Multiregional Coverage Path Planning for Multiple Energy Constrained UAVs

In recent years, we have witnessed a growing use of unmanned aerial vehicles (UAVs) in a variety of civil, commercial and military applications. Among these applications, many require the UAVs to scan or survey one or more regions, such as land monitoring, disaster assessment, search and rescue. To...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on intelligent transportation systems Ročník 23; číslo 10; s. 17366 - 17381
Hlavní autori: Xie, Junfei, Chen, Jun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1524-9050, 1558-0016
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent years, we have witnessed a growing use of unmanned aerial vehicles (UAVs) in a variety of civil, commercial and military applications. Among these applications, many require the UAVs to scan or survey one or more regions, such as land monitoring, disaster assessment, search and rescue. To realize such applications, path planning is a key step. Although the coverage path planning (CPP) problem for a single region has been extensively studied in the literature, CPP for multiple regions has gained much less attention. This multi-regional CPP problem can be considered as a variant of the (multiple) traveling salesman problem (TSP) enhanced with CPP. Previously, we have studied the case of a single UAV. In this paper, we extend our previous studies to further consider multiple UAVs with energy constraints. To solve this new path planning problem, we develop two approaches: 1) a branch-and-bound (BnB) based approach that can find (near) optimal tours and 2) a genetic algorithm (GA) based approach that can solve large-scale problems efficiently under different objectives. Comprehensive theoretical analyses and computational experiments demonstrate the promising performance of the proposed approaches in terms of optimality and efficiency.
AbstractList In recent years, we have witnessed a growing use of unmanned aerial vehicles (UAVs) in a variety of civil, commercial and military applications. Among these applications, many require the UAVs to scan or survey one or more regions, such as land monitoring, disaster assessment, search and rescue. To realize such applications, path planning is a key step. Although the coverage path planning (CPP) problem for a single region has been extensively studied in the literature, CPP for multiple regions has gained much less attention. This multi-regional CPP problem can be considered as a variant of the (multiple) traveling salesman problem (TSP) enhanced with CPP. Previously, we have studied the case of a single UAV. In this paper, we extend our previous studies to further consider multiple UAVs with energy constraints. To solve this new path planning problem, we develop two approaches: 1) a branch-and-bound (BnB) based approach that can find (near) optimal tours and 2) a genetic algorithm (GA) based approach that can solve large-scale problems efficiently under different objectives. Comprehensive theoretical analyses and computational experiments demonstrate the promising performance of the proposed approaches in terms of optimality and efficiency.
Author Chen, Jun
Xie, Junfei
Author_xml – sequence: 1
  givenname: Junfei
  orcidid: 0000-0001-7406-3221
  surname: Xie
  fullname: Xie, Junfei
  email: jxie4@sdsu.edu
  organization: Department of Electrical and Computer Engineering, San Diego State University, San Diego, CA, USA
– sequence: 2
  givenname: Jun
  orcidid: 0000-0001-9896-6898
  surname: Chen
  fullname: Chen, Jun
  email: jun.chen@sdsu.edu
  organization: Department of Aerospace Engineering, San Diego State University, San Diego, CA, USA
BookMark eNp9kE1LwzAYx4NMcJt-APFS8NyZJ6_tcYypg4kDN68hS9OaUdOZdMK-va0TDx485SH8f8_Lb4QGvvEWoWvAEwCc360X65cJwYRMKAjMMDlDQ-A8SzEGMehrwtIcc3yBRjHuul_GAYZo8XSoWxds5Rqv62TWfNqgK5usdPuWrGrtvfNVUjYh-Q7ua5vMvQ3VsYv62AbtvC2SzfQ1XqLzUtfRXv28Y7S5n69nj-ny-WExmy5TQ3nepkwQRs0WOM1KKaVhMgMu5ZbQUmYlowxoWRgGUmyFzExhLBghDJVZXpBCcjpGt6e--9B8HGxs1a45hG75qIgkNMcEZ3mXglPKhCbGYEu1D-5dh6MCrHpjqjememPqx1jHyD-Mca1uOzP9nfW_5M2JdNba30m5ZFSAoF9ExXlR
CODEN ITISFG
CitedBy_id crossref_primary_10_1016_j_ast_2025_110624
crossref_primary_10_1109_TITS_2023_3329001
crossref_primary_10_1109_TITS_2024_3505929
crossref_primary_10_3390_drones8120776
crossref_primary_10_1007_s43684_024_00069_7
crossref_primary_10_3390_drones9030200
crossref_primary_10_1016_j_aei_2025_103771
crossref_primary_10_1109_TIE_2023_3319732
crossref_primary_10_1109_JIOT_2024_3386125
crossref_primary_10_1109_TIM_2025_3551479
crossref_primary_10_1109_TITS_2024_3381344
crossref_primary_10_1109_TMC_2024_3405494
crossref_primary_10_20965_jaciii_2024_p1195
crossref_primary_10_1109_JIOT_2024_3440017
crossref_primary_10_3390_s22239180
crossref_primary_10_3390_drones9070468
crossref_primary_10_1016_j_ins_2025_122089
crossref_primary_10_1016_j_ast_2025_110683
crossref_primary_10_3390_s22186737
crossref_primary_10_1109_JIOT_2024_3361857
crossref_primary_10_3390_pr11113171
crossref_primary_10_1016_j_robot_2025_104970
crossref_primary_10_1016_j_ast_2025_110348
crossref_primary_10_3390_s23208479
crossref_primary_10_1002_rob_22342
crossref_primary_10_3390_drones8120764
crossref_primary_10_3390_drones9080575
crossref_primary_10_1016_j_oceaneng_2024_117910
crossref_primary_10_1109_TMC_2025_3568788
crossref_primary_10_1109_JIOT_2024_3350525
crossref_primary_10_1109_LRA_2024_3358581
crossref_primary_10_3390_drones7110664
crossref_primary_10_1109_TEVC_2025_3534026
crossref_primary_10_1016_j_vehcom_2025_100915
crossref_primary_10_1016_j_cor_2025_107154
crossref_primary_10_1109_ACCESS_2023_3337371
crossref_primary_10_17341_gazimmfd_1456025
crossref_primary_10_3390_drones7100642
Cites_doi 10.1287/opre.33.5.1050
10.1016/S0925-5273(00)00174-2
10.1126/science.251.4995.754
10.1109/CSO.2009.127
10.2514/6.2009-5888
10.1002/net.3230070203
10.1016/S0020-0190(03)00284-9
10.1007/s10472-009-9120-2
10.1016/j.robot.2013.09.004
10.1109/LINDI.2011.6031159
10.1007/978-3-319-05035-5_2
10.1109/SOSE.2019.00060
10.4236/iim.2012.43010
10.1109/TAES.2019.2917578
10.1007/s00500-008-0312-1
10.1016/S0377-2217(99)00380-X
10.1109/ACCESS.2020.2980203
10.1142/S2301385017500091
10.1016/j.ejor.2005.04.027
10.2514/6.2019-1794
10.1109/IROS.2009.5354455
10.1109/ICCA.2017.8003087
10.1137/S0036144596297514
10.1109/TITS.2016.2521779
10.1109/ICUAS.2014.6842265
10.1287/opre.11.6.972
10.1109/LCSYS.2018.2851661
10.1109/TITS.2020.2983491
10.1002/rob.20403
10.1016/0377-2217(92)90138-Y
10.1002/net.3230140113
10.1177/0278364907085789
10.1145/780542.780612
10.1063/1.3636940
10.1016/j.omega.2004.10.004
10.1109/70.795795
10.1137/1.9780898718515
10.3390/drones3010004
10.1016/0377-2217(92)90192-C
10.1016/0270-0255(87)90004-2
10.1109/ICUAS.2018.8453386
10.1016/j.swevo.2011.10.001
10.1016/0020-0255(92)90072-G
10.1023/A:1026065325419
10.1109/TRO.2016.2603528
10.1016/j.tre.2018.01.012
10.1016/j.ejor.2012.11.040
10.1016/j.dam.2004.07.003
10.1002/net.20435
10.5120/8189-1550
10.1287/opre.40.4.790
10.1007/978-3-642-77489-8_27
10.1145/2666003
10.1109/ACC.2012.6315620
10.1109/ROBOT.2005.1570205
10.1137/1.9780898718515.ch6
10.2307/3008306
10.1023/A:1016639210559
10.1063/1.3525177
10.1155/2014/131450
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3160402
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 17381
ExternalDocumentID 10_1109_TITS_2022_3160402
9743616
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CI-1953048; CAREER-2048266
  funderid: 10.13039/100000001
– fundername: San Diego State University under the University Grants Program
  funderid: 10.13039/100007099
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-46243cb1538f777c4781577b23f78f43413fdc4176b678cdce1c66c3789d2d753
IEDL.DBID RIE
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778625100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Sun Nov 09 06:36:50 EST 2025
Tue Nov 18 22:53:28 EST 2025
Sat Nov 29 06:35:00 EST 2025
Wed Aug 27 02:18:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-46243cb1538f777c4781577b23f78f43413fdc4176b678cdce1c66c3789d2d753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9896-6898
0000-0001-7406-3221
PQID 2723902089
PQPubID 75735
PageCount 16
ParticipantIDs crossref_primary_10_1109_TITS_2022_3160402
ieee_primary_9743616
proquest_journals_2723902089
crossref_citationtrail_10_1109_TITS_2022_3160402
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref52
ref11
ref10
ref17
ref16
ref19
Sivaraj (ref67) 2011; 3
ref18
Toth (ref53) 2002
ref51
ref50
Adams (ref4); 8
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
Almoustafa (ref40) 2013
ref7
ref9
ref3
ref6
Choset (ref49) 2001; 31
ref5
ref35
Goldberg (ref66) 1989
ref34
Ahmed (ref37) 2016; 1
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Bixby (ref55) 2007; 41
Lima (ref54)
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref21
Miettinen (ref64) 2003; 27
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – volume: 8
  start-page: 12
  volume-title: Proc. 9th Int. Workshop Remote Sens. Disaster Response
  ident: ref4
  article-title: A survey of unmanned aerial vehicle (UAV) usage for imagery collection in disaster research and management
– ident: ref30
  doi: 10.1287/opre.33.5.1050
– ident: ref62
  doi: 10.1016/S0925-5273(00)00174-2
– ident: ref57
  doi: 10.1126/science.251.4995.754
– ident: ref15
  doi: 10.1109/CSO.2009.127
– ident: ref9
  doi: 10.2514/6.2009-5888
– ident: ref33
  doi: 10.1002/net.3230070203
– year: 2013
  ident: ref40
  article-title: Distance-constrained vehicle routing problem: Exact and approximate solution (mathematical programming)
– ident: ref11
  doi: 10.1016/S0020-0190(03)00284-9
– ident: ref44
  doi: 10.1007/s10472-009-9120-2
– ident: ref5
  doi: 10.1016/j.robot.2013.09.004
– ident: ref32
  doi: 10.1109/LINDI.2011.6031159
– ident: ref51
  doi: 10.1007/978-3-319-05035-5_2
– ident: ref22
  doi: 10.1109/SOSE.2019.00060
– ident: ref16
  doi: 10.4236/iim.2012.43010
– ident: ref21
  doi: 10.1109/TAES.2019.2917578
– ident: ref60
  doi: 10.1007/s00500-008-0312-1
– ident: ref61
  doi: 10.1016/S0377-2217(99)00380-X
– ident: ref26
  doi: 10.1109/ACCESS.2020.2980203
– ident: ref41
  doi: 10.1142/S2301385017500091
– ident: ref63
  doi: 10.1016/j.ejor.2005.04.027
– ident: ref25
  doi: 10.2514/6.2019-1794
– ident: ref1
  doi: 10.1109/IROS.2009.5354455
– ident: ref23
  doi: 10.1109/ICCA.2017.8003087
– ident: ref50
  doi: 10.1137/S0036144596297514
– ident: ref19
  doi: 10.1109/TITS.2016.2521779
– ident: ref2
  doi: 10.1109/ICUAS.2014.6842265
– ident: ref56
  doi: 10.1287/opre.11.6.972
– ident: ref24
  doi: 10.1109/LCSYS.2018.2851661
– ident: ref18
  doi: 10.1109/TITS.2020.2983491
– ident: ref45
  doi: 10.1002/rob.20403
– volume: 3
  start-page: 3792
  issue: 5
  year: 2011
  ident: ref67
  article-title: A review of selection methods in genetic algorithm
  publication-title: Int. J. Eng. Sci. Technol.
– ident: ref6
  doi: 10.1016/0377-2217(92)90138-Y
– ident: ref36
  doi: 10.1002/net.3230140113
– volume: 41
  start-page: 159
  issue: 2
  year: 2007
  ident: ref55
  article-title: The Gurobi optimizer
  publication-title: Transp. Re-Search B
– ident: ref48
  doi: 10.1177/0278364907085789
– ident: ref8
  doi: 10.1145/780542.780612
– ident: ref35
  doi: 10.1063/1.3636940
– ident: ref13
  doi: 10.1016/j.omega.2004.10.004
– ident: ref47
  doi: 10.1109/70.795795
– volume-title: The Vehicle Routing Problem
  year: 2002
  ident: ref53
  doi: 10.1137/1.9780898718515
– ident: ref12
  doi: 10.3390/drones3010004
– ident: ref14
  doi: 10.1016/0377-2217(92)90192-C
– ident: ref28
  doi: 10.1016/0270-0255(87)90004-2
– ident: ref27
  doi: 10.1109/ICUAS.2018.8453386
– ident: ref65
  doi: 10.1016/j.swevo.2011.10.001
– ident: ref10
  doi: 10.1016/0020-0255(92)90072-G
– volume: 27
  start-page: 427
  issue: 4
  year: 2003
  ident: ref64
  article-title: Numerical comparison of some penalty-based constraint handling techniques in genetic algorithms
  publication-title: J. Global Optim.
  doi: 10.1023/A:1026065325419
– ident: ref3
  doi: 10.1109/TRO.2016.2603528
– ident: ref20
  doi: 10.1016/j.tre.2018.01.012
– ident: ref29
  doi: 10.1016/j.ejor.2012.11.040
– ident: ref39
  doi: 10.1016/j.dam.2004.07.003
– start-page: 1
  volume-title: Proc. EWO Seminar
  ident: ref54
  article-title: IBM ILOG CPLEX-what is inside of the box
– ident: ref38
  doi: 10.1002/net.20435
– ident: ref7
  doi: 10.5120/8189-1550
– ident: ref31
  doi: 10.1287/opre.40.4.790
– volume: 1
  start-page: 1
  year: 2016
  ident: ref37
  article-title: A lexisearch algorithm for the distance-constrained vehicle routing problem
  publication-title: J. Math. Comput. Methods
– ident: ref58
  doi: 10.1007/978-3-642-77489-8_27
– ident: ref17
  doi: 10.1145/2666003
– ident: ref43
  doi: 10.1109/ACC.2012.6315620
– ident: ref46
  doi: 10.1109/ROBOT.2005.1570205
– ident: ref52
  doi: 10.1137/1.9780898718515.ch6
– ident: ref59
  doi: 10.2307/3008306
– volume: 31
  start-page: 113
  issue: 1
  year: 2001
  ident: ref49
  article-title: Coverage for robotics—A survey of recent results
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1023/A:1016639210559
– ident: ref34
  doi: 10.1063/1.3525177
– ident: ref42
  doi: 10.1155/2014/131450
– volume-title: Genetic Algorithms in Search, Optimization and Machine Learning
  year: 1989
  ident: ref66
SSID ssj0014511
Score 2.573392
Snippet In recent years, we have witnessed a growing use of unmanned aerial vehicles (UAVs) in a variety of civil, commercial and military applications. Among these...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17366
SubjectTerms Approximation algorithms
Autonomous aerial vehicles
branch and bound
Constraints
Coverage path planning
genetic algorithm
Genetic algorithms
Military applications
Monitoring
multiple regions
multiple unmanned aerial vehicles
Optimization
Path planning
Robots
Task analysis
Traveling salesman problem
Unmanned aerial vehicles
Title Multiregional Coverage Path Planning for Multiple Energy Constrained UAVs
URI https://ieeexplore.ieee.org/document/9743616
https://www.proquest.com/docview/2723902089
Volume 23
WOSCitedRecordID wos000778625100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEPvqpYrZKDJ3HtbpLdbI5FWixoKdhKb8tukgVBWunD328m-0BRBG97SJbwJTvzzWZmPoDrIMozrnlsmZsOPa7QDgbaeCrjLOVcpLzoM_soxuN4PpeTBtzWtTDGGJd8Zu7w0d3l66Xa4q-ynuW-LAqiJjSFEEWtVn1jgH22XG9Uyj3ph9UNZuDL3nQ0fbaRIKU2QI3soaXffJATVflhiZ17GR78b2GHsF_SSNIv9v0IGmZxDHtfmgu2YeRqa1F4Ack2ucdcTWs8yMRyPlJpFRHLWclTmVRIBq4QkKCIp5OOMJrM-i_rE5gNB9P7B68UTvAUC-XG4xHlTGVozHKLlMJy0lCIjLJcxDlHx5VrxQMRZdZXKa1MoKJIMRFLTbUNYE6htVguzBkQHWa5UzNKc8ZtLCZZFlgoM8sK05Ap0wG_gjJRZVdxXOFb4qILXyaIfoLoJyX6Hbipp7wXLTX-GtxGuOuBJdId6Fb7lZQf3TqhgjKJoqPy_PdZF7CL7y5y8brQ2qy25hJ21Mfmdb26cufpExw1xYE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSDrypWq-bgSVzbTbKb5iilpcW2FGylt6WbZEGQVvrw95vJPlAUwdseEjZ8yc58s5mZD-DWD5OYa960zE0HHldoB31tPBVzNuNczHjaZ7YvhsPmdCpHJbgvamGMMS75zDzgo7vL1wu1wV9ldct9WeiHW7AdcE79tFqruDPATluuOyrlnmwE-R2m35D1cW_8bGNBSm2IGtpjS795ISer8sMWOwfTOfzf0o7gICOS5DHd-WMomfkJ7H9pL1iBnquuRekFpNukhdma1nyQkWV9JFcrIpa1kkGWVkjarhSQoIynE48wmkweX1anMOm0x62ul0kneIoFcu3xkHKmYjRniRBCYUFpIERMWSKaCUfXlWjFfRHG1lsprYyvwlAx0ZSaahvCnEF5vpibcyA6iBOnZzRLGLfRmGSxb6GMLS-cBUyZKjRyKCOV9RXHFb5FLr5oyAjRjxD9KEO_CnfFlPe0qcZfgysIdzEwQ7oKtXy_ouyzW0VUUCZRdlRe_D7rBna740E_6veGT5ewh-9JM_NqUF4vN-YKdtTH-nW1vHZn6xOQE8jI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiregional+Coverage+Path+Planning+for+Multiple+Energy+Constrained+UAVs&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Xie%2C+Junfei&rft.au=Chen%2C+Jun&rft.date=2022-10-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=23&rft.issue=10&rft.spage=17366&rft.epage=17381&rft_id=info:doi/10.1109%2FTITS.2022.3160402&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2022_3160402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon