Regularity for general functionals with double phase

We prove sharp regularity results for a general class of functionals of the type w ↦ ∫ F ( x , w , D w ) d x , featuring non-standard growth conditions and non-uniform ellipticity properties. The model case is given by the double phase integral w ↦ ∫ b ( x , w ) ( | D w | p + a ( x ) | D w | q ) d x...

Full description

Saved in:
Bibliographic Details
Published in:Calculus of variations and partial differential equations Vol. 57; no. 2; pp. 1 - 48
Main Authors: Baroni, Paolo, Colombo, Maria, Mingione, Giuseppe
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2018
Springer Nature B.V
Subjects:
ISSN:0944-2669, 1432-0835
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We prove sharp regularity results for a general class of functionals of the type w ↦ ∫ F ( x , w , D w ) d x , featuring non-standard growth conditions and non-uniform ellipticity properties. The model case is given by the double phase integral w ↦ ∫ b ( x , w ) ( | D w | p + a ( x ) | D w | q ) d x , 1 < p < q , a ( x ) ≥ 0 , with 0 < ν ≤ b ( · ) ≤ L . This changes its ellipticity rate according to the geometry of the level set { a ( x ) = 0 } of the modulating coefficient a ( · ) . We also present new methods and proofs that are suitable to build regularity theorems for larger classes of non-autonomous functionals. Finally, we disclose some new interpolation type effects that, as we conjecture, should draw a general phenomenon in the setting of non-uniformly elliptic problems. Such effects naturally connect with the Lavrentiev phenomenon.
AbstractList We prove sharp regularity results for a general class of functionals of the type w↦∫F(x,w,Dw)dx,featuring non-standard growth conditions and non-uniform ellipticity properties. The model case is given by the double phase integral w↦∫b(x,w)(|Dw|p+a(x)|Dw|q)dx,1<p<q,a(x)≥0,with 0<ν≤b(·)≤L. This changes its ellipticity rate according to the geometry of the level set {a(x)=0} of the modulating coefficient a(·). We also present new methods and proofs that are suitable to build regularity theorems for larger classes of non-autonomous functionals. Finally, we disclose some new interpolation type effects that, as we conjecture, should draw a general phenomenon in the setting of non-uniformly elliptic problems. Such effects naturally connect with the Lavrentiev phenomenon.
We prove sharp regularity results for a general class of functionals of the type w ↦ ∫ F ( x , w , D w ) d x , featuring non-standard growth conditions and non-uniform ellipticity properties. The model case is given by the double phase integral w ↦ ∫ b ( x , w ) ( | D w | p + a ( x ) | D w | q ) d x , 1 < p < q , a ( x ) ≥ 0 , with 0 < ν ≤ b ( · ) ≤ L . This changes its ellipticity rate according to the geometry of the level set { a ( x ) = 0 } of the modulating coefficient a ( · ) . We also present new methods and proofs that are suitable to build regularity theorems for larger classes of non-autonomous functionals. Finally, we disclose some new interpolation type effects that, as we conjecture, should draw a general phenomenon in the setting of non-uniformly elliptic problems. Such effects naturally connect with the Lavrentiev phenomenon.
ArticleNumber 62
Author Mingione, Giuseppe
Baroni, Paolo
Colombo, Maria
Author_xml – sequence: 1
  givenname: Paolo
  surname: Baroni
  fullname: Baroni, Paolo
  organization: Dipartimento SMFI, Università di Parma
– sequence: 2
  givenname: Maria
  surname: Colombo
  fullname: Colombo, Maria
  organization: Institute for Theoretical Studies, ETH Zürich
– sequence: 3
  givenname: Giuseppe
  surname: Mingione
  fullname: Mingione, Giuseppe
  email: rosariomingione@gmail.com
  organization: Dipartimento SMFI, Università di Parma
BookMark eNp9kF1LwzAUhoNMcJv-AO8KXkdPPpo2lzL8goEguw9pmm4dtZlJimy_3pQKgqBX58B5nsPLu0Cz3vUWoWsCtwSguAsAORUYSIkJYxSfztCc8LRAyfIZmoPkHFMh5AVahLAHIHlJ-RzxN7sdOu3beMwa57Ot7a3XXdYMvYmt63UXss827rLaDVVns8NOB3uJzpt0sFffc4k2jw-b1TNevz69rO7X2LBcRsylaUDr0tS2oprqwmguoRYSZCFIZRjTDTeiNJZyKy2XDEwlQOqcAuE1W6Kb6e3Bu4_Bhqj2bvBjJJUAJoUgOUlUMVHGuxC8bZRpox6zR6_bThFQY0NqakilhtTYkDolk_wyD7591_74r0MnJyS231r_k-lv6QsibHrC
CitedBy_id crossref_primary_10_1016_j_na_2019_06_013
crossref_primary_10_1002_mana_202300265
crossref_primary_10_1063_5_0162643
crossref_primary_10_1007_s12220_022_01067_y
crossref_primary_10_1186_s13661_020_01439_9
crossref_primary_10_1016_j_aim_2024_109679
crossref_primary_10_1007_s10958_024_07165_2
crossref_primary_10_1080_17476933_2021_1885383
crossref_primary_10_1007_s13324_021_00534_z
crossref_primary_10_1007_s12220_025_02168_0
crossref_primary_10_1002_cpa_21880
crossref_primary_10_1007_s10473_023_0304_3
crossref_primary_10_1016_j_na_2019_06_007
crossref_primary_10_1007_s12220_023_01349_z
crossref_primary_10_1007_s11868_024_00671_6
crossref_primary_10_1007_s00526_023_02566_8
crossref_primary_10_1007_s40840_025_01886_6
crossref_primary_10_1016_j_na_2018_12_011
crossref_primary_10_3390_sym13091556
crossref_primary_10_1016_j_jde_2023_04_043
crossref_primary_10_1016_j_na_2018_08_010
crossref_primary_10_3390_math9040376
crossref_primary_10_1016_j_anihpc_2019_01_003
crossref_primary_10_1016_j_jmaa_2022_126894
crossref_primary_10_1016_j_camwa_2024_08_021
crossref_primary_10_3233_ASY_201645
crossref_primary_10_1007_s00526_022_02202_x
crossref_primary_10_1515_acv_2021_0040
crossref_primary_10_3233_ASY_231830
crossref_primary_10_1007_s00205_022_01807_y
crossref_primary_10_1007_s00205_020_01507_5
crossref_primary_10_1186_s13661_022_01621_1
crossref_primary_10_1007_s10958_020_04724_1
crossref_primary_10_1112_blms_12550
crossref_primary_10_1007_s00205_023_01907_3
crossref_primary_10_1007_s12220_024_01584_y
crossref_primary_10_1016_j_jfa_2020_108670
crossref_primary_10_1016_j_na_2022_113066
crossref_primary_10_1016_j_jde_2019_10_022
crossref_primary_10_1016_j_na_2019_02_010
crossref_primary_10_1007_s12220_022_00977_1
crossref_primary_10_4153_S0008439519000286
crossref_primary_10_1007_s12220_024_01545_5
crossref_primary_10_1016_j_jde_2024_10_025
crossref_primary_10_1016_j_jmaa_2019_123450
crossref_primary_10_1007_s00526_021_01940_8
crossref_primary_10_1016_j_bulsci_2024_103546
crossref_primary_10_4153_S0008439521001041
crossref_primary_10_1007_s00208_022_02381_0
crossref_primary_10_1016_j_jde_2024_10_028
crossref_primary_10_1007_s11117_022_00894_1
crossref_primary_10_1007_s00229_021_01292_9
crossref_primary_10_1007_s00245_025_10278_y
crossref_primary_10_1016_j_jde_2019_02_005
crossref_primary_10_3390_math10020237
crossref_primary_10_1007_s00526_023_02640_1
crossref_primary_10_1016_j_jmaa_2022_126420
crossref_primary_10_1016_j_nonrwa_2022_103782
crossref_primary_10_1515_math_2020_0001
crossref_primary_10_1186_s13662_021_03659_4
crossref_primary_10_3390_sym17040573
crossref_primary_10_1142_S1664360720500174
crossref_primary_10_1515_forum_2018_0077
crossref_primary_10_1002_mana_202300054
crossref_primary_10_1515_anona_2025_0090
crossref_primary_10_3233_ASY_191536
crossref_primary_10_1007_s11587_022_00686_5
crossref_primary_10_1016_j_jmaa_2024_128934
crossref_primary_10_1016_j_jde_2019_02_015
crossref_primary_10_1002_mma_11210
crossref_primary_10_1016_j_jmaa_2022_126672
crossref_primary_10_1007_s00028_022_00794_7
crossref_primary_10_3934_dcds_2025144
crossref_primary_10_1016_j_jmaa_2020_124569
crossref_primary_10_1007_s00009_022_02176_2
crossref_primary_10_1016_j_apm_2024_04_059
crossref_primary_10_1016_j_jmaa_2023_127659
crossref_primary_10_1007_s00526_022_02360_y
crossref_primary_10_1016_j_aml_2023_108783
crossref_primary_10_1016_j_aml_2025_109556
crossref_primary_10_1016_j_jmaa_2024_128807
crossref_primary_10_1016_j_jde_2021_03_036
crossref_primary_10_1112_blms_70190
crossref_primary_10_1007_s00208_025_03126_5
crossref_primary_10_1088_1361_6544_ab81ed
crossref_primary_10_1016_j_jmaa_2021_125197
crossref_primary_10_1016_j_jmaa_2023_127776
crossref_primary_10_1017_prm_2025_10039
crossref_primary_10_1515_acv_2022_0016
crossref_primary_10_1016_j_jmaa_2020_124015
crossref_primary_10_1016_j_jde_2019_03_026
crossref_primary_10_1007_s00229_022_01452_5
crossref_primary_10_1007_s00025_023_02008_z
crossref_primary_10_1002_mma_7924
crossref_primary_10_1007_s00030_024_00922_x
crossref_primary_10_1007_s00209_021_02757_z
crossref_primary_10_1017_prm_2020_5
crossref_primary_10_1016_j_bulsci_2024_103534
crossref_primary_10_1186_s13661_022_01639_5
crossref_primary_10_1093_qmath_haaa067
crossref_primary_10_1007_s41808_025_00319_6
crossref_primary_10_1007_s00025_021_01444_z
crossref_primary_10_1007_s00030_023_00884_6
crossref_primary_10_1007_s00526_020_01907_1
crossref_primary_10_1016_j_matpur_2020_08_011
crossref_primary_10_1002_mma_8449
crossref_primary_10_1016_j_jde_2021_01_029
crossref_primary_10_1007_s11587_025_00978_6
crossref_primary_10_1007_s11854_021_0170_7
crossref_primary_10_1093_imrn_rnab150
crossref_primary_10_1007_s00030_023_00919_y
crossref_primary_10_1016_j_na_2021_112329
crossref_primary_10_1515_ans_2023_0173
crossref_primary_10_1007_s10231_024_01515_2
crossref_primary_10_1007_s41808_024_00288_2
crossref_primary_10_3390_axioms12030259
crossref_primary_10_1007_s00526_019_1483_6
crossref_primary_10_1016_j_jmaa_2020_124360
crossref_primary_10_1007_s00245_024_10155_0
crossref_primary_10_1016_j_jde_2020_08_007
crossref_primary_10_1016_j_na_2018_03_021
crossref_primary_10_1007_s00245_022_09903_x
crossref_primary_10_1016_j_jde_2021_12_023
crossref_primary_10_1016_j_jmaa_2021_125402
crossref_primary_10_1007_s00025_025_02449_8
crossref_primary_10_1007_s11464_020_0008_0
crossref_primary_10_1016_j_na_2018_03_016
crossref_primary_10_1007_s00033_019_1239_3
crossref_primary_10_1007_s11401_023_0004_2
crossref_primary_10_1016_j_jmaa_2020_123946
crossref_primary_10_1088_1361_6544_ab0b03
crossref_primary_10_1016_j_jde_2022_03_029
crossref_primary_10_1002_mana_201800277
crossref_primary_10_1007_s11784_021_00847_3
crossref_primary_10_1016_j_jde_2024_07_034
crossref_primary_10_1007_s13324_020_00409_9
crossref_primary_10_1007_s10231_023_01375_2
crossref_primary_10_1007_s00025_024_02274_5
crossref_primary_10_1186_s13660_021_02681_0
crossref_primary_10_1016_j_jmaa_2021_125762
crossref_primary_10_1016_j_jmaa_2024_128331
crossref_primary_10_1016_j_jmaa_2020_124133
crossref_primary_10_1007_s00209_025_03731_9
crossref_primary_10_1007_s00009_023_02383_5
crossref_primary_10_1515_acv_2020_0059
crossref_primary_10_1002_mma_7334
crossref_primary_10_1007_s10231_024_01444_0
crossref_primary_10_3390_math10091546
crossref_primary_10_1007_s13163_022_00432_3
crossref_primary_10_1016_j_na_2023_113221
crossref_primary_10_1155_2020_5376013
crossref_primary_10_1155_2018_8459874
crossref_primary_10_11650_tjm_230206
crossref_primary_10_1007_s00030_024_00999_4
crossref_primary_10_1016_j_jmaa_2024_128666
crossref_primary_10_1007_s00526_020_01818_1
crossref_primary_10_1016_j_jde_2020_11_007
crossref_primary_10_3836_tjm_1502179419
crossref_primary_10_1007_s00025_023_01858_x
crossref_primary_10_1016_j_jmaa_2021_125791
crossref_primary_10_1002_mana_202200137
crossref_primary_10_1016_j_geomphys_2023_104905
crossref_primary_10_1007_s41808_025_00375_y
crossref_primary_10_1007_s42985_023_00237_z
crossref_primary_10_1016_j_na_2025_113754
crossref_primary_10_1002_mana_202400388
crossref_primary_10_1016_j_jmaa_2019_123749
crossref_primary_10_1007_s11856_022_2392_5
crossref_primary_10_1007_s12220_023_01211_2
crossref_primary_10_1007_s10958_025_07865_3
crossref_primary_10_1007_s43036_023_00296_4
crossref_primary_10_1007_s10958_025_07756_7
crossref_primary_10_1016_j_jde_2020_11_014
crossref_primary_10_1007_s00526_025_03079_2
crossref_primary_10_1016_j_matpur_2018_06_015
crossref_primary_10_1016_j_na_2020_112135
crossref_primary_10_1002_mana_202300412
crossref_primary_10_1016_j_jde_2024_07_012
crossref_primary_10_1007_s00205_021_01698_5
crossref_primary_10_1007_s43034_024_00340_1
crossref_primary_10_1080_01630563_2022_2045609
crossref_primary_10_1007_s00526_021_01994_8
crossref_primary_10_3233_ASY_241943
crossref_primary_10_1002_mana_202300416
crossref_primary_10_1007_s00526_020_01822_5
crossref_primary_10_1007_s11117_022_00945_7
crossref_primary_10_1007_s00209_023_03405_4
crossref_primary_10_1016_j_cnsns_2025_108664
crossref_primary_10_1016_j_bulsci_2022_103176
crossref_primary_10_1007_s12220_019_00275_3
crossref_primary_10_1007_s13163_019_00332_z
crossref_primary_10_1016_j_na_2024_113584
crossref_primary_10_52846_ami_v52i1_1921
crossref_primary_10_1007_s13324_022_00686_6
crossref_primary_10_1016_j_jmaa_2020_123899
crossref_primary_10_1007_s10473_025_0504_0
crossref_primary_10_1007_s00009_022_02245_6
crossref_primary_10_1515_gmj_2025_2043
crossref_primary_10_1088_1361_6544_ac0612
crossref_primary_10_1515_acv_2021_0109
crossref_primary_10_1007_s00205_024_01982_0
crossref_primary_10_1016_j_jfa_2018_05_015
crossref_primary_10_1017_S144678871900034X
crossref_primary_10_1007_s00009_021_01908_0
crossref_primary_10_1134_S0037446625020235
crossref_primary_10_2140_apde_2020_13_1269
crossref_primary_10_1016_j_na_2019_111739
crossref_primary_10_1080_17476933_2019_1669571
crossref_primary_10_1007_s11118_021_09905_4
crossref_primary_10_1016_j_nonrwa_2019_103003
crossref_primary_10_1112_blms_12961
crossref_primary_10_1007_s00605_023_01825_2
crossref_primary_10_1007_s11784_025_01163_w
crossref_primary_10_1007_s10958_023_06508_9
crossref_primary_10_1007_s13348_019_00237_6
crossref_primary_10_1002_mma_9042
crossref_primary_10_1007_s00526_020_01769_7
crossref_primary_10_1016_j_jmaa_2024_129185
crossref_primary_10_1016_j_jde_2025_02_078
crossref_primary_10_1080_00036811_2025_2489468
crossref_primary_10_1007_s40995_025_01813_1
crossref_primary_10_1007_s00526_020_01893_4
crossref_primary_10_1016_j_na_2020_111827
crossref_primary_10_1007_s43037_025_00450_5
crossref_primary_10_1016_j_jmaa_2020_123997
crossref_primary_10_1080_02331934_2022_2088371
crossref_primary_10_1016_j_jmaa_2019_123838
crossref_primary_10_1215_00127094_2024_0075
crossref_primary_10_1007_s00526_024_02664_1
crossref_primary_10_1007_s12220_022_01052_5
crossref_primary_10_1007_s00208_023_02593_y
crossref_primary_10_1007_s11785_024_01579_1
crossref_primary_10_1016_j_jde_2024_04_016
crossref_primary_10_1007_s00205_022_01816_x
crossref_primary_10_1016_j_jmaa_2019_123832
crossref_primary_10_1016_j_jmaa_2025_129311
crossref_primary_10_1007_s12215_022_00762_7
crossref_primary_10_1016_j_jde_2024_08_023
crossref_primary_10_1016_j_na_2018_05_003
crossref_primary_10_1016_j_jde_2021_04_017
crossref_primary_10_1515_acv_2024_0032
crossref_primary_10_1515_acv_2020_0120
crossref_primary_10_1007_s00009_025_02881_8
crossref_primary_10_1016_j_nonrwa_2025_104450
crossref_primary_10_1016_j_nonrwa_2025_104334
crossref_primary_10_1016_j_jde_2019_01_017
crossref_primary_10_1007_s10231_021_01161_y
crossref_primary_10_3390_math13152462
crossref_primary_10_1007_s00025_021_01556_6
crossref_primary_10_1016_j_na_2017_09_010
crossref_primary_10_1002_mana_202000574
crossref_primary_10_1090_memo_1556
crossref_primary_10_1186_s13661_025_02043_5
crossref_primary_10_1007_s00526_020_01820_7
crossref_primary_10_1002_mana_202000456
crossref_primary_10_1016_j_na_2019_03_010
crossref_primary_10_1016_j_jmaa_2023_127246
crossref_primary_10_1080_17476933_2020_1863382
crossref_primary_10_1007_s00526_021_01959_x
crossref_primary_10_1007_s11118_020_09879_9
crossref_primary_10_1016_j_aml_2023_108803
crossref_primary_10_1016_j_jde_2025_113231
crossref_primary_10_1016_j_jmaa_2020_124423
crossref_primary_10_1155_2020_8237492
crossref_primary_10_1016_j_jde_2022_01_040
crossref_primary_10_1007_s12210_020_00885_y
crossref_primary_10_1007_s00030_025_01122_x
crossref_primary_10_1007_s10231_019_00894_1
crossref_primary_10_2298_FIL2421579O
crossref_primary_10_15672_hujms_1428174
crossref_primary_10_1007_s43034_025_00438_0
crossref_primary_10_1080_03605302_2023_2175216
crossref_primary_10_1007_s10231_024_01511_6
crossref_primary_10_1016_j_nonrwa_2022_103627
crossref_primary_10_1007_s00526_024_02912_4
crossref_primary_10_1016_j_jmaa_2020_124084
crossref_primary_10_1016_j_jmaa_2023_127117
crossref_primary_10_1016_j_na_2018_12_020
crossref_primary_10_1016_j_jde_2025_113247
crossref_primary_10_1007_s00526_020_01841_2
crossref_primary_10_1007_s00033_024_02226_7
crossref_primary_10_1016_j_jmaa_2019_123490
crossref_primary_10_1088_1361_6544_aaf259
crossref_primary_10_1016_j_aml_2018_07_009
crossref_primary_10_1016_j_na_2018_12_019
crossref_primary_10_1007_s00222_023_01216_2
crossref_primary_10_1007_s10957_022_02155_3
crossref_primary_10_1016_j_jfa_2025_110933
crossref_primary_10_3390_math12010060
crossref_primary_10_1515_acv_2025_0003
crossref_primary_10_1016_j_nonrwa_2023_103914
crossref_primary_10_1007_s00526_023_02623_2
crossref_primary_10_1186_s13661_024_01929_0
crossref_primary_10_1016_j_cnsns_2023_107683
crossref_primary_10_1016_j_matpur_2022_11_001
crossref_primary_10_1177_09217134241299664
crossref_primary_10_1016_j_cnsns_2024_108393
crossref_primary_10_1016_j_jmaa_2020_124408
crossref_primary_10_1007_s00009_024_02664_7
crossref_primary_10_1007_s00526_023_02608_1
Cites_doi 10.1007/s00526-017-1114-z
10.1016/j.na.2014.11.001
10.1007/s00526-017-1137-5
10.1142/S0219199717500237
10.1007/BF02409983
10.1007/s00229-016-0855-x
10.1007/s00526-014-0768-z
10.1007/s00205-014-0785-2
10.1007/s10231-015-0529-4
10.1016/j.anihpc.2016.03.003
10.1016/j.jfa.2015.06.022
10.1007/s002050100117
10.1007/s00526-016-0965-z
10.1016/0022-0396(88)90070-8
10.1016/S1631-073X(02)02337-3
10.1007/BF00251503
10.1016/j.jfa.2015.10.002
10.1016/0022-0396(91)90158-6
10.1007/s10778-006-0110-3
10.1090/S0002-9947-2012-05780-1
10.1016/j.jde.2017.03.025
10.1007/BF02392316
10.1016/j.bulsci.2003.10.003
10.1142/5002
10.1007/s00205-005-0402-5
10.1016/j.jmaa.2008.09.076
10.1007/s13373-013-0048-9
10.1016/0362-546X(92)90105-N
10.1007/s00205-015-0859-9
10.1090/spmj/1392
10.4171/JEMS/780
10.1016/j.na.2016.06.002
10.1007/BF01389324
10.1007/s00208-016-1362-9
10.1080/03605309108820761
10.1007/s00526-017-1148-2
10.1007/s00205-010-0294-x
10.1515/acv-2017-0037
10.1007/s00526-005-0327-8
10.1016/j.jde.2012.06.010
10.1016/j.jde.2003.11.007
10.1007/s00205-003-0301-6
10.1007/s00526-011-0428-5
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00526-018-1332-z
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0835
EndPage 48
ExternalDocumentID 10_1007_s00526_018_1332_z
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7Z
Z88
Z8T
Z92
ZMTXR
ZWQNP
~EX
88I
8AO
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ABUWG
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c359t-49cf0aa8cdeb2a2a7ca490d6909761bc33af4c68ce24e9e4930cb609a52014d3
IEDL.DBID RSV
ISICitedReferencesCount 450
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431004800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0944-2669
IngestDate Wed Sep 17 23:58:01 EDT 2025
Sat Nov 29 06:45:35 EST 2025
Tue Nov 18 21:27:16 EST 2025
Fri Feb 21 02:35:20 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 49N60
35D10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-49cf0aa8cdeb2a2a7ca490d6909761bc33af4c68ce24e9e4930cb609a52014d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/165512
PQID 2013966151
PQPubID 32028
PageCount 48
ParticipantIDs proquest_journals_2013966151
crossref_citationtrail_10_1007_s00526_018_1332_z
crossref_primary_10_1007_s00526_018_1332_z
springer_journals_10_1007_s00526_018_1332_z
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Calculus of variations and partial differential equations
PublicationTitleAbbrev Calc. Var
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ColomboMMingioneGRegularity for double phase variational problemsArch. Ration. Mech. Anal.2015215443496329440810.1007/s00205-014-0785-21322.49065
ColomboMMingioneGCalderón–Zygmund estimates and non-uniformly elliptic operatorsJ. Funct. Anal.201627014161478344771610.1016/j.jfa.2015.06.02206535749
De Giorgi, E.: Frontiere orientate di misura minima. Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960–61
Harjulehto, P., Hästö, P.: Boundary regularity under generalized growth conditions. Preprint (2017)
DieningLStroffoliniBVerdeAThe φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-harmonic approximation and the regularity of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-harmonic mapsJ. Differ. Equ.201225319431958294696110.1016/j.jde.2012.06.0101260.35048
AcerbiEMingioneGRegularity results for electrorheological fluids: the stationary caseC. R. Math. Acad. Sci. Paris2002334817822190504710.1016/S1631-073X(02)02337-31017.76098
OkJRegularity of ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-minimizers for a class of functionals with non-standard growthCalc. Var. PDE201756231362631910.1007/s00526-017-1137-51369.49050
EleuteriMMarcelliniPMascoloELipschitz estimates for systems with ellipticity conditions at infinityAnn. Mat. Pura Appl. (IV)201619515751603353796310.1007/s10231-015-0529-41354.35035
KristensenJMingioneGThe singular set of minima of integral functionalsArch. Ration. Mech. Anal.2006180331398221496110.1007/s00205-005-0402-51116.49010
RagusaMATachikawaABoundary regularity of minimizers of p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x)$$\end{document}-energy functionalsAnn. IHP Anal. non Linéare20173345147634653821333.49052
EspositoLLeonettiFMingioneGSharp regularity for functionals with (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-growthJ. Differ. Equ.2004204555207615810.1016/j.jde.2003.11.0071072.49024
DuzaarFMingioneGHarmonic type approximation lemmasJ. Math. Anal. Appl.2009352301335249990510.1016/j.jmaa.2008.09.0761172.35002
OkJGradient estimates for elliptic equations with Lp(·)logL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p(\cdot )}\log L$$\end{document} growthCalc. Var. PDE201655230353574410.1007/s00526-016-0965-z1342.35090
UhlenbeckKRegularity for a class of non-linear elliptic systemsActa Math.197713821924047438910.1007/BF023923160372.35030
DieningLMaximal function on Musielak–Orlicz spaces and generalized Lebesgue spacesBull. Sci. Math.2005129657700216673310.1016/j.bulsci.2003.10.0031096.46013
MingioneGRegularity of minima: an invitation to the dark side of the calculus of variationsAppl. Math.200651355425229177910.1007/s10778-006-0110-31164.49324
MarcelliniPRegularity and existence of solutions of elliptic equations with p,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p, q$$\end{document}-growth conditionsJ. Differ. Equ.199190130109444610.1016/0022-0396(91)90158-60724.35043
CupiniGMarcelliniPMascoloERegularity of minimizers under limit growth conditionsNonlinear Anal.2017153294310361467310.1016/j.na.2016.06.0021358.49032
ZhikovVVAveraging of functionals of the calculus of variations and elasticity theoryIzv. Akad. Nauk SSSR Ser. Mat.198650675710864171
ColomboMMingioneGBounded minimisers of double phase variational integralsArch. Ration. Mech. Anal.2015218219273336073810.1007/s00205-015-0859-91325.49042
Eleuteri, M., Marcellini, P., Mascolo, E.: Regularity for scalar integrals without structure conditions. Adv. Calc. Var. (to appear)
TachikawaAUsubaKRegularity results up to the boundary for minimizers of p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x)$$\end{document}-energy with p(x)>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x)>1$$\end{document}manus. math.2017152127151359537210.1007/s00229-016-0855-x1359.49013
ManfrediJJRegularity for minima of functionals with p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-growthJ. Differ. Equ.19887620321296942010.1016/0022-0396(88)90070-80674.35008
Cruz-Uribe, D., Hästö, P.: Extrapolation and interpolation in generalized Orlicz spaces. Trans. Am. Math. Soc. (to appear)
ChoeHJInterior behaviour of minimizers for certain functionals with nonstandard growthNonlinear Anal.199219933945119227310.1016/0362-546X(92)90105-N0786.35040
BildhauerMFuchsMC1,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,\alpha }$$\end{document}-solutions to non-autonomous anisotropic variational problemsCalc. Var. PDE20052430934010.1007/s00526-005-0327-81101.49029
MarcelliniPRegularity of minimizers of integrals of the calculus of variations with non standard growth conditionsArch. Ration. Mech. Anal.198910526728410.1007/BF002515030667.49032
RagusaMATachikawaAPartial regularity of p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x)$$\end{document}-harmonic mapsTrans. Am. Math. Soc.201336533293353303446810.1090/S0002-9947-2012-05780-11277.35092
BaroniPLindforsCThe Cauchy–Dirichlet problem for a general class of parabolic equationsAnn. Inst. H. Poincaré Anal. Non Linéaire201734593624363373710.1016/j.anihpc.2016.03.0031366.35056
GiustiEDirect Methods in the Calculus of Variations2003River EdgeWorld Scientific Publishing Co., Inc10.1142/50021028.49001
LavrentievMSur quelques problèmes du calcul des variationsAnn. Mat. Pura Appl.1926472810.1007/BF02409983
KuusiTMingioneGGuide to nonlinear potential estimatesBull. Math. Sci.20144182317427810.1007/s13373-013-0048-91315.35095
BreitDNew regularity theorems for non-autonomous variational integrals with (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-growthCalc. Var. PDE201244101129289877310.1007/s00526-011-0428-51252.49060
ByunSSOkJRyuSGlobal gradient estimates for elliptic equations of p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x)$$\end{document}-Laplacian type with BMO nonlinearityJ. Reine Angew. Math. (Crelles J.)201671513835079181347.35095
AcerbiEMingioneGRegularity results for a class of functionals with non-standard growthArch. Ration. Mech. Anal.2001156121140181497310.1007/s0020501001170984.49020
Manfredi, J.J.: Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations. Ph.D. Thesis. University of Washington, St. Louis (1986)
ByunSSOhJGlobal gradient estimates for non-uniformly elliptic equationsCalc. Var. PDE201756236362494210.1007/s00526-017-1148-21378.35139
BaroniPColomboMMingioneGHarnack inequalities for double phase functionalsNonlinear Anal.2015121206222334892210.1016/j.na.2014.11.0011321.49059(Special Issue for E. Mitidieri)
ByunSSOhJGlobal gradient estimates for the borderline case of double phase problems with BMO coefficients in nonsmooth domainsJ. Differ. Equ.201726316431693363223010.1016/j.jde.2017.03.0251372.35115
GiaquintaMGiustiEDifferentiability of minima of nondifferentiable functionalsInvent. Math.19837228529870077210.1007/BF013893240513.49003
BousquetPBrascoLGlobal Lipschitz continuity for minima of degenerate problemsMath. Ann.201636614031450356324110.1007/s00208-016-1362-91352.49037
Ural’tseva, N.N., Urdaletova, A.B.: The boundedness of the gradients of generalized solutions of degenerate quasilinear non-uniformly elliptic equations. Vestnik Leningrad University Mathematics 19 (1983) (Russian) English. tran.: 16 (1984), 263–270
FonsecaIMalýJMingioneGScalar minimizers with fractal singular setsArch. Ration. Mech. Anal.2004172295307205816710.1007/s00205-003-0301-61049.49015
Acerbi, E., Fusco, N.: An Approxi
1332_CR7
M Eleuteri (1332_CR25) 2016; 195
J Ok (1332_CR46) 2016; 55
MA Ragusa (1332_CR49) 2017; 33
P Baroni (1332_CR8) 2017; 34
VV Zhikov (1332_CR57) 1997; 5
P Hästö (1332_CR33) 2015; 269
1332_CR26
G Mingione (1332_CR45) 2006; 51
1332_CR1
E Acerbi (1332_CR2) 2001; 156
SS Byun (1332_CR12) 2017; 56
1332_CR21
M Colombo (1332_CR16) 2015; 215
VV Zhikov (1332_CR56) 1995; 3
L Diening (1332_CR22) 2005; 129
M Colombo (1332_CR18) 2016; 270
VV Zhikov (1332_CR55) 1986; 50
I Fonseca (1332_CR28) 2004; 172
K Uhlenbeck (1332_CR52) 1977; 138
1332_CR19
L Diening (1332_CR23) 2012; 253
M Bildhauer (1332_CR9) 2005; 24
D Breit (1332_CR11) 2012; 44
M Lavrentiev (1332_CR38) 1926; 4
P Bousquet (1332_CR10) 2016; 366
1332_CR54
NN Ural’tseva (1332_CR53) 1968; 7
L Esposito (1332_CR27) 2004; 204
P Harjulehto (1332_CR32) 2017; 56
M Colombo (1332_CR17) 2015; 218
T Kuusi (1332_CR37) 2018
P Baroni (1332_CR6) 2016; 27
1332_CR48
JJ Manfredi (1332_CR40) 1988; 76
A Tachikawa (1332_CR51) 2017; 152
J Ok (1332_CR47) 2017; 56
1332_CR41
M Giaquinta (1332_CR29) 1983; 72
E Giusti (1332_CR30) 2003
J Kristensen (1332_CR34) 2006; 180
HJ Choe (1332_CR15) 1992; 19
GM Lieberman (1332_CR39) 1991; 16
P Marcellini (1332_CR42) 1989; 105
SS Byun (1332_CR14) 2016; 715
G Cupini (1332_CR20) 2017; 153
P Marcellini (1332_CR43) 1991; 90
F Duzaar (1332_CR24) 2009; 352
MA Ragusa (1332_CR50) 2013; 365
T Kuusi (1332_CR36) 2014; 4
1332_CR31
P Baroni (1332_CR4) 2015; 53
E Acerbi (1332_CR3) 2002; 334
J Kristensen (1332_CR35) 2010; 198
P Marcellini (1332_CR44) 1996; 23
P Baroni (1332_CR5) 2015; 121
SS Byun (1332_CR13) 2017; 263
References_xml – reference: BaroniPLindforsCThe Cauchy–Dirichlet problem for a general class of parabolic equationsAnn. Inst. H. Poincaré Anal. Non Linéaire201734593624363373710.1016/j.anihpc.2016.03.0031366.35056
– reference: MarcelliniPRegularity of minimizers of integrals of the calculus of variations with non standard growth conditionsArch. Ration. Mech. Anal.198910526728410.1007/BF002515030667.49032
– reference: MarcelliniPRegularity and existence of solutions of elliptic equations with p,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p, q$$\end{document}-growth conditionsJ. Differ. Equ.199190130109444610.1016/0022-0396(91)90158-60724.35043
– reference: HästöPThe maximal operator on generalized Orlicz spacesJ. Funct. Anal.201526940384048341807810.1016/j.jfa.2015.10.0021338.47032
– reference: BaroniPRiesz potential estimates for a general class of quasilinear equationsCalc. Var. PDE201553803846334748110.1007/s00526-014-0768-z1318.35041
– reference: ByunSSOhJGlobal gradient estimates for non-uniformly elliptic equationsCalc. Var. PDE201756236362494210.1007/s00526-017-1148-21378.35139
– reference: Manfredi, J.J.: Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations. Ph.D. Thesis. University of Washington, St. Louis (1986)
– reference: BaroniPColomboMMingioneGHarnack inequalities for double phase functionalsNonlinear Anal.2015121206222334892210.1016/j.na.2014.11.0011321.49059(Special Issue for E. Mitidieri)
– reference: KuusiTMingioneGGuide to nonlinear potential estimatesBull. Math. Sci.20144182317427810.1007/s13373-013-0048-91315.35095
– reference: KuusiTMingioneGVectorial nonlinear potential theoryJ. Eur. Math. Soc.201806864140
– reference: DieningLMaximal function on Musielak–Orlicz spaces and generalized Lebesgue spacesBull. Sci. Math.2005129657700216673310.1016/j.bulsci.2003.10.0031096.46013
– reference: MingioneGRegularity of minima: an invitation to the dark side of the calculus of variationsAppl. Math.200651355425229177910.1007/s10778-006-0110-31164.49324
– reference: RagusaMATachikawaAPartial regularity of p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x)$$\end{document}-harmonic mapsTrans. Am. Math. Soc.201336533293353303446810.1090/S0002-9947-2012-05780-11277.35092
– reference: Cruz-Uribe, D., Hästö, P.: Extrapolation and interpolation in generalized Orlicz spaces. Trans. Am. Math. Soc. (to appear)
– reference: Perera, K., Squassina, M.: Existence results for double phase problems via Morse theory. Commun. Contemp. Math. 20, Article no. 1750023 (2018)
– reference: OkJRegularity of ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-minimizers for a class of functionals with non-standard growthCalc. Var. PDE201756231362631910.1007/s00526-017-1137-51369.49050
– reference: GiustiEDirect Methods in the Calculus of Variations2003River EdgeWorld Scientific Publishing Co., Inc10.1142/50021028.49001
– reference: BreitDNew regularity theorems for non-autonomous variational integrals with (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-growthCalc. Var. PDE201244101129289877310.1007/s00526-011-0428-51252.49060
– reference: OkJGradient estimates for elliptic equations with Lp(·)logL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p(\cdot )}\log L$$\end{document} growthCalc. Var. PDE201655230353574410.1007/s00526-016-0965-z1342.35090
– reference: LavrentievMSur quelques problèmes du calcul des variationsAnn. Mat. Pura Appl.1926472810.1007/BF02409983
– reference: MarcelliniPEverywhere regularity for a class of elliptic systems without growth conditionsAnn. Scuola Norm. Sup. Pisa Cl. Sci. (IV)19962312514014150922.35031
– reference: KristensenJMingioneGBoundary regularity in variational problemsArch. Ration. Mech. Anal.2010198369455272158710.1007/s00205-010-0294-x1228.49043
– reference: ChoeHJInterior behaviour of minimizers for certain functionals with nonstandard growthNonlinear Anal.199219933945119227310.1016/0362-546X(92)90105-N0786.35040
– reference: EleuteriMMarcelliniPMascoloELipschitz estimates for systems with ellipticity conditions at infinityAnn. Mat. Pura Appl. (IV)201619515751603353796310.1007/s10231-015-0529-41354.35035
– reference: GiaquintaMGiustiEDifferentiability of minima of nondifferentiable functionalsInvent. Math.19837228529870077210.1007/BF013893240513.49003
– reference: ZhikovVVAveraging of functionals of the calculus of variations and elasticity theoryIzv. Akad. Nauk SSSR Ser. Mat.198650675710864171
– reference: BildhauerMFuchsMC1,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,\alpha }$$\end{document}-solutions to non-autonomous anisotropic variational problemsCalc. Var. PDE20052430934010.1007/s00526-005-0327-81101.49029
– reference: FonsecaIMalýJMingioneGScalar minimizers with fractal singular setsArch. Ration. Mech. Anal.2004172295307205816710.1007/s00205-003-0301-61049.49015
– reference: ColomboMMingioneGBounded minimisers of double phase variational integralsArch. Ration. Mech. Anal.2015218219273336073810.1007/s00205-015-0859-91325.49042
– reference: CupiniGMarcelliniPMascoloERegularity of minimizers under limit growth conditionsNonlinear Anal.2017153294310361467310.1016/j.na.2016.06.0021358.49032
– reference: DieningLStroffoliniBVerdeAThe φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-harmonic approximation and the regularity of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-harmonic mapsJ. Differ. Equ.201225319431958294696110.1016/j.jde.2012.06.0101260.35048
– reference: Ural’tseva, N.N., Urdaletova, A.B.: The boundedness of the gradients of generalized solutions of degenerate quasilinear non-uniformly elliptic equations. Vestnik Leningrad University Mathematics 19 (1983) (Russian) English. tran.: 16 (1984), 263–270
– reference: LiebermanGMThe natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equationsCommun. PDE19911631136110.1080/036053091088207610742.35028
– reference: TachikawaAUsubaKRegularity results up to the boundary for minimizers of p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x)$$\end{document}-energy with p(x)>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x)>1$$\end{document}manus. math.2017152127151359537210.1007/s00229-016-0855-x1359.49013
– reference: Harjulehto, P., Hästö, P.: Boundary regularity under generalized growth conditions. Preprint (2017)
– reference: Acerbi, E., Fusco, N.: An Approximation Lemma for W1,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,p}$$\end{document} Functions. Material Instabilities in Continuum Mechanics (Edinburgh, 1985–1986), pp. 1–5. Oxford Science Publications, Oxford University Press, New York (1988)
– reference: BaroniPColomboMMingioneGNon-autonomous functionals, borderline cases and related function classesSt. Petersb. Math. J.20162734737910.1090/spmj/13921335.49057(Special Issue for N. Uraltseva)
– reference: ZhikovVVOn Lavrentiev’s phenomenonRuss. J. Math. Phys.1995324926913505060910.49020
– reference: AcerbiEMingioneGRegularity results for electrorheological fluids: the stationary caseC. R. Math. Acad. Sci. Paris2002334817822190504710.1016/S1631-073X(02)02337-31017.76098
– reference: HarjulehtoPHästöPToivanenOHölder regularity of quasiminimizers under generalized growth conditionsCalc. Var. PDE2017562610.1007/s00526-017-1114-z1366.35036
– reference: ByunSSOkJRyuSGlobal gradient estimates for elliptic equations of p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x)$$\end{document}-Laplacian type with BMO nonlinearityJ. Reine Angew. Math. (Crelles J.)201671513835079181347.35095
– reference: ManfrediJJRegularity for minima of functionals with p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-growthJ. Differ. Equ.19887620321296942010.1016/0022-0396(88)90070-80674.35008
– reference: ColomboMMingioneGRegularity for double phase variational problemsArch. Ration. Mech. Anal.2015215443496329440810.1007/s00205-014-0785-21322.49065
– reference: KristensenJMingioneGThe singular set of minima of integral functionalsArch. Ration. Mech. Anal.2006180331398221496110.1007/s00205-005-0402-51116.49010
– reference: AcerbiEMingioneGRegularity results for a class of functionals with non-standard growthArch. Ration. Mech. Anal.2001156121140181497310.1007/s0020501001170984.49020
– reference: ByunSSOhJGlobal gradient estimates for the borderline case of double phase problems with BMO coefficients in nonsmooth domainsJ. Differ. Equ.201726316431693363223010.1016/j.jde.2017.03.0251372.35115
– reference: BousquetPBrascoLGlobal Lipschitz continuity for minima of degenerate problemsMath. Ann.201636614031450356324110.1007/s00208-016-1362-91352.49037
– reference: DuzaarFMingioneGHarmonic type approximation lemmasJ. Math. Anal. Appl.2009352301335249990510.1016/j.jmaa.2008.09.0761172.35002
– reference: Ural’tsevaNNDegenerate quasilinear elliptic systemsZap. Na. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)196871842222446280199.42502
– reference: RagusaMATachikawaABoundary regularity of minimizers of p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(x)$$\end{document}-energy functionalsAnn. IHP Anal. non Linéare20173345147634653821333.49052
– reference: EspositoLLeonettiFMingioneGSharp regularity for functionals with (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p, q)$$\end{document}-growthJ. Differ. Equ.2004204555207615810.1016/j.jde.2003.11.0071072.49024
– reference: Eleuteri, M., Marcellini, P., Mascolo, E.: Regularity for scalar integrals without structure conditions. Adv. Calc. Var. (to appear)
– reference: ZhikovVVOn some variational problemsRuss. J. Math. Phys.1997510511614867650917.49006
– reference: ColomboMMingioneGCalderón–Zygmund estimates and non-uniformly elliptic operatorsJ. Funct. Anal.201627014161478344771610.1016/j.jfa.2015.06.02206535749
– reference: De Giorgi, E.: Frontiere orientate di misura minima. Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960–61
– reference: UhlenbeckKRegularity for a class of non-linear elliptic systemsActa Math.197713821924047438910.1007/BF023923160372.35030
– reference: Baroni, P., Colombo, M., Mingione, G.: Flow of double phase functionals (forthcoming)
– ident: 1332_CR31
  doi: 10.1007/s00526-017-1114-z
– volume: 121
  start-page: 206
  year: 2015
  ident: 1332_CR5
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2014.11.001
– volume: 56
  start-page: 31
  issue: 2
  year: 2017
  ident: 1332_CR47
  publication-title: Calc. Var. PDE
  doi: 10.1007/s00526-017-1137-5
– ident: 1332_CR48
  doi: 10.1142/S0219199717500237
– volume: 56
  start-page: 26
  year: 2017
  ident: 1332_CR32
  publication-title: Calc. Var. PDE
  doi: 10.1007/s00526-017-1114-z
– volume: 4
  start-page: 7
  year: 1926
  ident: 1332_CR38
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/BF02409983
– volume: 152
  start-page: 127
  year: 2017
  ident: 1332_CR51
  publication-title: manus. math.
  doi: 10.1007/s00229-016-0855-x
– volume: 53
  start-page: 803
  year: 2015
  ident: 1332_CR4
  publication-title: Calc. Var. PDE
  doi: 10.1007/s00526-014-0768-z
– volume: 23
  start-page: 1
  year: 1996
  ident: 1332_CR44
  publication-title: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV)
– volume: 50
  start-page: 675
  year: 1986
  ident: 1332_CR55
  publication-title: Izv. Akad. Nauk SSSR Ser. Mat.
– volume: 215
  start-page: 443
  year: 2015
  ident: 1332_CR16
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-014-0785-2
– volume: 195
  start-page: 1575
  year: 2016
  ident: 1332_CR25
  publication-title: Ann. Mat. Pura Appl. (IV)
  doi: 10.1007/s10231-015-0529-4
– ident: 1332_CR19
– volume: 34
  start-page: 593
  year: 2017
  ident: 1332_CR8
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2016.03.003
– ident: 1332_CR21
– volume: 270
  start-page: 1416
  year: 2016
  ident: 1332_CR18
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2015.06.022
– volume: 156
  start-page: 121
  year: 2001
  ident: 1332_CR2
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s002050100117
– ident: 1332_CR7
– volume: 55
  start-page: 30
  issue: 2
  year: 2016
  ident: 1332_CR46
  publication-title: Calc. Var. PDE
  doi: 10.1007/s00526-016-0965-z
– volume: 76
  start-page: 203
  year: 1988
  ident: 1332_CR40
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(88)90070-8
– volume: 334
  start-page: 817
  year: 2002
  ident: 1332_CR3
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/S1631-073X(02)02337-3
– volume: 105
  start-page: 267
  year: 1989
  ident: 1332_CR42
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00251503
– volume: 5
  start-page: 105
  year: 1997
  ident: 1332_CR57
  publication-title: Russ. J. Math. Phys.
– volume: 269
  start-page: 4038
  year: 2015
  ident: 1332_CR33
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2015.10.002
– volume: 90
  start-page: 1
  year: 1991
  ident: 1332_CR43
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(91)90158-6
– volume: 51
  start-page: 355
  year: 2006
  ident: 1332_CR45
  publication-title: Appl. Math.
  doi: 10.1007/s10778-006-0110-3
– volume: 365
  start-page: 3329
  year: 2013
  ident: 1332_CR50
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-2012-05780-1
– volume: 263
  start-page: 1643
  year: 2017
  ident: 1332_CR13
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2017.03.025
– volume: 138
  start-page: 219
  year: 1977
  ident: 1332_CR52
  publication-title: Acta Math.
  doi: 10.1007/BF02392316
– volume: 129
  start-page: 657
  year: 2005
  ident: 1332_CR22
  publication-title: Bull. Sci. Math.
  doi: 10.1016/j.bulsci.2003.10.003
– volume-title: Direct Methods in the Calculus of Variations
  year: 2003
  ident: 1332_CR30
  doi: 10.1142/5002
– volume: 180
  start-page: 331
  year: 2006
  ident: 1332_CR34
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-005-0402-5
– ident: 1332_CR41
– volume: 352
  start-page: 301
  year: 2009
  ident: 1332_CR24
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.09.076
– volume: 4
  start-page: 1
  year: 2014
  ident: 1332_CR36
  publication-title: Bull. Math. Sci.
  doi: 10.1007/s13373-013-0048-9
– volume: 19
  start-page: 933
  year: 1992
  ident: 1332_CR15
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(92)90105-N
– volume: 7
  start-page: 184
  year: 1968
  ident: 1332_CR53
  publication-title: Zap. Na. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
– volume: 218
  start-page: 219
  year: 2015
  ident: 1332_CR17
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-015-0859-9
– volume: 27
  start-page: 347
  year: 2016
  ident: 1332_CR6
  publication-title: St. Petersb. Math. J.
  doi: 10.1090/spmj/1392
– year: 2018
  ident: 1332_CR37
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/JEMS/780
– volume: 153
  start-page: 294
  year: 2017
  ident: 1332_CR20
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2016.06.002
– volume: 72
  start-page: 285
  year: 1983
  ident: 1332_CR29
  publication-title: Invent. Math.
  doi: 10.1007/BF01389324
– volume: 366
  start-page: 1403
  year: 2016
  ident: 1332_CR10
  publication-title: Math. Ann.
  doi: 10.1007/s00208-016-1362-9
– volume: 715
  start-page: 1
  year: 2016
  ident: 1332_CR14
  publication-title: J. Reine Angew. Math. (Crelles J.)
– volume: 16
  start-page: 311
  year: 1991
  ident: 1332_CR39
  publication-title: Commun. PDE
  doi: 10.1080/03605309108820761
– volume: 56
  start-page: 36
  issue: 2
  year: 2017
  ident: 1332_CR12
  publication-title: Calc. Var. PDE
  doi: 10.1007/s00526-017-1148-2
– ident: 1332_CR1
– volume: 3
  start-page: 249
  year: 1995
  ident: 1332_CR56
  publication-title: Russ. J. Math. Phys.
– volume: 198
  start-page: 369
  year: 2010
  ident: 1332_CR35
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-010-0294-x
– ident: 1332_CR26
  doi: 10.1515/acv-2017-0037
– volume: 33
  start-page: 451
  year: 2017
  ident: 1332_CR49
  publication-title: Ann. IHP Anal. non Linéare
– volume: 24
  start-page: 309
  year: 2005
  ident: 1332_CR9
  publication-title: Calc. Var. PDE
  doi: 10.1007/s00526-005-0327-8
– volume: 253
  start-page: 1943
  year: 2012
  ident: 1332_CR23
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2012.06.010
– volume: 204
  start-page: 5
  year: 2004
  ident: 1332_CR27
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2003.11.007
– volume: 172
  start-page: 295
  year: 2004
  ident: 1332_CR28
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-003-0301-6
– volume: 44
  start-page: 101
  year: 2012
  ident: 1332_CR11
  publication-title: Calc. Var. PDE
  doi: 10.1007/s00526-011-0428-5
– ident: 1332_CR54
SSID ssj0015824
Score 2.6432822
Snippet We prove sharp regularity results for a general class of functionals of the type w ↦ ∫ F ( x , w , D w ) d x , featuring non-standard growth conditions and...
We prove sharp regularity results for a general class of functionals of the type w↦∫F(x,w,Dw)dx,featuring non-standard growth conditions and non-uniform...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Calculus of Variations and Optimal Control; Optimization
Control
Ellipticity
Functionals
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Regularity
Systems Theory
Theoretical
Title Regularity for general functionals with double phase
URI https://link.springer.com/article/10.1007/s00526-018-1332-z
https://www.proquest.com/docview/2013966151
Volume 57
WOSCitedRecordID wos000431004800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCDb7FaZQ-elECaZNvNUcTiQYvUUnpbsklWhdKWbuuhv95J9lEUFfS82RAmj--bmeQbgEttU6ZMSF3knhJhjSHIwjkxQuGZqRKmvFzT4KHd7UbDoXwq3nFn5W33MiXpT-rqsZuXJkHXF70ezhlZrsMGol3k6jX0ngdV6iCMfCVbdFsEQfSRZSrzuy4-g9GKYX5Jinqs6ez-a5R7sFNQy-AmXwv7sGbHB7D9WOmyZocger70vCtYFyBbDV5y0enAoVseFMwCF5kNzGSRjGwwfUWQO4J-565_e0-KuglE81DOiZA6pUpF2qDbrJhqayUkNegHI_doJppzlQrdirRlwkorJKc6aVGpQmQDwvBjqI0nY3sCgaZpZKliTiZQUGuTdtPintVCIa1IIl4HWtov1oWmuCttMYorNWRvjxjtETt7xMs6XFW_THNBjd8aN8pJiYu9lcXMsdaWY2J1uC4nYfX5x85O_9T6DLaYm0V_SacBtflsYc9hU7_P37LZhV9yH_k90Fw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurBt1ifOXhSFtIk226OIpaKbZFaSm8hm6QqlLZ0Ww_99SbZR1FU0PNmQ5g8vm9mkm8ArpQZEKlD7CL3OGBG68CycBpoJu2ZKWMivVxTr1lrt6N-nz9l77iT_LZ7npL0J3Xx2M1Lk1jX13o9lJJgsQprzAKWE8zvPPeK1EEY-Uq21m1hgUUfnqcyv-viMxgtGeaXpKjHmvrOv0a5C9sZtUS36VrYgxUz2oetVqHLmhwA6_jS865gHbJsFb2kotPIoVsaFEyQi8wiPZ7HQ4MmrxbkDqFbv-_eNYKsbkKgaMhnAeNqgKWMlLZusySypiTjWFs_2HKPSqwolQOmqpEyhBluGKdYxVXMZWjZANP0CEqj8cgcA1J4EBksiZMJZNiYuFYxds8qJi2tiCNaBpzbT6hMU9yVthiKQg3Z20NYewhnD7Eow3XxyyQV1Pit8Vk-KSLbW4kgjrVWHRMrw00-CcvPP3Z28qfWl7DR6LaaovnQfjyFTeJm1F_YOYPSbDo357Cu3mdvyfTCL78PxybTQA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7oFNGDv8Xp1B48KWVZkm7NUdShOMfQMXYraZKqMLqxdh7215ukP4aignhuGspL0vd97718D-BcqAhz6SETuUcuVVK6GoUTV1Ku_5k8xNzKNQ06rW7XHw5ZL-9zmhTV7kVKMrvTYFSa4rQ-kVG9vPhmZUo0DdYMiBDszpdhhZo6ekPXnwdlGsHzbVdbTWGoqz0RK9Ka303x2TEt0OaXBKn1O-2tf3_xNmzmkNO5yvbIDiypeBc2Hku91mQP6JNtSW8a2TkaxTovmRi1Y7xeFixMHBOxdeR4Fo6UM3nVzm8f-u3b_vWdm_dTcAXxWOpSJiLEuS-kptMc85bglCGp-bHGJI1QEMIjKpq-UJgqpigjSIRNxLinUQKV5AAq8ThWh-AIFPkKcWzkAylSKmw1lD7LgnINN0KfVAEVtgxErjVuWl6MglIl2doj0PYIjD2CeRUuylcmmdDGb4NrxQIF-ZlLAmzQbNMgtCpcFguyePzjZEd_Gn0Ga72bdtC57z4cwzo2C2rreGpQSaczdQKr4j19S6andid-AM8S3CQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regularity+for+general+functionals+with+double+phase&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Baroni%2C+Paolo&rft.au=Colombo%2C+Maria&rft.au=Mingione%2C+Giuseppe&rft.date=2018-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=57&rft.issue=2&rft.spage=1&rft.epage=48&rft_id=info:doi/10.1007%2Fs00526-018-1332-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon