Indoor Localization by Fusing a Group of Fingerprints Based on Random Forests
Indoor localization is becoming critical to empower Internet of Things for various applications, such as asset tracking, autonomous parking, virtual reality, context awareness, condition monitoring, geolocation, smart manufacturing, as well as smart cities. It is well known that indoor localization...
Uloženo v:
| Vydáno v: | IEEE internet of things journal Ročník 5; číslo 6; s. 4686 - 4698 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2327-4662, 2327-4662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Indoor localization is becoming critical to empower Internet of Things for various applications, such as asset tracking, autonomous parking, virtual reality, context awareness, condition monitoring, geolocation, smart manufacturing, as well as smart cities. It is well known that indoor localization based on some single fingerprints is rather susceptible to the changing environment. The efficiency of building single fingerprints from one localization system is also low. Recently, we first proposed a group of fingerprints (GOOF) based localization to improve the efficiency of building fingerprints, and then proposed an efficient fusion algorithm, namely, multiple classifiers multiple samples (MUCUS), to improve the accuracy of localization. However, the main drawbacks of MUCUS are the low localization efficiency and low accuracy when all classifiers show poor performance simultaneously. In this paper, based on the aforementioned GOOF, we propose a sliding window aided mode-based (SWIM) fusion algorithm to balance the localization accuracy and efficiency. SWIM first adopts windowing and sliding techniques to improve the localization efficiency, and then obtains a more accurate estimate by minimizing the entropy of multiple classifiers or multiple samples. This can guarantee our estimator to be robust to changing environment and larger noise level. We demonstrate the performance of our algorithms through simulations and real experimental data via two universal software radio peripheral platforms. |
|---|---|
| AbstractList | Indoor localization is becoming critical to empower Internet of Things for various applications, such as asset tracking, autonomous parking, virtual reality, context awareness, condition monitoring, geolocation, smart manufacturing, as well as smart cities. It is well known that indoor localization based on some single fingerprints is rather susceptible to the changing environment. The efficiency of building single fingerprints from one localization system is also low. Recently, we first proposed a group of fingerprints (GOOF) based localization to improve the efficiency of building fingerprints, and then proposed an efficient fusion algorithm, namely, multiple classifiers multiple samples (MUCUS), to improve the accuracy of localization. However, the main drawbacks of MUCUS are the low localization efficiency and low accuracy when all classifiers show poor performance simultaneously. In this paper, based on the aforementioned GOOF, we propose a sliding window aided mode-based (SWIM) fusion algorithm to balance the localization accuracy and efficiency. SWIM first adopts windowing and sliding techniques to improve the localization efficiency, and then obtains a more accurate estimate by minimizing the entropy of multiple classifiers or multiple samples. This can guarantee our estimator to be robust to changing environment and larger noise level. We demonstrate the performance of our algorithms through simulations and real experimental data via two universal software radio peripheral platforms. |
| Author | Ansari, Nirwan Li, Lin Guo, Xiansheng Li, Huiyong |
| Author_xml | – sequence: 1 givenname: Xiansheng orcidid: 0000-0002-8440-1607 surname: Guo fullname: Guo, Xiansheng email: xsguo@uestc.edu.cn organization: Department of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Nirwan orcidid: 0000-0001-8541-3565 surname: Ansari fullname: Ansari, Nirwan email: nirwan.ansari@njit.edu organization: Department of Electrical and Computer Engineering, Advanced Networking Laboratory, New Jersey Institute of Technology, Newark, NJ, USA – sequence: 3 givenname: Lin orcidid: 0000-0002-8383-7468 surname: Li fullname: Li, Lin email: hyli@uestc.edu.cn organization: Department of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Huiyong surname: Li fullname: Li, Huiyong email: linli9419@gmail.com organization: Department of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, China |
| BookMark | eNp9kM1KAzEURoNUsNY-gLgJuJ6av8kkSy1OrVQK0n1Ik4yktJOazCzq05taEXHhKjfwnftdziUYtKF1AFxjNMEYybvn-XI1IQiLCREYcYTPwJBQUhWMczL4NV-AcUobhFDGSiz5ELzMWxtChItg9NZ_6M6HFq4PsO6Tb9-ghrMY-j0MDazz38V99G2X4INOzsIcfdWZ38E6RJe6dAXOG71Nbvz9jsCqflxNn4rFcjaf3i8KQ0vZFdRSJgmxDaaNFrS0RDZsTWxZaYkZdhWzRljEBDWGk1JIIoW0jFuODJKSjsDtae0-hvc-F6tN6GObGxXBXDLKKypyCp9SJoaUomtUPn6n40FhpI7e1NGbOnpT394yU_1hjO--pHRR--2_5M2J9M65nyZBESsFpp_EUXrH |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_1109_JIOT_2024_3465518 crossref_primary_10_1109_TVT_2019_2929360 crossref_primary_10_1186_s43020_021_00041_3 crossref_primary_10_1109_JSEN_2024_3432154 crossref_primary_10_1109_JIOT_2019_2920081 crossref_primary_10_1109_JIOT_2024_3382046 crossref_primary_10_1109_JSEN_2020_3001382 crossref_primary_10_1109_TITS_2021_3053942 crossref_primary_10_3390_electronics13224448 crossref_primary_10_1109_JIOT_2019_2932464 crossref_primary_10_3390_electronics14142807 crossref_primary_10_3390_s22135051 crossref_primary_10_3390_s24216876 crossref_primary_10_1109_ACCESS_2024_3384625 crossref_primary_10_1186_s13638_021_02001_6 crossref_primary_10_1109_ACCESS_2022_3183113 crossref_primary_10_1016_j_future_2023_10_003 crossref_primary_10_1109_LAWP_2019_2934466 crossref_primary_10_1109_ACCESS_2021_3080288 crossref_primary_10_1109_JIOT_2019_2912808 crossref_primary_10_1109_JIOT_2019_2946500 crossref_primary_10_1109_JIOT_2022_3222003 crossref_primary_10_1016_j_iot_2024_101271 crossref_primary_10_1109_COMST_2020_3014304 crossref_primary_10_1109_LCOMM_2020_3047352 crossref_primary_10_3390_s19204507 crossref_primary_10_1109_JIOT_2020_3004496 crossref_primary_10_1631_FITEE_2000505 crossref_primary_10_1109_JIOT_2019_2906489 crossref_primary_10_1016_j_pmcj_2022_101548 crossref_primary_10_1016_j_optcom_2023_129776 crossref_primary_10_1109_ACCESS_2024_3360228 crossref_primary_10_1109_ACCESS_2019_2922995 crossref_primary_10_1109_ACCESS_2024_3519874 crossref_primary_10_3390_s19020324 crossref_primary_10_1109_JIOT_2018_2870659 crossref_primary_10_1049_el_2018_7722 crossref_primary_10_1109_JSEN_2024_3352535 crossref_primary_10_1016_j_phycom_2024_102303 crossref_primary_10_3390_s19183983 crossref_primary_10_1109_JIOT_2021_3127690 crossref_primary_10_1109_TVT_2022_3190136 crossref_primary_10_1088_1742_6596_1755_1_012033 crossref_primary_10_1109_ACCESS_2019_2903273 crossref_primary_10_1016_j_eswa_2022_118889 crossref_primary_10_3390_s22239044 crossref_primary_10_1109_JIOT_2022_3185127 crossref_primary_10_1109_JIOT_2024_3521084 crossref_primary_10_1088_1742_6596_2170_1_012020 crossref_primary_10_1109_COMST_2019_2951036 crossref_primary_10_1109_ACCESS_2024_3493889 crossref_primary_10_1109_JSEN_2023_3289826 crossref_primary_10_1109_JIOT_2018_2871831 crossref_primary_10_1109_TCOMM_2023_3342228 crossref_primary_10_1109_TIM_2019_2922752 crossref_primary_10_3390_en14102759 crossref_primary_10_1155_2022_7314887 crossref_primary_10_1016_j_sftr_2025_101260 crossref_primary_10_1109_ACCESS_2020_3007147 crossref_primary_10_1109_JIOT_2019_2957778 crossref_primary_10_3390_s22155840 crossref_primary_10_1002_dac_5828 crossref_primary_10_1109_ACCESS_2019_2895131 crossref_primary_10_1109_JSEN_2021_3137327 crossref_primary_10_1109_JIOT_2018_2889303 |
| Cites_doi | 10.1109/TWC.2011.101211.101957 10.1561/0600000035 10.1109/JPHOT.2017.2767576 10.1109/TVT.2015.2397598 10.1109/JSEN.2012.2223209 10.1016/j.comcom.2015.09.022 10.1109/LAWP.2006.883083 10.1023/A:1010933404324 10.1109/JIOT.2016.2553100 10.1007/s11432-009-0025-9 10.1109/MoWNet.2013.6613811 10.1007/s11045-010-0119-y 10.1109/TVT.2017.2731874 10.1109/TVT.2012.2225074 10.1109/COMST.2014.2387697 10.1109/IEMBS.1993.978564 10.1109/MILCOM.2009.5379787 10.1109/JIOT.2016.2558659 10.1109/TWC.2010.05.090061 10.1109/TWC.2014.2314640 10.1109/JSEN.2016.2558184 10.1002/9780470825631 10.1109/TMC.2014.2320254 10.1109/JIOT.2016.2628713 10.1109/78.934131 10.1109/GLOCOM.2008.ECP.421 10.1109/LCOMM.2012.022112.120131 10.1109/JIOT.2017.2717853 10.1016/j.eswa.2014.07.042 10.1109/TMC.2011.243 10.1109/IPIN.2015.7346754 10.1109/SAM.2006.1706192 10.1109/JIOT.2015.2506258 10.1109/TPDS.2010.39 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2018.2810601 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 4698 |
| ExternalDocumentID | 10_1109_JIOT_2018_2810601 8304581 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: ZYGX2016J028 – fundername: National Natural Science Foundation of China grantid: 61371184; 61671137; 61771114; 61771316 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c359t-3d34922df13fa835d29f4b2d57a9141e74dc8d0483cc625892989d46d60c0993 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 117 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456475500043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Mon Jun 30 02:35:54 EDT 2025 Sat Nov 29 06:16:43 EST 2025 Tue Nov 18 22:49:30 EST 2025 Wed Aug 27 03:02:50 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-3d34922df13fa835d29f4b2d57a9141e74dc8d0483cc625892989d46d60c0993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8440-1607 0000-0002-8383-7468 0000-0001-8541-3565 |
| PQID | 2169436738 |
| PQPubID | 2040421 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_JIOT_2018_2810601 proquest_journals_2169436738 crossref_citationtrail_10_1109_JIOT_2018_2810601 ieee_primary_8304581 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-01 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref38 ref19 ref18 nikitaki (ref35) 2012 ref24 ref26 ref25 criminisi (ref39) 2012; 7 ref20 ref22 ref21 hara (ref23) 2007 jiang (ref40) 2017 ref28 ref27 ref29 ref8 ref7 ikeda (ref12) 2007 ref9 ref4 ref3 ref6 ref5 öktem (ref13) 2010 gwon (ref16) 2004; 2 liu (ref34) 2001; 49 |
| References_xml | – ident: ref17 doi: 10.1109/TWC.2011.101211.101957 – volume: 7 start-page: 81 year: 2012 ident: ref39 article-title: Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning publication-title: Found Trends Comput Graph Vis doi: 10.1561/0600000035 – ident: ref8 doi: 10.1109/JPHOT.2017.2767576 – start-page: 1 year: 2007 ident: ref23 article-title: Three estimation methods for RSSI-based localization with multiple transmit antennas publication-title: Proc IEEE PIMRC – ident: ref36 doi: 10.1109/TVT.2015.2397598 – ident: ref33 doi: 10.1109/JSEN.2012.2223209 – ident: ref37 doi: 10.1016/j.comcom.2015.09.022 – ident: ref22 doi: 10.1109/LAWP.2006.883083 – ident: ref38 doi: 10.1023/A:1010933404324 – ident: ref4 doi: 10.1109/JIOT.2016.2553100 – start-page: 876 year: 2010 ident: ref13 article-title: Power delay doppler profile fingerprinting for mobile localization in NLOS publication-title: Proc PIMRC – ident: ref19 doi: 10.1007/s11432-009-0025-9 – ident: ref25 doi: 10.1109/MoWNet.2013.6613811 – ident: ref20 doi: 10.1007/s11045-010-0119-y – ident: ref30 doi: 10.1109/TVT.2017.2731874 – ident: ref7 doi: 10.1109/TVT.2012.2225074 – ident: ref2 doi: 10.1109/COMST.2014.2387697 – ident: ref32 doi: 10.1109/IEMBS.1993.978564 – start-page: 195 year: 2012 ident: ref35 article-title: Efficient training for fingerprint based positioning using matrix completion publication-title: Proc IEEE EUSIPCO – volume: 2 start-page: 1032 year: 2004 ident: ref16 article-title: Robust indoor location estimation of stationary and mobile users publication-title: Proc IEEE InfoCom – ident: ref21 doi: 10.1109/MILCOM.2009.5379787 – ident: ref9 doi: 10.1109/JIOT.2016.2558659 – ident: ref14 doi: 10.1109/TWC.2010.05.090061 – ident: ref6 doi: 10.1109/TWC.2014.2314640 – ident: ref1 doi: 10.1109/JSEN.2016.2558184 – ident: ref31 doi: 10.1002/9780470825631 – start-page: 1 year: 2007 ident: ref12 article-title: Effects of spatial correlation between signal subspaces on indoor localization using subspace matching publication-title: Proc IEEE TENCON – ident: ref5 doi: 10.1109/TMC.2014.2320254 – ident: ref26 doi: 10.1109/JIOT.2016.2628713 – volume: 49 start-page: 1605 year: 2001 ident: ref34 article-title: A subspace-based direction finding algorithm using fractional lower order statistics publication-title: IEEE Trans Signal Process doi: 10.1109/78.934131 – ident: ref15 doi: 10.1109/GLOCOM.2008.ECP.421 – ident: ref18 doi: 10.1109/LCOMM.2012.022112.120131 – ident: ref27 doi: 10.1109/JIOT.2017.2717853 – ident: ref28 doi: 10.1016/j.eswa.2014.07.042 – ident: ref10 doi: 10.1109/TMC.2011.243 – ident: ref29 doi: 10.1109/IPIN.2015.7346754 – ident: ref11 doi: 10.1109/SAM.2006.1706192 – ident: ref3 doi: 10.1109/JIOT.2015.2506258 – ident: ref24 doi: 10.1109/TPDS.2010.39 – start-page: 2073 year: 2017 ident: ref40 article-title: Generalized ambiguity decompositions for classification with applications in active learning and unsupervised ensemble pruning publication-title: Proc AAAI |
| SSID | ssj0001105196 |
| Score | 2.4746623 |
| Snippet | Indoor localization is becoming critical to empower Internet of Things for various applications, such as asset tracking, autonomous parking, virtual reality,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4686 |
| SubjectTerms | Accuracy Algorithms Changing environments Classifiers Computer simulation Condition monitoring Efficiency Fingerprint identification Fingerprints Group of fingerprints (GOOFs) Indoor environments Internet of Things Localization Location awareness Mucus multiple antennas random forests (RFs) Sliding sliding window aided mode-based (SWIM) fusion Software radio universal software radio peripheral (USRP) Virtual reality |
| Title | Indoor Localization by Fusing a Group of Fingerprints Based on Random Forests |
| URI | https://ieeexplore.ieee.org/document/8304581 https://www.proquest.com/docview/2169436738 |
| Volume | 5 |
| WOSCitedRecordID | wos000456475500043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zePDi1ClOp-TgSezWpmmTHFUcTnSK7LBbSZNUBG1l7QT_e_vSbCKK4C2H90p5r-n7fj-ETvxAUxNx4UmmIg8ceI9ncKI0UoZkxJfSgk2wyYTPZuKhhc5WszDGGNt8ZgZwtLV8XagFpMqG3Jb16lhnjTHWzGp95VMCcEZiV7gMfDG8Gd9PoXeLDwgPYO3IN9NjsVR-_ICtVRl1_vc-W2jTeY_4vFH3NmqZfAd1lsgM2F3ULrob57oo5vgWLJWbtMTpBx5Bm_sTltimnHCR4ZFN60F2ryrxRW3SNK5JH2XN_4oBt7Osyl00HV1NL689B5zgqTASlRdq2DlIdBaEmaxdLE1ERlOiIyZFQAPDqFZcwzJ5per4hwtYw65prGNf1R5juIfaeZGbfYSplJkELyiVhEoR8YwQlkpBTSq4FqaH_KVIE-WWigO2xUtigwtfJKCFBLSQOC300OmK5a3ZqPEXcRfEviJ0Eu-h_lJvibtzZUKCWNAQUEwPfuc6RBvw7KYZpY_a1XxhjtC6eq-ey_mx_Zw-AVWPx58 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH8MFfTitzg_c_AkVps0XZOjimPTOUV28FbSJBVBV1k7wf_eviybiCJ4y-E9Wt5r-r7fD-AopIbbWMhAJToO0IEPRI4nzmNtWc5CpRzYRNLvi8dHed-Ak9ksjLXWNZ_ZUzy6Wr4p9BhTZWfClfXqWGc-5pzRybTWV0aFojvS8qVLGsqz6-7dALu3xCkTFBePfDM-Dk3lxy_Y2ZX2yv_eaBWWvf9IzicKX4OGHa7DyhSbgfirugG33aEpihHpoa3ys5Yk-yBtbHR_Ioq4pBMpctJ2iT3M71UluaiNmiE16YOq-V8JIneWVbkJg_bV4LITeOiEQEexrILI4NZBZnIa5ap2sgyTOc-YiRMlKac24UYLg-vkta4jICFxEbvhLdMKde0zRlswNyyGdhsIVypX6AdlinElY5EzlmRKcptJYaRtQjgVaar9WnFEt3hJXXgRyhS1kKIWUq-FJhzPWN4mOzX-It5Asc8IvcSbsDfVW-pvXZky2pI8QhzTnd-5DmGxM7jtpb1u_2YXlvA5k9aUPZirRmO7Dwv6vXouRwfu0_oE4frK5g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indoor+Localization+by+Fusing+a+Group+of+Fingerprints+Based+on+Random+Forests&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Guo%2C+Xiansheng&rft.au=Ansari%2C+Nirwan&rft.au=Li%2C+Lin&rft.au=Li%2C+Huiyong&rft.date=2018-12-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=5&rft.issue=6&rft.spage=4686&rft.epage=4698&rft_id=info:doi/10.1109%2FJIOT.2018.2810601&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2018_2810601 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |