Multiregional Coverage Path Planning for Multiple Energy Constrained UAVs
In recent years, we have witnessed a growing use of unmanned aerial vehicles (UAVs) in a variety of civil, commercial and military applications. Among these applications, many require the UAVs to scan or survey one or more regions, such as land monitoring, disaster assessment, search and rescue. To...
Uložené v:
| Vydané v: | IEEE transactions on intelligent transportation systems Ročník 23; číslo 10; s. 17366 - 17381 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1524-9050, 1558-0016 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In recent years, we have witnessed a growing use of unmanned aerial vehicles (UAVs) in a variety of civil, commercial and military applications. Among these applications, many require the UAVs to scan or survey one or more regions, such as land monitoring, disaster assessment, search and rescue. To realize such applications, path planning is a key step. Although the coverage path planning (CPP) problem for a single region has been extensively studied in the literature, CPP for multiple regions has gained much less attention. This multi-regional CPP problem can be considered as a variant of the (multiple) traveling salesman problem (TSP) enhanced with CPP. Previously, we have studied the case of a single UAV. In this paper, we extend our previous studies to further consider multiple UAVs with energy constraints. To solve this new path planning problem, we develop two approaches: 1) a branch-and-bound (BnB) based approach that can find (near) optimal tours and 2) a genetic algorithm (GA) based approach that can solve large-scale problems efficiently under different objectives. Comprehensive theoretical analyses and computational experiments demonstrate the promising performance of the proposed approaches in terms of optimality and efficiency. |
|---|---|
| AbstractList | In recent years, we have witnessed a growing use of unmanned aerial vehicles (UAVs) in a variety of civil, commercial and military applications. Among these applications, many require the UAVs to scan or survey one or more regions, such as land monitoring, disaster assessment, search and rescue. To realize such applications, path planning is a key step. Although the coverage path planning (CPP) problem for a single region has been extensively studied in the literature, CPP for multiple regions has gained much less attention. This multi-regional CPP problem can be considered as a variant of the (multiple) traveling salesman problem (TSP) enhanced with CPP. Previously, we have studied the case of a single UAV. In this paper, we extend our previous studies to further consider multiple UAVs with energy constraints. To solve this new path planning problem, we develop two approaches: 1) a branch-and-bound (BnB) based approach that can find (near) optimal tours and 2) a genetic algorithm (GA) based approach that can solve large-scale problems efficiently under different objectives. Comprehensive theoretical analyses and computational experiments demonstrate the promising performance of the proposed approaches in terms of optimality and efficiency. |
| Author | Chen, Jun Xie, Junfei |
| Author_xml | – sequence: 1 givenname: Junfei orcidid: 0000-0001-7406-3221 surname: Xie fullname: Xie, Junfei email: jxie4@sdsu.edu organization: Department of Electrical and Computer Engineering, San Diego State University, San Diego, CA, USA – sequence: 2 givenname: Jun orcidid: 0000-0001-9896-6898 surname: Chen fullname: Chen, Jun email: jun.chen@sdsu.edu organization: Department of Aerospace Engineering, San Diego State University, San Diego, CA, USA |
| BookMark | eNp9kE1LwzAYx4NMcJt-APFS8NyZJ6_tcYypg4kDN68hS9OaUdOZdMK-va0TDx485SH8f8_Lb4QGvvEWoWvAEwCc360X65cJwYRMKAjMMDlDQ-A8SzEGMehrwtIcc3yBRjHuul_GAYZo8XSoWxds5Rqv62TWfNqgK5usdPuWrGrtvfNVUjYh-Q7ua5vMvQ3VsYv62AbtvC2SzfQ1XqLzUtfRXv28Y7S5n69nj-ny-WExmy5TQ3nepkwQRs0WOM1KKaVhMgMu5ZbQUmYlowxoWRgGUmyFzExhLBghDJVZXpBCcjpGt6e--9B8HGxs1a45hG75qIgkNMcEZ3mXglPKhCbGYEu1D-5dh6MCrHpjqjememPqx1jHyD-Mca1uOzP9nfW_5M2JdNba30m5ZFSAoF9ExXlR |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_1016_j_ast_2025_110624 crossref_primary_10_1109_TITS_2023_3329001 crossref_primary_10_1109_TITS_2024_3505929 crossref_primary_10_3390_drones8120776 crossref_primary_10_1007_s43684_024_00069_7 crossref_primary_10_3390_drones9030200 crossref_primary_10_1016_j_aei_2025_103771 crossref_primary_10_1109_TIE_2023_3319732 crossref_primary_10_1109_JIOT_2024_3386125 crossref_primary_10_1109_TIM_2025_3551479 crossref_primary_10_1109_TITS_2024_3381344 crossref_primary_10_1109_TMC_2024_3405494 crossref_primary_10_20965_jaciii_2024_p1195 crossref_primary_10_1109_JIOT_2024_3440017 crossref_primary_10_3390_s22239180 crossref_primary_10_3390_drones9070468 crossref_primary_10_1016_j_ins_2025_122089 crossref_primary_10_1016_j_ast_2025_110683 crossref_primary_10_3390_s22186737 crossref_primary_10_1109_JIOT_2024_3361857 crossref_primary_10_3390_pr11113171 crossref_primary_10_1016_j_robot_2025_104970 crossref_primary_10_1016_j_ast_2025_110348 crossref_primary_10_3390_s23208479 crossref_primary_10_1002_rob_22342 crossref_primary_10_3390_drones8120764 crossref_primary_10_3390_drones9080575 crossref_primary_10_1016_j_oceaneng_2024_117910 crossref_primary_10_1109_TMC_2025_3568788 crossref_primary_10_1109_JIOT_2024_3350525 crossref_primary_10_1109_LRA_2024_3358581 crossref_primary_10_3390_drones7110664 crossref_primary_10_1109_TEVC_2025_3534026 crossref_primary_10_1016_j_vehcom_2025_100915 crossref_primary_10_1016_j_cor_2025_107154 crossref_primary_10_1109_ACCESS_2023_3337371 crossref_primary_10_17341_gazimmfd_1456025 crossref_primary_10_3390_drones7100642 |
| Cites_doi | 10.1287/opre.33.5.1050 10.1016/S0925-5273(00)00174-2 10.1126/science.251.4995.754 10.1109/CSO.2009.127 10.2514/6.2009-5888 10.1002/net.3230070203 10.1016/S0020-0190(03)00284-9 10.1007/s10472-009-9120-2 10.1016/j.robot.2013.09.004 10.1109/LINDI.2011.6031159 10.1007/978-3-319-05035-5_2 10.1109/SOSE.2019.00060 10.4236/iim.2012.43010 10.1109/TAES.2019.2917578 10.1007/s00500-008-0312-1 10.1016/S0377-2217(99)00380-X 10.1109/ACCESS.2020.2980203 10.1142/S2301385017500091 10.1016/j.ejor.2005.04.027 10.2514/6.2019-1794 10.1109/IROS.2009.5354455 10.1109/ICCA.2017.8003087 10.1137/S0036144596297514 10.1109/TITS.2016.2521779 10.1109/ICUAS.2014.6842265 10.1287/opre.11.6.972 10.1109/LCSYS.2018.2851661 10.1109/TITS.2020.2983491 10.1002/rob.20403 10.1016/0377-2217(92)90138-Y 10.1002/net.3230140113 10.1177/0278364907085789 10.1145/780542.780612 10.1063/1.3636940 10.1016/j.omega.2004.10.004 10.1109/70.795795 10.1137/1.9780898718515 10.3390/drones3010004 10.1016/0377-2217(92)90192-C 10.1016/0270-0255(87)90004-2 10.1109/ICUAS.2018.8453386 10.1016/j.swevo.2011.10.001 10.1016/0020-0255(92)90072-G 10.1023/A:1026065325419 10.1109/TRO.2016.2603528 10.1016/j.tre.2018.01.012 10.1016/j.ejor.2012.11.040 10.1016/j.dam.2004.07.003 10.1002/net.20435 10.5120/8189-1550 10.1287/opre.40.4.790 10.1007/978-3-642-77489-8_27 10.1145/2666003 10.1109/ACC.2012.6315620 10.1109/ROBOT.2005.1570205 10.1137/1.9780898718515.ch6 10.2307/3008306 10.1023/A:1016639210559 10.1063/1.3525177 10.1155/2014/131450 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/TITS.2022.3160402 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 17381 |
| ExternalDocumentID | 10_1109_TITS_2022_3160402 9743616 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CI-1953048; CAREER-2048266 funderid: 10.13039/100000001 – fundername: San Diego State University under the University Grants Program funderid: 10.13039/100007099 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-46243cb1538f777c4781577b23f78f43413fdc4176b678cdce1c66c3789d2d753 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778625100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Sun Nov 09 06:36:50 EST 2025 Tue Nov 18 22:53:28 EST 2025 Sat Nov 29 06:35:00 EST 2025 Wed Aug 27 02:18:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-46243cb1538f777c4781577b23f78f43413fdc4176b678cdce1c66c3789d2d753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9896-6898 0000-0001-7406-3221 |
| PQID | 2723902089 |
| PQPubID | 75735 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TITS_2022_3160402 ieee_primary_9743616 proquest_journals_2723902089 crossref_citationtrail_10_1109_TITS_2022_3160402 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref52 ref11 ref10 ref17 ref16 ref19 Sivaraj (ref67) 2011; 3 ref18 Toth (ref53) 2002 ref51 ref50 Adams (ref4); 8 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 Almoustafa (ref40) 2013 ref7 ref9 ref3 ref6 Choset (ref49) 2001; 31 ref5 ref35 Goldberg (ref66) 1989 ref34 Ahmed (ref37) 2016; 1 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Bixby (ref55) 2007; 41 Lima (ref54) ref24 ref23 ref26 ref25 ref20 ref63 ref22 ref21 Miettinen (ref64) 2003; 27 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – volume: 8 start-page: 12 volume-title: Proc. 9th Int. Workshop Remote Sens. Disaster Response ident: ref4 article-title: A survey of unmanned aerial vehicle (UAV) usage for imagery collection in disaster research and management – ident: ref30 doi: 10.1287/opre.33.5.1050 – ident: ref62 doi: 10.1016/S0925-5273(00)00174-2 – ident: ref57 doi: 10.1126/science.251.4995.754 – ident: ref15 doi: 10.1109/CSO.2009.127 – ident: ref9 doi: 10.2514/6.2009-5888 – ident: ref33 doi: 10.1002/net.3230070203 – year: 2013 ident: ref40 article-title: Distance-constrained vehicle routing problem: Exact and approximate solution (mathematical programming) – ident: ref11 doi: 10.1016/S0020-0190(03)00284-9 – ident: ref44 doi: 10.1007/s10472-009-9120-2 – ident: ref5 doi: 10.1016/j.robot.2013.09.004 – ident: ref32 doi: 10.1109/LINDI.2011.6031159 – ident: ref51 doi: 10.1007/978-3-319-05035-5_2 – ident: ref22 doi: 10.1109/SOSE.2019.00060 – ident: ref16 doi: 10.4236/iim.2012.43010 – ident: ref21 doi: 10.1109/TAES.2019.2917578 – ident: ref60 doi: 10.1007/s00500-008-0312-1 – ident: ref61 doi: 10.1016/S0377-2217(99)00380-X – ident: ref26 doi: 10.1109/ACCESS.2020.2980203 – ident: ref41 doi: 10.1142/S2301385017500091 – ident: ref63 doi: 10.1016/j.ejor.2005.04.027 – ident: ref25 doi: 10.2514/6.2019-1794 – ident: ref1 doi: 10.1109/IROS.2009.5354455 – ident: ref23 doi: 10.1109/ICCA.2017.8003087 – ident: ref50 doi: 10.1137/S0036144596297514 – ident: ref19 doi: 10.1109/TITS.2016.2521779 – ident: ref2 doi: 10.1109/ICUAS.2014.6842265 – ident: ref56 doi: 10.1287/opre.11.6.972 – ident: ref24 doi: 10.1109/LCSYS.2018.2851661 – ident: ref18 doi: 10.1109/TITS.2020.2983491 – ident: ref45 doi: 10.1002/rob.20403 – volume: 3 start-page: 3792 issue: 5 year: 2011 ident: ref67 article-title: A review of selection methods in genetic algorithm publication-title: Int. J. Eng. Sci. Technol. – ident: ref6 doi: 10.1016/0377-2217(92)90138-Y – ident: ref36 doi: 10.1002/net.3230140113 – volume: 41 start-page: 159 issue: 2 year: 2007 ident: ref55 article-title: The Gurobi optimizer publication-title: Transp. Re-Search B – ident: ref48 doi: 10.1177/0278364907085789 – ident: ref8 doi: 10.1145/780542.780612 – ident: ref35 doi: 10.1063/1.3636940 – ident: ref13 doi: 10.1016/j.omega.2004.10.004 – ident: ref47 doi: 10.1109/70.795795 – volume-title: The Vehicle Routing Problem year: 2002 ident: ref53 doi: 10.1137/1.9780898718515 – ident: ref12 doi: 10.3390/drones3010004 – ident: ref14 doi: 10.1016/0377-2217(92)90192-C – ident: ref28 doi: 10.1016/0270-0255(87)90004-2 – ident: ref27 doi: 10.1109/ICUAS.2018.8453386 – ident: ref65 doi: 10.1016/j.swevo.2011.10.001 – ident: ref10 doi: 10.1016/0020-0255(92)90072-G – volume: 27 start-page: 427 issue: 4 year: 2003 ident: ref64 article-title: Numerical comparison of some penalty-based constraint handling techniques in genetic algorithms publication-title: J. Global Optim. doi: 10.1023/A:1026065325419 – ident: ref3 doi: 10.1109/TRO.2016.2603528 – ident: ref20 doi: 10.1016/j.tre.2018.01.012 – ident: ref29 doi: 10.1016/j.ejor.2012.11.040 – ident: ref39 doi: 10.1016/j.dam.2004.07.003 – start-page: 1 volume-title: Proc. EWO Seminar ident: ref54 article-title: IBM ILOG CPLEX-what is inside of the box – ident: ref38 doi: 10.1002/net.20435 – ident: ref7 doi: 10.5120/8189-1550 – ident: ref31 doi: 10.1287/opre.40.4.790 – volume: 1 start-page: 1 year: 2016 ident: ref37 article-title: A lexisearch algorithm for the distance-constrained vehicle routing problem publication-title: J. Math. Comput. Methods – ident: ref58 doi: 10.1007/978-3-642-77489-8_27 – ident: ref17 doi: 10.1145/2666003 – ident: ref43 doi: 10.1109/ACC.2012.6315620 – ident: ref46 doi: 10.1109/ROBOT.2005.1570205 – ident: ref52 doi: 10.1137/1.9780898718515.ch6 – ident: ref59 doi: 10.2307/3008306 – volume: 31 start-page: 113 issue: 1 year: 2001 ident: ref49 article-title: Coverage for robotics—A survey of recent results publication-title: Ann. Math. Artif. Intell. doi: 10.1023/A:1016639210559 – ident: ref34 doi: 10.1063/1.3525177 – ident: ref42 doi: 10.1155/2014/131450 – volume-title: Genetic Algorithms in Search, Optimization and Machine Learning year: 1989 ident: ref66 |
| SSID | ssj0014511 |
| Score | 2.573392 |
| Snippet | In recent years, we have witnessed a growing use of unmanned aerial vehicles (UAVs) in a variety of civil, commercial and military applications. Among these... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17366 |
| SubjectTerms | Approximation algorithms Autonomous aerial vehicles branch and bound Constraints Coverage path planning genetic algorithm Genetic algorithms Military applications Monitoring multiple regions multiple unmanned aerial vehicles Optimization Path planning Robots Task analysis Traveling salesman problem Unmanned aerial vehicles |
| Title | Multiregional Coverage Path Planning for Multiple Energy Constrained UAVs |
| URI | https://ieeexplore.ieee.org/document/9743616 https://www.proquest.com/docview/2723902089 |
| Volume | 23 |
| WOSCitedRecordID | wos000778625100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEPvqpYrZKDJ3HtbpLdbI5FWixoKdhKb8tukgVBWunD328m-0BRBG97SJbwJTvzzWZmPoDrIMozrnlsmZsOPa7QDgbaeCrjLOVcpLzoM_soxuN4PpeTBtzWtTDGGJd8Zu7w0d3l66Xa4q-ynuW-LAqiJjSFEEWtVn1jgH22XG9Uyj3ph9UNZuDL3nQ0fbaRIKU2QI3soaXffJATVflhiZ17GR78b2GHsF_SSNIv9v0IGmZxDHtfmgu2YeRqa1F4Ack2ucdcTWs8yMRyPlJpFRHLWclTmVRIBq4QkKCIp5OOMJrM-i_rE5gNB9P7B68UTvAUC-XG4xHlTGVozHKLlMJy0lCIjLJcxDlHx5VrxQMRZdZXKa1MoKJIMRFLTbUNYE6htVguzBkQHWa5UzNKc8ZtLCZZFlgoM8sK05Ap0wG_gjJRZVdxXOFb4qILXyaIfoLoJyX6Hbipp7wXLTX-GtxGuOuBJdId6Fb7lZQf3TqhgjKJoqPy_PdZF7CL7y5y8brQ2qy25hJ21Mfmdb26cufpExw1xYE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSDrypWq-bgSVzbTbKb5iilpcW2FGylt6WbZEGQVvrw95vJPlAUwdseEjZ8yc58s5mZD-DWD5OYa960zE0HHldoB31tPBVzNuNczHjaZ7YvhsPmdCpHJbgvamGMMS75zDzgo7vL1wu1wV9ldct9WeiHW7AdcE79tFqruDPATluuOyrlnmwE-R2m35D1cW_8bGNBSm2IGtpjS795ISer8sMWOwfTOfzf0o7gICOS5DHd-WMomfkJ7H9pL1iBnquuRekFpNukhdma1nyQkWV9JFcrIpa1kkGWVkjarhSQoIynE48wmkweX1anMOm0x62ul0kneIoFcu3xkHKmYjRniRBCYUFpIERMWSKaCUfXlWjFfRHG1lsprYyvwlAx0ZSaahvCnEF5vpibcyA6iBOnZzRLGLfRmGSxb6GMLS-cBUyZKjRyKCOV9RXHFb5FLr5oyAjRjxD9KEO_CnfFlPe0qcZfgysIdzEwQ7oKtXy_ouyzW0VUUCZRdlRe_D7rBna740E_6veGT5ewh-9JM_NqUF4vN-YKdtTH-nW1vHZn6xOQE8jI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiregional+Coverage+Path+Planning+for+Multiple+Energy+Constrained+UAVs&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Xie%2C+Junfei&rft.au=Chen%2C+Jun&rft.date=2022-10-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=23&rft.issue=10&rft.spage=17366&rft.epage=17381&rft_id=info:doi/10.1109%2FTITS.2022.3160402&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2022_3160402 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |