816_CR31) 1985; 41
ML Sadowski (BFnphys1816_CR18) 2006; 97
Y Zhang (BFnphys1816_CR8) 2005; 438
T Morimoto (BFnphys1816_CR23) 2009; 103
T Ohta (BFnphys1816_CR30) 2007; 98
AB Kuzmenko (BFnphys1816_CR14) 2008; 100
Z Jiang (BFnphys1816_CR19) 2007; 98
J Jobst (BFnphys1816_CR9) 2010; 81
X Wu (BFnphys1816_CR11) 2009; 95
T Shen (BFnphys1816_CR10) 2009; 95
F Speck (BFnphys1816_CR28) 2010; 645–648
C Riedl (BFnphys1816_CR27) 2009; 103
VP Gusynin (BFnphys1816_CR5) 2005; 95
IV Fialkovsky (BFnphys1816_CR24) 2009; 42
M Suzuki (BFnphys1816_CR2) 2003; 72
LA Falkovsky (BFnphys1816_CR13) 2007; 56
VP Gusynin (BFnphys1816_CR20) 2007; 19
NMR Peres (BFnphys1816_CR6) 2006; 73
RR Nair (BFnphys1816_CR15) 2008; 320
C Berger (BFnphys1816_CR25) 2004; 108
M Faraday (BFnphys1816_CR1) 1846; 136
T Ando (BFnphys1816_CR12) 2002; 71
VP Gusynin (BFnphys1816_CR17) 2009; 11
A Bostwick (BFnphys1816_CR29) 2010; 328
KS Novoselov (BFnphys1816_CR7) 2005; 438
AK Geim (BFnphys1816_CR3) 2007; 6
Y Ikebe (BFnphys1816_CR32) 2010; 104
AH Castro Neto (BFnphys1816_CR4) 2009; 81
ZQ Li (BFnphys1816_CR16) 2008; 4
M Orlita (BFnphys1816_CR21) 2008; 101
KV Emtsev (BFnphys1816_CR26) 2009; 8
SG Kaplan (BFnphys1816_CR22) 1996; 76
References_xml – volume: 101
  start-page: 267601
  year: 2008
  ident: BFnphys1816_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.267601
– volume: 438
  start-page: 201
  year: 2005
  ident: BFnphys1816_CR8
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 11
  start-page: 095013
  year: 2009
  ident: BFnphys1816_CR17
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/9/095013
– volume: 97
  start-page: 266405
  year: 2006
  ident: BFnphys1816_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.266405
– volume: 103
  start-page: 116803
  year: 2009
  ident: BFnphys1816_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.116803
– volume: 19
  start-page: 026222
  year: 2007
  ident: BFnphys1816_CR20
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/19/2/026222
– volume: 81
  start-page: 195434
  year: 2010
  ident: BFnphys1816_CR9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.195434
– volume: 95
  start-page: 223108
  year: 2009
  ident: BFnphys1816_CR11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3266524
– volume: 136
  start-page: 104
  year: 1846
  ident: BFnphys1816_CR1
  publication-title: Phil. Trans. R. Soc.
– volume: 100
  start-page: 117401
  year: 2008
  ident: BFnphys1816_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.117401
– volume: 98
  start-page: 197403
  year: 2007
  ident: BFnphys1816_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.197403
– volume: 41
  start-page: 476-478
  year: 1985
  ident: BFnphys1816_CR31
  publication-title: JETP Lett.
– volume: 81
  start-page: 109
  year: 2009
  ident: BFnphys1816_CR4
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 320
  start-page: 1308
  year: 2008
  ident: BFnphys1816_CR15
  publication-title: Science
  doi: 10.1126/science.1156965
– volume: 73
  start-page: 125411
  year: 2006
  ident: BFnphys1816_CR6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.125411
– volume: 95
  start-page: 172105
  year: 2009
  ident: BFnphys1816_CR10
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3254329
– volume: 645–648
  start-page: 629
  year: 2010
  ident: BFnphys1816_CR28
  publication-title: Mat. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.645-648.629
– volume: 76
  start-page: 696
  year: 1996
  ident: BFnphys1816_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.696
– volume: 103
  start-page: 246804
  year: 2009
  ident: BFnphys1816_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.246804
– volume: 8
  start-page: 203
  year: 2009
  ident: BFnphys1816_CR26
  publication-title: Nature Mater.
  doi: 10.1038/nmat2382
– volume: 72
  start-page: 3276
  year: 2003
  ident: BFnphys1816_CR2
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.72.3276
– volume: 98
  start-page: 206802
  year: 2007
  ident: BFnphys1816_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.206802
– volume: 6
  start-page: 183
  year: 2007
  ident: BFnphys1816_CR3
  publication-title: Nature Mater.
  doi: 10.1038/nmat1849
– volume: 95
  start-page: 146801
  year: 2005
  ident: BFnphys1816_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.146801
– volume: 438
  start-page: 197
  year: 2005
  ident: BFnphys1816_CR7
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 104
  start-page: 256802
  year: 2010
  ident: BFnphys1816_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.256802
– volume: 328
  start-page: 999
  year: 2010
  ident: BFnphys1816_CR29
  publication-title: Science
  doi: 10.1126/science.1186489
– volume: 71
  start-page: 1318
  year: 2002
  ident: BFnphys1816_CR12
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.71.1318
– volume: 108
  start-page: 19912
  year: 2004
  ident: BFnphys1816_CR25
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp040650f
– volume: 56
  start-page: 281
  year: 2007
  ident: BFnphys1816_CR13
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2007-00142-3
– volume: 4
  start-page: 532
  year: 2008
  ident: BFnphys1816_CR16
  publication-title: Nature Phys.
  doi: 10.1038/nphys989
– volume: 42
  start-page: 442001
  year: 2009
  ident: BFnphys1816_CR24
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/42/44/442001
SSID ssj0042613
Score 2.5552456
Snippet The rotation of polarized light in certain materials when subject to a magnetic field is known as the Faraday effect. Remarkably, just one atomic layer of...
The rotation of the polarization of light after passing a medium in a magnetic eld, discovered by Faraday, is an optical analogue of the Hall effect, which...
The rotation of the polarization of light after passing a medium in a magnetic field, discovered by Faraday, is an optical analogue of the Hall effect, which...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 48
SubjectTerms Atomic
Atomic structure
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Crystals
Cyclotron resonance
Gases
Graphene
Infrared
letter
Magnetic fields
Mathematical and Computational Physics
Molecular
Multilayers
Optical and Plasma Physics
Physics
Physics and Astronomy
Polarization
Theoretical
Two dimensional
Title Giant Faraday rotation in single- and multilayer graphene
URI https://link.springer.com/article/10.1038/nphys1816
https://www.proquest.com/docview/819670685
https://www.proquest.com/docview/1671244970
Volume 7
WOSCitedRecordID wos000285501100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: P5Z
  dateStart: 20051001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: PCBAR
  dateStart: 20051001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: BENPR
  dateStart: 20051001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: M2P
  dateStart: 20051001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50V8GLb7GuLvFx8FK2bZKmPYnKrh50KaKweClp0oWFpV3bXcF_b9LX4gMvQsml6YNJMvNlZvINwIWL7YjbwjIZHzsmIUwvKZeohqtBFkQh3uKg8AMbDr3RyA-q3Jy8SqusdWKhqGUqtI-8pyyXyyzXo1ezN1MXjdLB1aqCxiq0NVEZaUH7pj8MnmpVrLcHuDwRSU2HMFxTC2Gvl2jPgTJv7leDtESZ3wKjhb0ZbP3zT7dhswKa6LqcGTuwEie7sF4kfIp8D_w7NS_maMAzLvkHytIyJI8mCdLeg2lsIp5IVOQbTrnC5aigtlaacR9eBv3n23uzKqNgCkz9uUmEF_uUMc3tJaTtMI45VcMTabJ5IhUiEo4vJacSj0XkcMkiz5EK5gkNH_wIH0ArSZP4EFCkNrRUEPWUkjaj0seWjN3Iog6jJHY9Ay5rWYai4hjXpS6mYRHrxl7YiN2As6brrCTW-K1TpxZxWK2tPGzka8Bpc1ctCh3p4EmcLvLQdpnGLT6zDDivx3H5hh_fOfrzOx3YKD3J-jqG1jxbxCewJt7nkzzrVnOuC6uPTqDagL5-AmQf4fg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R1Lb9Mw-FMZQ-wCjIfoysOMTeISLfEjjg8IIaC06kM9FKm34NieNKlKt6bb1B-1_8jnpGk1mHbrASnKJY5t-fv8vR8ARzGLMh2ZMJD6lAacS3-lYo4vjUA2HCXeMlG4L4fDZDJRowbc1LkwPqyypoklobYz423kJ8i5YhnGifhyfhH4plHeuVp30KiwoueW16ixFZ-73xG8x5S2f4y_dYJVU4HAMKEWATeJU0JKX-nK2IhKzbTAzWa-9Dq3KB8YqqzVwrJTk1FtZZZQi0KP8cxUZQznfQAPOSpC_loN6Kgm_F4ZYVX-pQgol6wuZMSSk9zbKZCZxrfZ30am_csNW3K39tP_7FyewZOVGE2-Vni_Dw2XP4dHZTirKV6A-olYvyBtPddWL8l8VgUckLOceNvI1AVE55aU0ZRTjVoHKQt3I91_Cb-2su9XsJPPcvcaSIbqujAc_4oUl8IqFloXZ6GgUnAXJ034VMMuNasK6r6RxzQtPfksSddgbsLheuh5VTbkrkGtGqTpinIU6RqeTfiw_opX3vtxdO5ml0UaxdJLZUqGTfhY481mhn_WObh3nffwuDMe9NN-d9hrwV5lM_fPG9hZzC_dW9g1V4uzYv6uxHYCv7eNRn8A1yc6xA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R1La9sw-CPr2rHLHu3G0u6h9QG7mNh6WNZhjLEuW2gJOXRQevFkSYFAsLM4belP67_bJz8SupXdchgYXyxLQt_7oe8DOIxZlOnIhIHUYxpwLj1JxRxfGoFsOGq81UXhUzkcJufnatSB2_YujE-rbHlixahtYbyPvIeSK5ZhnIjeuMmKGB33P81-Bb6BlA-0tt00agw5cTfXaL2VHwfHCOojSvtfz758D5oGA4FhQi0CbhKnhJS-6pWxEZWaaYEbz3wZdm5RVzBUWauFZWOTUW1lllCLCpDxglVlDOd9AA8lmpieuEbiohUC3jBh9V1MEVAuWVvUiCW93PssULDGd0XhSr_9IyRbSbr-0__4jJ7Bk0a9Jp9rengOHZdvw1aV5mrKHVDfkBoWpK_n2uobMi_qRAQyyYn3mUxdQHRuSZVlOdVojZCqoDfKgxfwYy37fgkbeZG7V0AyNOOF4fhXpLgUVrHQujgLBZWCuzjpwocWjqlpKqv7Bh_TtIrwsyRdgrwL-8uhs7qcyH2D9lrwpg1HKdMlbLvwfvkVWYGP7-jcFZdlGsXSa2tKhl04aHFoNcNf6-z-c5138AixJz0dDE_24HHtSvfPa9hYzC_dG9g0V4tJOX9bIT6Bn-vGot_ni0Ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+Faraday+rotation+in+single-+and+multilayer+graphene&rft.jtitle=Nature+physics&rft.au=Crassee%2C+Iris&rft.au=Levallois%2C+Julien&rft.au=Walter%2C+Andrew+L.&rft.au=Ostler%2C+Markus&rft.date=2011-01-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=7&rft.issue=1&rft.spage=48&rft.epage=51&rft_id=info:doi/10.1038%2Fnphys1816&rft.externalDocID=10_1038_nphys1816
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon