About Intrinsic Transversality of Pairs of Sets

The article continues the study of the ‘regular’ arrangement of a collection of sets near a point in their intersection. Such regular intersection or, in other words, transversality properties are crucial for the validity of qualification conditions in optimization as well as subdifferential, normal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Set-valued and variational analysis Ročník 26; číslo 1; s. 111 - 142
Hlavní autor: Kruger, Alexander Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.03.2018
Springer Nature B.V
Témata:
ISSN:1877-0533, 1877-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The article continues the study of the ‘regular’ arrangement of a collection of sets near a point in their intersection. Such regular intersection or, in other words, transversality properties are crucial for the validity of qualification conditions in optimization as well as subdifferential, normal cone and coderivative calculus, and convergence analysis of computational algorithms. One of the main motivations for the development of the transversality theory of collections of sets comes from the convergence analysis of alternating projections for solving feasibility problems. This article targets infinite dimensional extensions of the intrinsic transversality property introduced recently by Drusvyatskiy, Ioffe and Lewis as a sufficient condition for local linear convergence of alternating projections. Several characterizations of this property are established involving new limiting objects defined for pairs of sets. Special attention is given to the convex case.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-017-0446-3