A Method of Few-Shot Network Intrusion Detection Based on Meta-Learning Framework
Conventional intrusion detection systems based on supervised learning techniques require a large number of samples for training, while in some scenarios, such as zero-day attacks, security agencies can only intercept a limited number of shots of malicious samples. Therefore, there is a need for few-...
Saved in:
| Published in: | IEEE transactions on information forensics and security Vol. 15; pp. 3540 - 3552 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1556-6013, 1556-6021 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Conventional intrusion detection systems based on supervised learning techniques require a large number of samples for training, while in some scenarios, such as zero-day attacks, security agencies can only intercept a limited number of shots of malicious samples. Therefore, there is a need for few-shot detection. In this paper, a detection method based on a meta-learning framework is proposed for this purpose. The proposed method can be used to distinguish and compare a pair of network traffic samples as a basic task of learning, including a normal unaffected sample and a malicious one. To accomplish this task, we design a deep neural network (DNN) named FC-Net, which mainly comprises two parts: feature extraction network and comparison network. FC-Net learns a pair of feature maps for classification from a pair of network traffic samples, then compares the obtained feature maps, and finally determines whether the pair of samples belongs to the same type. To evaluate the proposed detection method, we construct two datasets for few-shot network intrusion detection based on real network traffic data sources, using a specifically developed approach. The experimental results indicate that the proposed detection method is universal and is not limited to specific datasets or attack types. Training and testing on the same datasets demonstrate that the proposed method can achieve the average detection rate up to 98.88%. The outcome of training on one dataset and testing on the other one confirms that the proposed method can achieve better performance. In a few-shot scenario, malicious samples in an untrained dataset can be detected successfully, and the average detection rate is up to 99.62%. |
|---|---|
| AbstractList | Conventional intrusion detection systems based on supervised learning techniques require a large number of samples for training, while in some scenarios, such as zero-day attacks, security agencies can only intercept a limited number of shots of malicious samples. Therefore, there is a need for few-shot detection. In this paper, a detection method based on a meta-learning framework is proposed for this purpose. The proposed method can be used to distinguish and compare a pair of network traffic samples as a basic task of learning, including a normal unaffected sample and a malicious one. To accomplish this task, we design a deep neural network (DNN) named FC-Net, which mainly comprises two parts: feature extraction network and comparison network. FC-Net learns a pair of feature maps for classification from a pair of network traffic samples, then compares the obtained feature maps, and finally determines whether the pair of samples belongs to the same type. To evaluate the proposed detection method, we construct two datasets for few-shot network intrusion detection based on real network traffic data sources, using a specifically developed approach. The experimental results indicate that the proposed detection method is universal and is not limited to specific datasets or attack types. Training and testing on the same datasets demonstrate that the proposed method can achieve the average detection rate up to 98.88%. The outcome of training on one dataset and testing on the other one confirms that the proposed method can achieve better performance. In a few-shot scenario, malicious samples in an untrained dataset can be detected successfully, and the average detection rate is up to 99.62%. |
| Author | Xu, Congyuan Du, Xin Shen, Jizhong |
| Author_xml | – sequence: 1 givenname: Congyuan surname: Xu fullname: Xu, Congyuan email: cyxu@zju.edu.cn organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Jizhong orcidid: 0000-0002-9031-2379 surname: Shen fullname: Shen, Jizhong email: jzshen@zju.edu.cn organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Xin orcidid: 0000-0002-6215-9733 surname: Du fullname: Du, Xin email: duxin@zju.edu.cn organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China |
| BookMark | eNp9kMFOAjEQhhujiYA-gPHSxPNiu93tbo-IrpKgxsC9KbtTWYQW2xLi27sNhIMHT_Mf_m8m8_XRubEGELqhZEgpEffzSTUbpiQlw1QIWhb8DPVonvOEk5SenzJll6jv_YqQLKO87KGPEX6FsLQNthpXsE9mSxvwG4S9dV94YoLb-dYa_AgB6hDTg_LQtU3kVDIF5UxrPnHl1AYidIUutFp7uD7OAZpVT_PxSzJ9f56MR9OkZrkISUZ1LnTDF2qh8oaLhjSKlbxQIi9YITSrG9CE1Yw2tOYgFhx4pkCUnAPL2ADdHbZunf3egQ9yZXfOdAdlmnUeRE6z2CoOrdpZ7x1oWbdBxTeCU-1aUiKjPRntyWhPHu11JP1Dbl27Ue7nX-b2wLQAcOoLUjJRMvYLTyR8gA |
| CODEN | ITIFA6 |
| CitedBy_id | crossref_primary_10_1016_j_jisa_2024_103762 crossref_primary_10_1109_ACCESS_2023_3325065 crossref_primary_10_1038_s41598_024_73342_7 crossref_primary_10_1109_TIFS_2024_3431932 crossref_primary_10_1016_j_comnet_2020_107743 crossref_primary_10_1109_TIFS_2024_3516548 crossref_primary_10_1016_j_comnet_2022_109368 crossref_primary_10_1016_j_cose_2024_103749 crossref_primary_10_1109_TMC_2024_3426600 crossref_primary_10_1109_JSAC_2021_3087242 crossref_primary_10_1016_j_cose_2022_102899 crossref_primary_10_1109_COMST_2023_3280465 crossref_primary_10_1109_TIFS_2025_3560560 crossref_primary_10_1109_TNSM_2022_3200924 crossref_primary_10_1109_TIFS_2025_3541890 crossref_primary_10_1080_08874417_2023_2267510 crossref_primary_10_3390_app12052351 crossref_primary_10_1109_ACCESS_2024_3386405 crossref_primary_10_3390_electronics13224560 crossref_primary_10_1016_j_knosys_2023_110781 crossref_primary_10_1109_JIOT_2025_3568503 crossref_primary_10_1109_MCI_2025_3536377 crossref_primary_10_1145_3472753 crossref_primary_10_1016_j_jisa_2023_103532 crossref_primary_10_1631_FITEE_2400556 crossref_primary_10_1109_TNET_2024_3391396 crossref_primary_10_1109_TNSM_2022_3218843 crossref_primary_10_1109_TNSM_2024_3391250 crossref_primary_10_1080_17434440_2022_2115887 crossref_primary_10_1109_TIFS_2023_3267885 crossref_primary_10_1109_TNSM_2022_3211254 crossref_primary_10_1109_TETC_2022_3198080 crossref_primary_10_1109_TNSM_2023_3298533 crossref_primary_10_1007_s11042_023_17300_x crossref_primary_10_1109_TIFS_2023_3331240 crossref_primary_10_1016_j_comnet_2024_110475 crossref_primary_10_1016_j_comnet_2025_111341 crossref_primary_10_1371_journal_pone_0327161 crossref_primary_10_3390_drones9050324 crossref_primary_10_3390_sym12091458 crossref_primary_10_1109_TIFS_2022_3228493 crossref_primary_10_3390_math12071055 crossref_primary_10_1016_j_iswa_2024_200465 crossref_primary_10_1007_s10489_022_04076_0 crossref_primary_10_3390_su15129395 crossref_primary_10_1016_j_ins_2022_03_065 crossref_primary_10_1109_TIFS_2024_3396624 crossref_primary_10_1177_1088467X251353450 crossref_primary_10_3390_app14135426 crossref_primary_10_1016_j_comnet_2021_108658 crossref_primary_10_3390_e25020180 crossref_primary_10_1016_j_cose_2024_104214 crossref_primary_10_1016_j_future_2022_01_026 crossref_primary_10_1016_j_comnet_2024_110423 crossref_primary_10_1109_TMC_2023_3311012 crossref_primary_10_1109_TNET_2022_3216603 crossref_primary_10_1109_ACCESS_2022_3167814 crossref_primary_10_1080_19393555_2024_2408256 crossref_primary_10_1109_TITS_2024_3360260 crossref_primary_10_1016_j_cose_2022_102919 crossref_primary_10_1109_TIFS_2025_3551643 crossref_primary_10_1016_j_cose_2024_103806 crossref_primary_10_32604_cmes_2024_048793 crossref_primary_10_1007_s00521_021_06011_9 crossref_primary_10_1016_j_cose_2023_103663 crossref_primary_10_1016_j_cose_2024_103820 crossref_primary_10_1109_JIOT_2021_3119055 crossref_primary_10_1109_TR_2022_3164877 crossref_primary_10_1016_j_neunet_2025_108076 crossref_primary_10_1109_ACCESS_2023_3291686 crossref_primary_10_1109_TCCN_2024_3464489 crossref_primary_10_1016_j_jisa_2022_103207 crossref_primary_10_1016_j_comnet_2023_110162 crossref_primary_10_1371_journal_pone_0317713 crossref_primary_10_1016_j_compeleceng_2025_110318 crossref_primary_10_1109_TNSE_2023_3304556 crossref_primary_10_32604_cmc_2025_060357 crossref_primary_10_1371_journal_pone_0331065 crossref_primary_10_1016_j_iot_2023_100851 crossref_primary_10_1109_TIFS_2023_3318960 crossref_primary_10_1109_TBDATA_2024_3484674 crossref_primary_10_1016_j_patrec_2022_05_011 crossref_primary_10_3390_s23198191 crossref_primary_10_1016_j_patcog_2021_108247 crossref_primary_10_1016_j_jnca_2022_103580 crossref_primary_10_3390_app15147915 crossref_primary_10_1038_s41598_025_05217_4 crossref_primary_10_3390_electronics14010189 crossref_primary_10_1007_s11227_025_07534_x crossref_primary_10_1109_TCE_2023_3331907 crossref_primary_10_1038_s41598_025_93185_0 crossref_primary_10_1007_s10207_024_00889_x crossref_primary_10_1109_TIFS_2025_3587621 crossref_primary_10_1016_j_suscom_2023_100860 crossref_primary_10_1016_j_comnet_2025_111276 crossref_primary_10_1016_j_comnet_2023_109982 crossref_primary_10_1109_JIOT_2023_3310794 crossref_primary_10_1007_s11227_022_05025_x crossref_primary_10_1109_JIOT_2021_3065680 crossref_primary_10_1007_s10489_024_05290_8 crossref_primary_10_1007_s41870_022_00910_3 crossref_primary_10_1016_j_comnet_2024_110746 crossref_primary_10_1109_TIFS_2023_3259881 crossref_primary_10_1016_j_eswa_2024_125687 crossref_primary_10_3390_electronics13061072 crossref_primary_10_1109_TDSC_2023_3349180 crossref_primary_10_1109_JIOT_2023_3318290 crossref_primary_10_1016_j_comnet_2023_109731 crossref_primary_10_1109_TDSC_2023_3237604 crossref_primary_10_1016_j_cose_2022_102719 crossref_primary_10_1109_TCSS_2021_3063538 crossref_primary_10_1007_s11704_021_1207_x crossref_primary_10_1016_j_knosys_2025_114436 crossref_primary_10_1109_JIOT_2023_3284155 crossref_primary_10_1109_ACCESS_2025_3565022 crossref_primary_10_1109_TNSM_2021_3131266 crossref_primary_10_1016_j_comnet_2025_111723 |
| Cites_doi | 10.5220/0006639801080116 10.1007/978-981-13-1810-8_37 10.1016/j.comnet.2018.07.025 10.1007/978-3-030-00012-7_30 10.1109/ACCESS.2017.2780250 10.1109/ACCESS.2018.2875045 10.1002/nem.2050 10.1016/0364-0213(90)90002-E 10.1016/j.comnet.2004.03.033 10.14257/ijsia.2015.9.5.07 10.1109/MNET.2012.6135854 10.1007/978-1-4471-0123-9_3 10.1109/CVPR.2018.00131 10.1109/TCOM.1980.1094702 10.1051/shsconf/20184400052 10.1002/spy2.36 10.1016/j.inffus.2018.10.013 10.1016/j.patrec.2005.10.010 10.1016/j.cose.2018.04.010 10.1155/2018/4943509 10.1109/ACCESS.2018.2873291 10.1145/2382196.2382284 10.1080/00401706.1971.10488811 10.1109/CVPR.2016.90 10.1109/TC.2014.2375218 10.1016/j.patcog.2018.07.023 10.1016/j.cose.2017.10.011 10.1016/j.cose.2011.12.012 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/TIFS.2020.2991876 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1556-6021 |
| EndPage | 3552 |
| ExternalDocumentID | 10_1109_TIFS_2020_2991876 9083983 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61471314 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-41f59fd6baba5d69d0da3867a957379f3cdef03c31d1c6e9b6e64ae9866e343 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 183 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545573400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1556-6013 |
| IngestDate | Mon Jun 30 05:17:32 EDT 2025 Sat Nov 29 03:49:40 EST 2025 Tue Nov 18 22:24:00 EST 2025 Wed Aug 27 02:36:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-41f59fd6baba5d69d0da3867a957379f3cdef03c31d1c6e9b6e64ae9866e343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6215-9733 0000-0002-9031-2379 |
| PQID | 2420295144 |
| PQPubID | 85506 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIFS_2020_2991876 proquest_journals_2420295144 crossref_primary_10_1109_TIFS_2020_2991876 ieee_primary_9083983 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on information forensics and security |
| PublicationTitleAbbrev | TIFS |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref36 ref14 ref31 ref33 ref11 ref10 santoro (ref15) 2016 ioffe (ref28) 2015; 37 lecun (ref27) 1989 ref2 ref1 ref39 ref38 snell (ref17) 2017 ref18 katharopoulos (ref40) 2018 kingma (ref32) 2014 thrun (ref20) 2012 vinyals (ref16) 2016 ref24 nair (ref29) 2010 ref23 ref26 andrychowicz (ref21) 2016 ref42 ref22 ref8 ref7 zhang (ref41) 2019 ref9 ref4 zhang (ref19) 2018 ref3 ref6 ref5 orebaugh (ref25) 2006 srivastava (ref30) 2014; 15 |
| References_xml | – ident: ref23 doi: 10.5220/0006639801080116 – start-page: 807 year: 2010 ident: ref29 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc 27th Int Conf Mach Learn (ICML) – ident: ref11 doi: 10.1007/978-981-13-1810-8_37 – ident: ref8 doi: 10.1016/j.comnet.2018.07.025 – start-page: 3630 year: 2016 ident: ref16 article-title: Matching networks for one shot learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref5 doi: 10.1007/978-3-030-00012-7_30 – volume: 15 start-page: 1929 year: 2014 ident: ref30 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref3 doi: 10.1109/ACCESS.2017.2780250 – ident: ref37 doi: 10.1109/ACCESS.2018.2875045 – start-page: 4077 year: 2017 ident: ref17 article-title: Prototypical networks for few-shot learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref6 doi: 10.1002/nem.2050 – year: 2012 ident: ref20 publication-title: Learning to Learn – ident: ref26 doi: 10.1016/0364-0213(90)90002-E – ident: ref34 doi: 10.1016/j.comnet.2004.03.033 – ident: ref1 doi: 10.14257/ijsia.2015.9.5.07 – volume: 37 start-page: 448 year: 2015 ident: ref28 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn – start-page: 2530 year: 2018 ident: ref40 article-title: Not all samples are created equal: Deep learning with importance sampling publication-title: Proc of the Int Conf on Learning Representations (ICLR) – ident: ref24 doi: 10.1109/MNET.2012.6135854 – ident: ref38 doi: 10.1007/978-1-4471-0123-9_3 – ident: ref18 doi: 10.1109/CVPR.2018.00131 – ident: ref22 doi: 10.1109/TCOM.1980.1094702 – start-page: 2365 year: 2018 ident: ref19 article-title: MetaGAN: An adversarial approach to few-shot learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref10 doi: 10.1051/shsconf/20184400052 – ident: ref36 doi: 10.1002/spy2.36 – start-page: 1842 year: 2016 ident: ref15 article-title: Meta-learning with memory-augmented neural networks publication-title: Proc Int Conf Mach Learn – ident: ref13 doi: 10.1016/j.inffus.2018.10.013 – ident: ref35 doi: 10.1016/j.patrec.2005.10.010 – ident: ref7 doi: 10.1016/j.cose.2018.04.010 – ident: ref4 doi: 10.1155/2018/4943509 – ident: ref12 doi: 10.1109/ACCESS.2018.2873291 – year: 2006 ident: ref25 publication-title: Wireshark & Ethereal Network Protocol Analyzer Toolkit – ident: ref14 doi: 10.1145/2382196.2382284 – start-page: 3981 year: 2016 ident: ref21 article-title: Learning to learn by gradient descent by gradient descent publication-title: Proc Adv Neural Inf Process Syst – ident: ref31 doi: 10.1080/00401706.1971.10488811 – ident: ref39 doi: 10.1109/CVPR.2016.90 – ident: ref9 doi: 10.1109/TC.2014.2375218 – ident: ref42 doi: 10.1016/j.patcog.2018.07.023 – year: 2019 ident: ref41 article-title: Are all layers created equal? publication-title: arXiv 1902 01996 – ident: ref2 doi: 10.1016/j.cose.2017.10.011 – ident: ref33 doi: 10.1016/j.cose.2011.12.012 – year: 2014 ident: ref32 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – year: 1989 ident: ref27 article-title: Generalization and network design strategies publication-title: Connectionism in Perspective |
| SSID | ssj0044168 |
| Score | 2.6420803 |
| Snippet | Conventional intrusion detection systems based on supervised learning techniques require a large number of samples for training, while in some scenarios, such... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3540 |
| SubjectTerms | Artificial neural networks Communications traffic Datasets deep learning Feature extraction Feature maps few-shot learning intrusion detection system Intrusion detection systems Knowledge engineering Machine learning meta-learning Network intrusion detection Network security Task analysis Traffic information Training |
| Title | A Method of Few-Shot Network Intrusion Detection Based on Meta-Learning Framework |
| URI | https://ieeexplore.ieee.org/document/9083983 https://www.proquest.com/docview/2420295144 |
| Volume | 15 |
| WOSCitedRecordID | wos000545573400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1556-6021 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044168 issn: 1556-6013 databaseCode: RIE dateStart: 20060101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6qE9AIUiFhbkQ08IQxIndnzcFiI4dNVqOXCLHHsClaosYhf69zt2nBUSCKm3HGaiyC-eeWPPB8BXo7FtWuW40NLw3ArBTYGKZ9IIh3kjcmHCsAk1nZa3t_rnGpyuamEQMSSf4Zl_DHf5bm6f_FHZuSa-oEuxDutKqb5Wa7C65NX7sreikJyCDBFvMNNEn99cVzOKBLPkjGxvWvr2Ii98UBiq8soSB_dSbf3fh23DZqSRbNLj_hnWsNuBrWFEA4s7dgc-veg3uAu_JuxHmBjN5i2r8C-f3c-XbNpngrPrzhdgEE7sApchQ6tj38jJkXTn9QyPzVjvWDWkdH2BWXV58_2Kx5kK3IpCL3metoVunWxMYwontUucEaVURhdKKN0K67BNhBWpS61E3UiUuUFdSomE2x5sdPMO94G1MrPomkwQ38gt2T2K3UjF6cSVxALLESTDGtc2thv3Uy_-1CHsSHTtYak9LHWEZQQnK5WHvtfGe8K7HoeVYIRgBOMByDruxkVNNCTJiErm-cHbWofw0b-7P1oZwwYtNx7BB_u8_L14PA4_2j_Cgs_f |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB0tBQl6YKEFsW0BHzgh3Cax48THUoh2RXcF2j30Fjn2pCChLKJL-_c7dpxVJVAlbjnMKJFfPPPGng-Ad0Zj27SF40Irw6UVgpscC54pIxzKRkhhwrCJYrEoLy701xF82NbCIGJIPsNj_xju8t3a_vFHZSea-IIuxQN4mEuZpX211mB3ya_3hW95rjiFGSLeYaaJPlnNqiXFgllyTNY3LX2DkTteKIxV-csWBwdTjf_v057B00gk2WmP_HMYYbcH42FIA4t7dg9273Qc3Idvp2weZkazdcsqvOHL7-sNW_S54GzW-RIMQop9wk3I0erYR3JzJN15PcNjO9ZLVg1JXS9gWX1enU15nKrArcj1hsu0zXXrVGMakzulXeKMKFVhdF6IQrfCOmwTYUXqUqtQNwqVNKhLpZCQewk73brDV8BalVl0TSaIcUhLlo-iN1JxOnEl8cByAsmwxrWNDcf93IufdQg8El17WGoPSx1hmcD7rcqvvtvGfcL7HoetYIRgAkcDkHXcj1c1EZEkIzIp5cG_td7C4-lqfl6fzxZfDuGJf09_0HIEO7T0-Boe2evNj6vfb8JPdwu9gtMm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+of+Few-Shot+Network+Intrusion+Detection+Based+on+Meta-Learning+Framework&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Xu%2C+Congyuan&rft.au=Shen%2C+Jizhong&rft.au=Du%2C+Xin&rft.date=2020&rft.pub=IEEE&rft.issn=1556-6013&rft.volume=15&rft.spage=3540&rft.epage=3552&rft_id=info:doi/10.1109%2FTIFS.2020.2991876&rft.externalDocID=9083983 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |