Privacy-Preserving Support Vector Machine Training Over Blockchain-Based Encrypted IoT Data in Smart Cities

Machine learning (ML) techniques have been widely used in many smart city sectors, where a huge amount of data is gathered from various (IoT) devices. As a typical ML model, support vector machine (SVM) enables efficient data classification and thereby finds its applications in real-world scenarios,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal Jg. 6; H. 5; S. 7702 - 7712
Hauptverfasser: Shen, Meng, Tang, Xiangyun, Zhu, Liehuang, Du, Xiaojiang, Guizani, Mohsen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2327-4662, 2327-4662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Machine learning (ML) techniques have been widely used in many smart city sectors, where a huge amount of data is gathered from various (IoT) devices. As a typical ML model, support vector machine (SVM) enables efficient data classification and thereby finds its applications in real-world scenarios, such as disease diagnosis and anomaly detection. Training an SVM classifier usually requires a collection of labeled IoT data from multiple entities, raising great concerns about data privacy. Most of the existing solutions rely on an implicit assumption that the training data can be reliably collected from multiple data providers, which is often not the case in reality. To bridge the gap between ideal assumptions and realistic constraints, in this paper, we propose secureSVM, which is a privacy-preserving SVM training scheme over blockchain-based encrypted IoT data. We utilize the blockchain techniques to build a secure and reliable data sharing platform among multiple data providers, where IoT data is encrypted and then recorded on a distributed ledger. We design secure building blocks, such as secure polynomial multiplication and secure comparison, by employing a homomorphic cryptosystem, Paillier, and construct a secure SVM training algorithm, which requires only two interactions in a single iteration, with no need for a trusted third-party. Rigorous security analysis prove that the proposed scheme ensures the confidentiality of the sensitive data for each data provider as well as the SVM model parameters for data analysts. Extensive experiments demonstrates the efficiency of the proposed scheme.
AbstractList Machine learning (ML) techniques have been widely used in many smart city sectors, where a huge amount of data is gathered from various (IoT) devices. As a typical ML model, support vector machine (SVM) enables efficient data classification and thereby finds its applications in real-world scenarios, such as disease diagnosis and anomaly detection. Training an SVM classifier usually requires a collection of labeled IoT data from multiple entities, raising great concerns about data privacy. Most of the existing solutions rely on an implicit assumption that the training data can be reliably collected from multiple data providers, which is often not the case in reality. To bridge the gap between ideal assumptions and realistic constraints, in this paper, we propose secureSVM , which is a privacy-preserving SVM training scheme over blockchain-based encrypted IoT data. We utilize the blockchain techniques to build a secure and reliable data sharing platform among multiple data providers, where IoT data is encrypted and then recorded on a distributed ledger. We design secure building blocks, such as secure polynomial multiplication and secure comparison, by employing a homomorphic cryptosystem, Paillier, and construct a secure SVM training algorithm, which requires only two interactions in a single iteration, with no need for a trusted third-party. Rigorous security analysis prove that the proposed scheme ensures the confidentiality of the sensitive data for each data provider as well as the SVM model parameters for data analysts. Extensive experiments demonstrates the efficiency of the proposed scheme.
Author Guizani, Mohsen
Du, Xiaojiang
Shen, Meng
Tang, Xiangyun
Zhu, Liehuang
Author_xml – sequence: 1
  givenname: Meng
  orcidid: 0000-0002-1867-0972
  surname: Shen
  fullname: Shen, Meng
  email: shenmeng@bit.edu.cn
  organization: School of Computer Science, Beijing Institute of Technology, Beijing
– sequence: 2
  givenname: Xiangyun
  surname: Tang
  fullname: Tang, Xiangyun
  email: tangguotxy@163.com
  organization: School of Computer Science, Beijing Institute of Technology, Beijing
– sequence: 3
  givenname: Liehuang
  orcidid: 0000-0003-3277-3887
  surname: Zhu
  fullname: Zhu, Liehuang
  email: liehuangz@bit.edu.cn
  organization: School of Computer Science, Beijing Institute of Technology, Beijing
– sequence: 4
  givenname: Xiaojiang
  orcidid: 0000-0003-4235-9671
  surname: Du
  fullname: Du, Xiaojiang
  email: dxj@ieee.org
  organization: Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
– sequence: 5
  givenname: Mohsen
  orcidid: 0000-0002-8972-8094
  surname: Guizani
  fullname: Guizani, Mohsen
  email: mguizani@ieee.org
  organization: Department of Computer Science and Engineering, Qatar University, Doha, Qatar
BookMark eNp9kE1PAjEQhhujiaj8AOOliefFfux2t0dBVIwGE9DrppRZLWC7toWEf28JxhgPnmYy8z7z8Z6gQ-ssIHROSY9SIq8eRuNpjxEqe0wSWuXkAHUYZ2WWC8EOf-XHqBvCghCSsIJK0UHLZ282Sm-zZw8B_MbYNzxZt63zEb-Cjs7jJ6XfjQU89crYXX-8AY_7K6eX-j2Vsr4KMMdDq_22jSkbuSm-UVFhY_HkQ6VJAxMNhDN01KhVgO53PEUvt8Pp4D57HN-NBtePmeaFjBmfSwUaxLzRBVcCKGjKWEn1nNGqEFRJ1ShdlWUuGyWLGZnNOBeac-BC5OWMn6LL_dzWu881hFgv3NrbtLJmnHBZcZ6LpCr3Ku1dCB6aWpuoonE2pkdXNSX1ztx6Z269M7f-NjeR9A_ZepP-3P7LXOwZAwA_-koU6XTGvwCF1Ydr
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3260182
crossref_primary_10_1109_TII_2020_3032147
crossref_primary_10_1109_ACCESS_2021_3069737
crossref_primary_10_1109_TIFS_2023_3283104
crossref_primary_10_1109_ACCESS_2020_2983994
crossref_primary_10_1155_2022_5295801
crossref_primary_10_3390_s24103111
crossref_primary_10_1109_JIOT_2020_3030821
crossref_primary_10_3390_s23010519
crossref_primary_10_1007_s11135_021_01251_2
crossref_primary_10_1016_j_jss_2022_111475
crossref_primary_10_1016_j_iot_2024_101187
crossref_primary_10_1109_COMST_2020_3011561
crossref_primary_10_1109_JIOT_2019_2957400
crossref_primary_10_1016_j_comnet_2022_109365
crossref_primary_10_1109_TVT_2019_2957425
crossref_primary_10_1109_MNET_001_1900140
crossref_primary_10_1109_TIFS_2023_3347895
crossref_primary_10_1109_JIOT_2023_3293165
crossref_primary_10_3390_s20030758
crossref_primary_10_1109_JIOT_2020_3015772
crossref_primary_10_3390_fi16120452
crossref_primary_10_1016_j_icte_2025_04_001
crossref_primary_10_1016_j_comnet_2023_109634
crossref_primary_10_1145_3417987
crossref_primary_10_1109_JIOT_2021_3060764
crossref_primary_10_1007_s12083_023_01554_1
crossref_primary_10_1109_TIFS_2023_3283910
crossref_primary_10_1109_ACCESS_2021_3129697
crossref_primary_10_1109_TVT_2022_3194008
crossref_primary_10_1016_j_comcom_2019_10_031
crossref_primary_10_1109_ACCESS_2023_3296482
crossref_primary_10_1109_JIOT_2020_3033543
crossref_primary_10_1109_MNET_001_1900153
crossref_primary_10_1007_s41635_019_00079_5
crossref_primary_10_1109_ACCESS_2019_2946202
crossref_primary_10_1108_K_07_2020_0449
crossref_primary_10_1109_ACCESS_2023_3250235
crossref_primary_10_1038_s41598_023_44101_x
crossref_primary_10_1016_j_ijleo_2022_170420
crossref_primary_10_1109_JIOT_2019_2958079
crossref_primary_10_1109_JIOT_2019_2958077
crossref_primary_10_3390_bdcc4020009
crossref_primary_10_1109_JIOT_2019_2957421
crossref_primary_10_1109_ACCESS_2020_3009160
crossref_primary_10_32604_cmc_2022_020833
crossref_primary_10_1016_j_future_2021_05_007
crossref_primary_10_1109_JIOT_2025_3587023
crossref_primary_10_3390_s23167262
crossref_primary_10_1002_cpe_6264
crossref_primary_10_4018_JOEUC_318478
crossref_primary_10_3390_fi17060256
crossref_primary_10_3390_s23229033
crossref_primary_10_1109_COMST_2020_2975911
crossref_primary_10_1016_j_bspc_2024_107411
crossref_primary_10_1109_JIOT_2019_2963767
crossref_primary_10_1109_JIOT_2022_3181734
crossref_primary_10_1109_TII_2019_2957140
crossref_primary_10_3390_su16010171
crossref_primary_10_1109_JIOT_2023_3285206
crossref_primary_10_1016_j_comcom_2021_07_009
crossref_primary_10_1109_ACCESS_2022_3203568
crossref_primary_10_3390_fi14070216
crossref_primary_10_1016_j_jisa_2024_103725
crossref_primary_10_1007_s10586_021_03260_0
crossref_primary_10_1080_10447318_2021_2012381
crossref_primary_10_1007_s10207_023_00808_6
crossref_primary_10_1016_j_cities_2025_105883
crossref_primary_10_1109_MNET_001_1900225
crossref_primary_10_1109_JSAC_2020_2986619
crossref_primary_10_1016_j_comcom_2021_10_028
crossref_primary_10_1016_j_jksuci_2024_102039
crossref_primary_10_1016_j_future_2022_02_012
crossref_primary_10_1016_j_scs_2022_103678
crossref_primary_10_3390_su151612516
crossref_primary_10_1109_ACCESS_2020_3037474
crossref_primary_10_1016_j_jpdc_2021_04_003
crossref_primary_10_1109_JIOT_2021_3085004
crossref_primary_10_1016_j_joitmc_2023_100068
crossref_primary_10_1016_j_jnca_2020_102886
crossref_primary_10_1109_JIOT_2019_2951619
crossref_primary_10_3390_s23218958
crossref_primary_10_3390_app13021079
crossref_primary_10_1002_dac_70259
crossref_primary_10_1109_TCSS_2020_2990103
crossref_primary_10_1109_JIOT_2024_3507746
crossref_primary_10_2478_amns_2024_3122
crossref_primary_10_1145_3539734
crossref_primary_10_1007_s41060_023_00436_2
crossref_primary_10_1016_j_compeleceng_2025_110146
crossref_primary_10_1109_ACCESS_2023_3323932
crossref_primary_10_1007_s13042_025_02698_7
crossref_primary_10_1016_j_iot_2020_100227
crossref_primary_10_1109_JIOT_2020_3030080
crossref_primary_10_1016_j_future_2019_12_017
crossref_primary_10_1007_s00500_021_05866_3
crossref_primary_10_1002_ett_70130
crossref_primary_10_1007_s11277_023_10664_1
crossref_primary_10_2478_emj_2021_0017
crossref_primary_10_1016_j_health_2023_100221
crossref_primary_10_3390_s23177474
crossref_primary_10_4018_JGIM_332815
crossref_primary_10_1109_JIOT_2019_2959124
crossref_primary_10_1109_JIOT_2024_3505554
crossref_primary_10_1016_j_jisa_2020_102683
crossref_primary_10_1109_TCOMM_2020_2990686
crossref_primary_10_3390_s22124645
crossref_primary_10_1109_JIOT_2020_3028110
crossref_primary_10_1007_s43538_023_00202_9
crossref_primary_10_1109_JIOT_2023_3264611
crossref_primary_10_3390_electronics12040858
crossref_primary_10_1109_JIOT_2022_3185289
crossref_primary_10_1016_j_eswa_2023_121180
crossref_primary_10_1109_JIOT_2023_3347492
crossref_primary_10_1109_MNET_011_2000400
crossref_primary_10_1109_TSC_2022_3177438
crossref_primary_10_1109_ACCESS_2022_3159798
crossref_primary_10_3390_math11092073
crossref_primary_10_1109_JIOT_2019_2962070
crossref_primary_10_1109_TVT_2019_2943118
crossref_primary_10_1109_TPDS_2023_3240883
crossref_primary_10_1109_JSEN_2025_3526807
crossref_primary_10_3390_su15043317
crossref_primary_10_1109_ACCESS_2020_2973178
crossref_primary_10_1109_JIOT_2020_3015716
crossref_primary_10_1002_ett_4329
crossref_primary_10_1146_annurev_chembioeng_092120_022935
crossref_primary_10_3390_agriculture12010040
crossref_primary_10_1016_j_scs_2021_103083
crossref_primary_10_1109_ACCESS_2021_3065412
crossref_primary_10_1002_joe_22242
crossref_primary_10_1109_JIOT_2020_3033131
crossref_primary_10_1007_s11277_020_07389_w
crossref_primary_10_1109_TII_2020_3040171
crossref_primary_10_1016_j_patrec_2021_01_019
crossref_primary_10_3390_app12125893
crossref_primary_10_1109_TCSI_2024_3427681
crossref_primary_10_1109_TSC_2022_3194121
crossref_primary_10_3390_electronics9050773
crossref_primary_10_3390_math12101480
crossref_primary_10_1088_2631_8695_ad5d51
crossref_primary_10_1016_j_comcom_2022_07_035
crossref_primary_10_1109_JIOT_2019_2963701
crossref_primary_10_1109_TITS_2022_3157447
crossref_primary_10_1109_COMST_2024_3353265
crossref_primary_10_1109_JIOT_2021_3108527
crossref_primary_10_1155_2021_6672482
crossref_primary_10_1007_s11390_020_9638_7
crossref_primary_10_1016_j_heliyon_2023_e19380
crossref_primary_10_1016_j_sysarc_2023_102961
crossref_primary_10_1016_j_inhs_2025_100011
crossref_primary_10_1109_JSEN_2020_3035846
crossref_primary_10_1016_j_future_2023_03_036
crossref_primary_10_1016_j_iotcps_2022_05_006
crossref_primary_10_1109_ACCESS_2024_3364078
crossref_primary_10_1002_cjs_11623
crossref_primary_10_3390_s21010028
crossref_primary_10_1007_s41060_024_00633_7
crossref_primary_10_1016_j_jnca_2019_102481
crossref_primary_10_1109_JIOT_2019_2960526
crossref_primary_10_1007_s42979_024_03383_2
crossref_primary_10_1109_JIOT_2021_3103855
crossref_primary_10_1016_j_future_2022_05_025
crossref_primary_10_1109_TDSC_2021_3119897
crossref_primary_10_1109_TTE_2023_3334826
crossref_primary_10_1111_exsy_12753
crossref_primary_10_1016_j_iot_2023_100780
crossref_primary_10_1109_TNSM_2023_3308331
crossref_primary_10_1109_ACCESS_2021_3051602
crossref_primary_10_1109_JIOT_2019_2963245
crossref_primary_10_1109_JIOT_2020_3004231
crossref_primary_10_3390_smartcities6020037
crossref_primary_10_1109_TNSE_2021_3050781
crossref_primary_10_1177_15501477211026804
crossref_primary_10_1007_s13198_024_02646_8
crossref_primary_10_1016_j_comnet_2021_108512
crossref_primary_10_1109_ACCESS_2021_3139176
crossref_primary_10_1007_s11265_020_01529_y
crossref_primary_10_1016_j_cose_2024_103705
crossref_primary_10_1016_j_cose_2025_104473
crossref_primary_10_1109_TSMC_2023_3348449
crossref_primary_10_1109_JSAC_2020_2980916
crossref_primary_10_1109_JSEN_2020_3001382
crossref_primary_10_1002_int_22907
crossref_primary_10_1016_j_future_2020_06_025
crossref_primary_10_1016_j_jnca_2023_103696
crossref_primary_10_1016_j_jnca_2021_103050
crossref_primary_10_1007_s11235_023_01030_4
crossref_primary_10_1109_MNET_001_1800503
crossref_primary_10_3390_s25113341
crossref_primary_10_1109_COMST_2022_3175453
crossref_primary_10_1007_s11277_024_11050_1
crossref_primary_10_1109_TBDATA_2024_3403388
crossref_primary_10_3233_AIS_210601
crossref_primary_10_1016_j_pmcj_2020_101195
crossref_primary_10_1007_s10586_024_04509_0
crossref_primary_10_1109_ACCESS_2022_3181718
crossref_primary_10_1109_JIOT_2022_3191671
crossref_primary_10_1365_s43439_025_00145_5
crossref_primary_10_3390_s23031252
crossref_primary_10_1016_j_comcom_2023_04_020
crossref_primary_10_1109_JIOT_2023_3268705
crossref_primary_10_1016_j_icte_2023_03_006
crossref_primary_10_3390_electronics9122096
crossref_primary_10_1109_ACCESS_2023_3319083
crossref_primary_10_1007_s12083_022_01338_z
crossref_primary_10_1007_s10489_021_02222_8
crossref_primary_10_1109_TII_2020_2968923
crossref_primary_10_3390_su16156669
crossref_primary_10_3390_urbansci9040132
crossref_primary_10_1109_ACCESS_2019_2936043
crossref_primary_10_3390_s22134730
crossref_primary_10_1016_j_future_2024_107564
crossref_primary_10_1016_j_cosrev_2025_100789
crossref_primary_10_1016_j_compeleceng_2023_108640
crossref_primary_10_1007_s12083_023_01592_9
crossref_primary_10_3390_foods11152262
crossref_primary_10_1109_JIOT_2021_3134755
crossref_primary_10_1007_s11708_022_0818_8
crossref_primary_10_1038_s41598_025_13831_5
crossref_primary_10_3390_su142316002
crossref_primary_10_1007_s42979_021_00841_z
crossref_primary_10_3390_app15084562
crossref_primary_10_1002_dac_5669
crossref_primary_10_1007_s00354_021_00131_5
crossref_primary_10_1016_j_scs_2020_102360
crossref_primary_10_3390_a14080242
crossref_primary_10_1007_s11831_025_10309_5
crossref_primary_10_1016_j_scs_2020_102364
crossref_primary_10_1109_TDSC_2020_3026631
crossref_primary_10_3390_s24196377
crossref_primary_10_1109_COMST_2024_3430368
crossref_primary_10_1007_s10586_024_04387_6
crossref_primary_10_1109_TNET_2024_3436862
crossref_primary_10_1016_j_iot_2025_101752
crossref_primary_10_1016_j_jii_2023_100504
crossref_primary_10_3390_smartcities5040071
crossref_primary_10_1016_j_compeleceng_2023_109067
crossref_primary_10_1109_JIOT_2020_3008906
crossref_primary_10_1016_j_isatra_2021_09_007
crossref_primary_10_1109_JIOT_2020_3032797
crossref_primary_10_3390_s22239271
crossref_primary_10_1109_JIOT_2021_3097996
crossref_primary_10_1016_j_jii_2021_100261
crossref_primary_10_1145_3512893
crossref_primary_10_1016_j_iot_2022_100568
Cites_doi 10.1016/j.patcog.2017.06.016
10.1109/TIFS.2017.2774451
10.1016/j.comcom.2007.04.009
10.1201/b17668
10.1016/j.adhoc.2006.05.012
10.1016/0002-9149(89)90524-9
10.1007/s10916-018-0997-3
10.1109/JSAC.2018.2815442
10.1007/s11045-016-0408-1
10.1109/TIFS.2017.2692682
10.1145/2857705.2857731
10.1109/MNET.2012.6201210
10.1109/JBHI.2015.2407157
10.1145/2976749.2978318
10.1109/MNET.2018.1700269
10.1109/TDSC.2013.51
10.1587/transinf.2015INP0020
10.1109/JBHI.2016.2548248
10.1109/INFOCOM.2017.8056955
10.1109/ICCV.2017.97
10.1007/BF00994018
10.1109/TDSC.2013.43
10.1109/JIOT.2018.2871607
10.1109/TDSC.2017.2679189
10.1007/s001459910006
10.1109/TWC.2009.060598
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2019.2901840
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 7712
ExternalDocumentID 10_1109_JIOT_2019_2901840
8653362
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61602039; 61872041
  funderid: 10.13039/501100001809
– fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2018YFB0803405
  funderid: 10.13039/501100012166
– fundername: CCF-Tencent Open Fund WeBank Special Funding
– fundername: Natural Science Foundation of Beijing Municipality
  grantid: 4192050
  funderid: 10.13039/501100004826
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c359t-3d9aece6dfc53a6e1ec12271cd218561a9afac87749fa95b0bb336c33e36647b3
IEDL.DBID RIE
ISICitedReferencesCount 286
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000491295800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Mon Jun 30 13:16:07 EDT 2025
Tue Nov 18 22:49:30 EST 2025
Sat Nov 29 06:16:46 EST 2025
Wed Aug 27 08:33:24 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-3d9aece6dfc53a6e1ec12271cd218561a9afac87749fa95b0bb336c33e36647b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3277-3887
0000-0002-1867-0972
0000-0002-8972-8094
0000-0003-4235-9671
PQID 2303983346
PQPubID 2040421
PageCount 11
ParticipantIDs proquest_journals_2303983346
ieee_primary_8653362
crossref_citationtrail_10_1109_JIOT_2019_2901840
crossref_primary_10_1109_JIOT_2019_2901840
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References graepel (ref13) 2012
ref15
ref14
ref11
ref32
ref2
ref1
ref17
ref16
ref19
ref18
goldreich (ref21) 2009
ref24
ref23
bost (ref5) 2014
ref26
ref25
ref20
ref22
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
dua (ref31) 2017
katz (ref10) 2014
de cock (ref12) 2015
ref6
platt (ref30) 1998
References_xml – year: 2017
  ident: ref31
  publication-title: UCI Machine Learning Repository
– ident: ref11
  doi: 10.1016/j.patcog.2017.06.016
– ident: ref4
  doi: 10.1109/TIFS.2017.2774451
– ident: ref28
  doi: 10.1016/j.comcom.2007.04.009
– year: 2014
  ident: ref10
  publication-title: Introduction to Modern Cryptography
  doi: 10.1201/b17668
– ident: ref29
  doi: 10.1016/j.adhoc.2006.05.012
– year: 2012
  ident: ref13
  article-title: ML confidential: Machine learning on encrypted data
  publication-title: Information Security and Cryptology-ICISC
– ident: ref32
  doi: 10.1016/0002-9149(89)90524-9
– ident: ref9
  doi: 10.1007/s10916-018-0997-3
– ident: ref26
  doi: 10.1109/JSAC.2018.2815442
– ident: ref19
  doi: 10.1007/s11045-016-0408-1
– ident: ref2
  doi: 10.1109/TIFS.2017.2692682
– start-page: 1
  year: 1998
  ident: ref30
  publication-title: Sequential minimal optimization A fast algorithm for training support vector machines
– ident: ref17
  doi: 10.1145/2857705.2857731
– ident: ref1
  doi: 10.1109/MNET.2012.6201210
– ident: ref14
  doi: 10.1109/JBHI.2015.2407157
– ident: ref6
  doi: 10.1145/2976749.2978318
– start-page: 3
  year: 2015
  ident: ref12
  article-title: Fast, privacy preserving linear regression over distributed datasets based on pre-distributed data
  publication-title: Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security ACM
– ident: ref24
  doi: 10.1109/MNET.2018.1700269
– ident: ref8
  doi: 10.1109/TDSC.2013.51
– start-page: 1
  year: 2014
  ident: ref5
  article-title: Machine learning classification over encrypted data
  publication-title: Proc Symp Network and Distributed System Security
– ident: ref16
  doi: 10.1587/transinf.2015INP0020
– ident: ref20
  doi: 10.1109/JBHI.2016.2548248
– ident: ref7
  doi: 10.1109/INFOCOM.2017.8056955
– year: 2009
  ident: ref21
  publication-title: Foundations of Cryptography Volume 2 Basic Applications
– ident: ref3
  doi: 10.1109/ICCV.2017.97
– ident: ref23
  doi: 10.1007/BF00994018
– ident: ref15
  doi: 10.1109/TDSC.2013.43
– ident: ref25
  doi: 10.1109/JIOT.2018.2871607
– ident: ref18
  doi: 10.1109/TDSC.2017.2679189
– ident: ref22
  doi: 10.1007/s001459910006
– ident: ref27
  doi: 10.1109/TWC.2009.060598
SSID ssj0001105196
Score 2.6207457
Snippet Machine learning (ML) techniques have been widely used in many smart city sectors, where a huge amount of data is gathered from various (IoT) devices. As a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7702
SubjectTerms Algorithms
Anomalies
Blockchain
Computational modeling
Cryptography
Data models
Data privacy
Data retrieval
Distributed ledger
encrypted Internet of Things (IoT) data
Encryption
homomorphic cryptosystem (HC)
Internet of Things
Iterative methods
Machine learning
machine learning (ML)
Multiplication
Polynomials
Privacy
privacy protection
Smart cities
Support vector machines
Training
Trusted third parties
Title Privacy-Preserving Support Vector Machine Training Over Blockchain-Based Encrypted IoT Data in Smart Cities
URI https://ieeexplore.ieee.org/document/8653362
https://www.proquest.com/docview/2303983346
Volume 6
WOSCitedRecordID wos000491295800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4AceDCGzEYKAdOiEK7rHkceQoQL4mBuFWp48A06NDYkPj3JFk2kEBI3Koqqdp-dvzFdmxCtiyTwijMkowZmzTzUial10erpAFtM7frCkVcL8TVlXx4UDcTZGd8FgYRQ_IZ7vrLEMs3XRh4V9me5I6c-AV3Ugg-PKv15U_JPBnhMXCZpWrv_Oy65XO31K6PFUrv3vhmekIvlR8LcLAqJ3P_e595MhvZI90fwr1AJrBaJHOjzgw0KuoS6dz02u8aPhKfYeFXg-qR-v6djmvT--Cnp5chixJpK_aIoNdOqOmBs20deHK3kgNn3ww9rqD38epoKT3rtuiR7mvarujti5M4ehiqsS6Tu5Pj1uFpEtsqJMBy1U-YURoBubGQM80xQ8gaDZGBcebe0SmttNUgHS9UVqu8TMvSfSUwhozzpijZCpmquhWuEgoSGiWyHATaJtNC5cBTjUYJi6htXiPp6I8XEGuO-9YXz0XYe6Sq8CAVHqQiglQj2-Mpr8OCG38NXvKojAdGQGqkPoK1iCr5Vri9FlOSsSZf-33WOpnxzx5m6tXJVL83wA0yDe_99ltvM0jbJ_Cw1UM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4hhrS9wDY2UcY2P-xpWiCpm8R-BAaiWylIyybeIud83iogRaUg8d_jc91u0hASb1FkKz8-2_f57nwfwCcnVWk1ZUkmrUt6eaOShuej08qicZnfdYUiroNyOFRnZ_p0Cb4szsIQUUg-o22-DLF8O8YbdpXtqMKTE15wn7FyVjyt9dejkjEdKWLoMkv1zrf-ScXZW3qbo4WKHRz_GJ-gpvLfEhzsyuHa097oJaxG_ih2Z4C_giVqX8PaXJtBxKm6Duenk9GtwbuEcyx4PWh_C1bw9Gxb_AqeenEc8ihJVFElQpz4YS32vHU7xz_-VrLnLZwVBy1O7q48MRX9cSW-mqkRo1b8uPRjTuyHeqxv4OfhQbV_lERhhQRlrqeJtNoQUmEd5tIUlBFm3W6ZofUG3xMqo40zqDwz1M7ovEmbxn8lSkmyKHplI9_CcjtuaQMEKuw2JHMsyfWkKXWORWrI6tIRGZd3IJ3_8Rpj1XEWv7iow-4j1TWDVDNIdQSpA58XXa5mJTcea7zOqCwaRkA6sDWHtY6T8rr2uy2plZS9YvPhXh_h-VF1PKgH_eH3d_CCnzPL29uC5enkht7DCt5OR9eTD2Hk3QMx79iM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy-Preserving+Support+Vector+Machine+Training+Over+Blockchain-Based+Encrypted+IoT+Data+in+Smart+Cities&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Shen%2C+Meng&rft.au=Tang%2C+Xiangyun&rft.au=Zhu%2C+Liehuang&rft.au=Du%2C+Xiaojiang&rft.date=2019-10-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=6&rft.issue=5&rft.spage=7702&rft.epage=7712&rft_id=info:doi/10.1109%2FJIOT.2019.2901840&rft.externalDocID=8653362
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon