About Intrinsic Transversality of Pairs of Sets
The article continues the study of the ‘regular’ arrangement of a collection of sets near a point in their intersection. Such regular intersection or, in other words, transversality properties are crucial for the validity of qualification conditions in optimization as well as subdifferential, normal...
Uloženo v:
| Vydáno v: | Set-valued and variational analysis Ročník 26; číslo 1; s. 111 - 142 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.03.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 1877-0533, 1877-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The article continues the study of the ‘regular’ arrangement of a collection of sets near a point in their intersection. Such regular intersection or, in other words,
transversality
properties are crucial for the validity of qualification conditions in optimization as well as subdifferential, normal cone and coderivative calculus, and convergence analysis of computational algorithms. One of the main motivations for the development of the transversality theory of collections of sets comes from the convergence analysis of alternating projections for solving feasibility problems. This article targets infinite dimensional extensions of the
intrinsic transversality
property introduced recently by Drusvyatskiy, Ioffe and Lewis as a sufficient condition for local linear convergence of alternating projections. Several characterizations of this property are established involving new limiting objects defined for pairs of sets. Special attention is given to the convex case. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1877-0533 1877-0541 |
| DOI: | 10.1007/s11228-017-0446-3 |