A Method of Few-Shot Network Intrusion Detection Based on Meta-Learning Framework

Conventional intrusion detection systems based on supervised learning techniques require a large number of samples for training, while in some scenarios, such as zero-day attacks, security agencies can only intercept a limited number of shots of malicious samples. Therefore, there is a need for few-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information forensics and security Vol. 15; pp. 3540 - 3552
Main Authors: Xu, Congyuan, Shen, Jizhong, Du, Xin
Format: Journal Article
Language:English
Published: New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1556-6013, 1556-6021
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Conventional intrusion detection systems based on supervised learning techniques require a large number of samples for training, while in some scenarios, such as zero-day attacks, security agencies can only intercept a limited number of shots of malicious samples. Therefore, there is a need for few-shot detection. In this paper, a detection method based on a meta-learning framework is proposed for this purpose. The proposed method can be used to distinguish and compare a pair of network traffic samples as a basic task of learning, including a normal unaffected sample and a malicious one. To accomplish this task, we design a deep neural network (DNN) named FC-Net, which mainly comprises two parts: feature extraction network and comparison network. FC-Net learns a pair of feature maps for classification from a pair of network traffic samples, then compares the obtained feature maps, and finally determines whether the pair of samples belongs to the same type. To evaluate the proposed detection method, we construct two datasets for few-shot network intrusion detection based on real network traffic data sources, using a specifically developed approach. The experimental results indicate that the proposed detection method is universal and is not limited to specific datasets or attack types. Training and testing on the same datasets demonstrate that the proposed method can achieve the average detection rate up to 98.88%. The outcome of training on one dataset and testing on the other one confirms that the proposed method can achieve better performance. In a few-shot scenario, malicious samples in an untrained dataset can be detected successfully, and the average detection rate is up to 99.62%.
AbstractList Conventional intrusion detection systems based on supervised learning techniques require a large number of samples for training, while in some scenarios, such as zero-day attacks, security agencies can only intercept a limited number of shots of malicious samples. Therefore, there is a need for few-shot detection. In this paper, a detection method based on a meta-learning framework is proposed for this purpose. The proposed method can be used to distinguish and compare a pair of network traffic samples as a basic task of learning, including a normal unaffected sample and a malicious one. To accomplish this task, we design a deep neural network (DNN) named FC-Net, which mainly comprises two parts: feature extraction network and comparison network. FC-Net learns a pair of feature maps for classification from a pair of network traffic samples, then compares the obtained feature maps, and finally determines whether the pair of samples belongs to the same type. To evaluate the proposed detection method, we construct two datasets for few-shot network intrusion detection based on real network traffic data sources, using a specifically developed approach. The experimental results indicate that the proposed detection method is universal and is not limited to specific datasets or attack types. Training and testing on the same datasets demonstrate that the proposed method can achieve the average detection rate up to 98.88%. The outcome of training on one dataset and testing on the other one confirms that the proposed method can achieve better performance. In a few-shot scenario, malicious samples in an untrained dataset can be detected successfully, and the average detection rate is up to 99.62%.
Author Xu, Congyuan
Du, Xin
Shen, Jizhong
Author_xml – sequence: 1
  givenname: Congyuan
  surname: Xu
  fullname: Xu, Congyuan
  email: cyxu@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Jizhong
  orcidid: 0000-0002-9031-2379
  surname: Shen
  fullname: Shen, Jizhong
  email: jzshen@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Xin
  orcidid: 0000-0002-6215-9733
  surname: Du
  fullname: Du, Xin
  email: duxin@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
BookMark eNp9kMFOAjEQhhujiYA-gPHSxPNiu93tbo-IrpKgxsC9KbtTWYQW2xLi27sNhIMHT_Mf_m8m8_XRubEGELqhZEgpEffzSTUbpiQlw1QIWhb8DPVonvOEk5SenzJll6jv_YqQLKO87KGPEX6FsLQNthpXsE9mSxvwG4S9dV94YoLb-dYa_AgB6hDTg_LQtU3kVDIF5UxrPnHl1AYidIUutFp7uD7OAZpVT_PxSzJ9f56MR9OkZrkISUZ1LnTDF2qh8oaLhjSKlbxQIi9YITSrG9CE1Yw2tOYgFhx4pkCUnAPL2ADdHbZunf3egQ9yZXfOdAdlmnUeRE6z2CoOrdpZ7x1oWbdBxTeCU-1aUiKjPRntyWhPHu11JP1Dbl27Ue7nX-b2wLQAcOoLUjJRMvYLTyR8gA
CODEN ITIFA6
CitedBy_id crossref_primary_10_1016_j_jisa_2024_103762
crossref_primary_10_1109_ACCESS_2023_3325065
crossref_primary_10_1038_s41598_024_73342_7
crossref_primary_10_1109_TIFS_2024_3431932
crossref_primary_10_1016_j_comnet_2020_107743
crossref_primary_10_1109_TIFS_2024_3516548
crossref_primary_10_1016_j_comnet_2022_109368
crossref_primary_10_1016_j_cose_2024_103749
crossref_primary_10_1109_TMC_2024_3426600
crossref_primary_10_1109_JSAC_2021_3087242
crossref_primary_10_1016_j_cose_2022_102899
crossref_primary_10_1109_COMST_2023_3280465
crossref_primary_10_1109_TIFS_2025_3560560
crossref_primary_10_1109_TNSM_2022_3200924
crossref_primary_10_1109_TIFS_2025_3541890
crossref_primary_10_1080_08874417_2023_2267510
crossref_primary_10_3390_app12052351
crossref_primary_10_1109_ACCESS_2024_3386405
crossref_primary_10_3390_electronics13224560
crossref_primary_10_1016_j_knosys_2023_110781
crossref_primary_10_1109_JIOT_2025_3568503
crossref_primary_10_1109_MCI_2025_3536377
crossref_primary_10_1145_3472753
crossref_primary_10_1016_j_jisa_2023_103532
crossref_primary_10_1631_FITEE_2400556
crossref_primary_10_1109_TNET_2024_3391396
crossref_primary_10_1109_TNSM_2022_3218843
crossref_primary_10_1109_TNSM_2024_3391250
crossref_primary_10_1080_17434440_2022_2115887
crossref_primary_10_1109_TIFS_2023_3267885
crossref_primary_10_1109_TNSM_2022_3211254
crossref_primary_10_1109_TETC_2022_3198080
crossref_primary_10_1109_TNSM_2023_3298533
crossref_primary_10_1007_s11042_023_17300_x
crossref_primary_10_1109_TIFS_2023_3331240
crossref_primary_10_1016_j_comnet_2024_110475
crossref_primary_10_1016_j_comnet_2025_111341
crossref_primary_10_1371_journal_pone_0327161
crossref_primary_10_3390_drones9050324
crossref_primary_10_3390_sym12091458
crossref_primary_10_1109_TIFS_2022_3228493
crossref_primary_10_3390_math12071055
crossref_primary_10_1016_j_iswa_2024_200465
crossref_primary_10_1007_s10489_022_04076_0
crossref_primary_10_3390_su15129395
crossref_primary_10_1016_j_ins_2022_03_065
crossref_primary_10_1109_TIFS_2024_3396624
crossref_primary_10_1177_1088467X251353450
crossref_primary_10_3390_app14135426
crossref_primary_10_1016_j_comnet_2021_108658
crossref_primary_10_3390_e25020180
crossref_primary_10_1016_j_cose_2024_104214
crossref_primary_10_1016_j_future_2022_01_026
crossref_primary_10_1016_j_comnet_2024_110423
crossref_primary_10_1109_TMC_2023_3311012
crossref_primary_10_1109_TNET_2022_3216603
crossref_primary_10_1109_ACCESS_2022_3167814
crossref_primary_10_1080_19393555_2024_2408256
crossref_primary_10_1109_TITS_2024_3360260
crossref_primary_10_1016_j_cose_2022_102919
crossref_primary_10_1109_TIFS_2025_3551643
crossref_primary_10_1016_j_cose_2024_103806
crossref_primary_10_32604_cmes_2024_048793
crossref_primary_10_1007_s00521_021_06011_9
crossref_primary_10_1016_j_cose_2023_103663
crossref_primary_10_1016_j_cose_2024_103820
crossref_primary_10_1109_JIOT_2021_3119055
crossref_primary_10_1109_TR_2022_3164877
crossref_primary_10_1016_j_neunet_2025_108076
crossref_primary_10_1109_ACCESS_2023_3291686
crossref_primary_10_1109_TCCN_2024_3464489
crossref_primary_10_1016_j_jisa_2022_103207
crossref_primary_10_1016_j_comnet_2023_110162
crossref_primary_10_1371_journal_pone_0317713
crossref_primary_10_1016_j_compeleceng_2025_110318
crossref_primary_10_1109_TNSE_2023_3304556
crossref_primary_10_32604_cmc_2025_060357
crossref_primary_10_1371_journal_pone_0331065
crossref_primary_10_1016_j_iot_2023_100851
crossref_primary_10_1109_TIFS_2023_3318960
crossref_primary_10_1109_TBDATA_2024_3484674
crossref_primary_10_1016_j_patrec_2022_05_011
crossref_primary_10_3390_s23198191
crossref_primary_10_1016_j_patcog_2021_108247
crossref_primary_10_1016_j_jnca_2022_103580
crossref_primary_10_3390_app15147915
crossref_primary_10_1038_s41598_025_05217_4
crossref_primary_10_3390_electronics14010189
crossref_primary_10_1007_s11227_025_07534_x
crossref_primary_10_1109_TCE_2023_3331907
crossref_primary_10_1038_s41598_025_93185_0
crossref_primary_10_1007_s10207_024_00889_x
crossref_primary_10_1109_TIFS_2025_3587621
crossref_primary_10_1016_j_suscom_2023_100860
crossref_primary_10_1016_j_comnet_2025_111276
crossref_primary_10_1016_j_comnet_2023_109982
crossref_primary_10_1109_JIOT_2023_3310794
crossref_primary_10_1007_s11227_022_05025_x
crossref_primary_10_1109_JIOT_2021_3065680
crossref_primary_10_1007_s10489_024_05290_8
crossref_primary_10_1007_s41870_022_00910_3
crossref_primary_10_1016_j_comnet_2024_110746
crossref_primary_10_1109_TIFS_2023_3259881
crossref_primary_10_1016_j_eswa_2024_125687
crossref_primary_10_3390_electronics13061072
crossref_primary_10_1109_TDSC_2023_3349180
crossref_primary_10_1109_JIOT_2023_3318290
crossref_primary_10_1016_j_comnet_2023_109731
crossref_primary_10_1109_TDSC_2023_3237604
crossref_primary_10_1016_j_cose_2022_102719
crossref_primary_10_1109_TCSS_2021_3063538
crossref_primary_10_1007_s11704_021_1207_x
crossref_primary_10_1016_j_knosys_2025_114436
crossref_primary_10_1109_JIOT_2023_3284155
crossref_primary_10_1109_ACCESS_2025_3565022
crossref_primary_10_1109_TNSM_2021_3131266
crossref_primary_10_1016_j_comnet_2025_111723
Cites_doi 10.5220/0006639801080116
10.1007/978-981-13-1810-8_37
10.1016/j.comnet.2018.07.025
10.1007/978-3-030-00012-7_30
10.1109/ACCESS.2017.2780250
10.1109/ACCESS.2018.2875045
10.1002/nem.2050
10.1016/0364-0213(90)90002-E
10.1016/j.comnet.2004.03.033
10.14257/ijsia.2015.9.5.07
10.1109/MNET.2012.6135854
10.1007/978-1-4471-0123-9_3
10.1109/CVPR.2018.00131
10.1109/TCOM.1980.1094702
10.1051/shsconf/20184400052
10.1002/spy2.36
10.1016/j.inffus.2018.10.013
10.1016/j.patrec.2005.10.010
10.1016/j.cose.2018.04.010
10.1155/2018/4943509
10.1109/ACCESS.2018.2873291
10.1145/2382196.2382284
10.1080/00401706.1971.10488811
10.1109/CVPR.2016.90
10.1109/TC.2014.2375218
10.1016/j.patcog.2018.07.023
10.1016/j.cose.2017.10.011
10.1016/j.cose.2011.12.012
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TIFS.2020.2991876
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 3552
ExternalDocumentID 10_1109_TIFS_2020_2991876
9083983
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61471314
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-41f59fd6baba5d69d0da3867a957379f3cdef03c31d1c6e9b6e64ae9866e343
IEDL.DBID RIE
ISICitedReferencesCount 183
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545573400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1556-6013
IngestDate Mon Jun 30 05:17:32 EDT 2025
Sat Nov 29 03:49:40 EST 2025
Tue Nov 18 22:24:00 EST 2025
Wed Aug 27 02:36:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-41f59fd6baba5d69d0da3867a957379f3cdef03c31d1c6e9b6e64ae9866e343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6215-9733
0000-0002-9031-2379
PQID 2420295144
PQPubID 85506
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TIFS_2020_2991876
proquest_journals_2420295144
crossref_primary_10_1109_TIFS_2020_2991876
ieee_primary_9083983
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref36
ref14
ref31
ref33
ref11
ref10
santoro (ref15) 2016
ioffe (ref28) 2015; 37
lecun (ref27) 1989
ref2
ref1
ref39
ref38
snell (ref17) 2017
ref18
katharopoulos (ref40) 2018
kingma (ref32) 2014
thrun (ref20) 2012
vinyals (ref16) 2016
ref24
nair (ref29) 2010
ref23
ref26
andrychowicz (ref21) 2016
ref42
ref22
ref8
ref7
zhang (ref41) 2019
ref9
ref4
zhang (ref19) 2018
ref3
ref6
ref5
orebaugh (ref25) 2006
srivastava (ref30) 2014; 15
References_xml – ident: ref23
  doi: 10.5220/0006639801080116
– start-page: 807
  year: 2010
  ident: ref29
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learn (ICML)
– ident: ref11
  doi: 10.1007/978-981-13-1810-8_37
– ident: ref8
  doi: 10.1016/j.comnet.2018.07.025
– start-page: 3630
  year: 2016
  ident: ref16
  article-title: Matching networks for one shot learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref5
  doi: 10.1007/978-3-030-00012-7_30
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref30
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref3
  doi: 10.1109/ACCESS.2017.2780250
– ident: ref37
  doi: 10.1109/ACCESS.2018.2875045
– start-page: 4077
  year: 2017
  ident: ref17
  article-title: Prototypical networks for few-shot learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref6
  doi: 10.1002/nem.2050
– year: 2012
  ident: ref20
  publication-title: Learning to Learn
– ident: ref26
  doi: 10.1016/0364-0213(90)90002-E
– ident: ref34
  doi: 10.1016/j.comnet.2004.03.033
– ident: ref1
  doi: 10.14257/ijsia.2015.9.5.07
– volume: 37
  start-page: 448
  year: 2015
  ident: ref28
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
– start-page: 2530
  year: 2018
  ident: ref40
  article-title: Not all samples are created equal: Deep learning with importance sampling
  publication-title: Proc of the Int Conf on Learning Representations (ICLR)
– ident: ref24
  doi: 10.1109/MNET.2012.6135854
– ident: ref38
  doi: 10.1007/978-1-4471-0123-9_3
– ident: ref18
  doi: 10.1109/CVPR.2018.00131
– ident: ref22
  doi: 10.1109/TCOM.1980.1094702
– start-page: 2365
  year: 2018
  ident: ref19
  article-title: MetaGAN: An adversarial approach to few-shot learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref10
  doi: 10.1051/shsconf/20184400052
– ident: ref36
  doi: 10.1002/spy2.36
– start-page: 1842
  year: 2016
  ident: ref15
  article-title: Meta-learning with memory-augmented neural networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref13
  doi: 10.1016/j.inffus.2018.10.013
– ident: ref35
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref7
  doi: 10.1016/j.cose.2018.04.010
– ident: ref4
  doi: 10.1155/2018/4943509
– ident: ref12
  doi: 10.1109/ACCESS.2018.2873291
– year: 2006
  ident: ref25
  publication-title: Wireshark & Ethereal Network Protocol Analyzer Toolkit
– ident: ref14
  doi: 10.1145/2382196.2382284
– start-page: 3981
  year: 2016
  ident: ref21
  article-title: Learning to learn by gradient descent by gradient descent
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref31
  doi: 10.1080/00401706.1971.10488811
– ident: ref39
  doi: 10.1109/CVPR.2016.90
– ident: ref9
  doi: 10.1109/TC.2014.2375218
– ident: ref42
  doi: 10.1016/j.patcog.2018.07.023
– year: 2019
  ident: ref41
  article-title: Are all layers created equal?
  publication-title: arXiv 1902 01996
– ident: ref2
  doi: 10.1016/j.cose.2017.10.011
– ident: ref33
  doi: 10.1016/j.cose.2011.12.012
– year: 2014
  ident: ref32
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– year: 1989
  ident: ref27
  article-title: Generalization and network design strategies
  publication-title: Connectionism in Perspective
SSID ssj0044168
Score 2.6420803
Snippet Conventional intrusion detection systems based on supervised learning techniques require a large number of samples for training, while in some scenarios, such...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3540
SubjectTerms Artificial neural networks
Communications traffic
Datasets
deep learning
Feature extraction
Feature maps
few-shot learning
intrusion detection system
Intrusion detection systems
Knowledge engineering
Machine learning
meta-learning
Network intrusion detection
Network security
Task analysis
Traffic information
Training
Title A Method of Few-Shot Network Intrusion Detection Based on Meta-Learning Framework
URI https://ieeexplore.ieee.org/document/9083983
https://www.proquest.com/docview/2420295144
Volume 15
WOSCitedRecordID wos000545573400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1556-6021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044168
  issn: 1556-6013
  databaseCode: RIE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6qE9AIUiFhbkQ08IQxIndnzcFiI4dNVqOXCLHHsClaosYhf69zt2nBUSCKm3HGaiyC-eeWPPB8BXo7FtWuW40NLw3ArBTYGKZ9IIh3kjcmHCsAk1nZa3t_rnGpyuamEQMSSf4Zl_DHf5bm6f_FHZuSa-oEuxDutKqb5Wa7C65NX7sreikJyCDBFvMNNEn99cVzOKBLPkjGxvWvr2Ii98UBiq8soSB_dSbf3fh23DZqSRbNLj_hnWsNuBrWFEA4s7dgc-veg3uAu_JuxHmBjN5i2r8C-f3c-XbNpngrPrzhdgEE7sApchQ6tj38jJkXTn9QyPzVjvWDWkdH2BWXV58_2Kx5kK3IpCL3metoVunWxMYwontUucEaVURhdKKN0K67BNhBWpS61E3UiUuUFdSomE2x5sdPMO94G1MrPomkwQ38gt2T2K3UjF6cSVxALLESTDGtc2thv3Uy_-1CHsSHTtYak9LHWEZQQnK5WHvtfGe8K7HoeVYIRgBOMByDruxkVNNCTJiErm-cHbWofw0b-7P1oZwwYtNx7BB_u8_L14PA4_2j_Cgs_f
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB0tBQl6YKEFsW0BHzgh3Cax48THUoh2RXcF2j30Fjn2pCChLKJL-_c7dpxVJVAlbjnMKJFfPPPGng-Ad0Zj27SF40Irw6UVgpscC54pIxzKRkhhwrCJYrEoLy701xF82NbCIGJIPsNj_xju8t3a_vFHZSea-IIuxQN4mEuZpX211mB3ya_3hW95rjiFGSLeYaaJPlnNqiXFgllyTNY3LX2DkTteKIxV-csWBwdTjf_v057B00gk2WmP_HMYYbcH42FIA4t7dg9273Qc3Idvp2weZkazdcsqvOHL7-sNW_S54GzW-RIMQop9wk3I0erYR3JzJN15PcNjO9ZLVg1JXS9gWX1enU15nKrArcj1hsu0zXXrVGMakzulXeKMKFVhdF6IQrfCOmwTYUXqUqtQNwqVNKhLpZCQewk73brDV8BalVl0TSaIcUhLlo-iN1JxOnEl8cByAsmwxrWNDcf93IufdQg8El17WGoPSx1hmcD7rcqvvtvGfcL7HoetYIRgAkcDkHXcj1c1EZEkIzIp5cG_td7C4-lqfl6fzxZfDuGJf09_0HIEO7T0-Boe2evNj6vfb8JPdwu9gtMm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+of+Few-Shot+Network+Intrusion+Detection+Based+on+Meta-Learning+Framework&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Xu%2C+Congyuan&rft.au=Shen%2C+Jizhong&rft.au=Du%2C+Xin&rft.date=2020&rft.pub=IEEE&rft.issn=1556-6013&rft.volume=15&rft.spage=3540&rft.epage=3552&rft_id=info:doi/10.1109%2FTIFS.2020.2991876&rft.externalDocID=9083983
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon