Distributed Optimization of Hierarchical Small Cell Networks: A GNEP Framework

Deployment of small cell base stations (SBSs) overlaying the coverage area of a macrocell BS (MBS) results in a two-tier hierarchical small cell network. Cross-tier and inter-tier interference not only jeopardize primary macrocell communication but also limit the spectral efficiency of small cell co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications Jg. 35; H. 2; S. 249 - 264
Hauptverfasser: Jiaheng Wang, Wei Guan, Yongming Huang, Schober, Robert, Xiaohu You
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.02.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0733-8716, 1558-0008
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deployment of small cell base stations (SBSs) overlaying the coverage area of a macrocell BS (MBS) results in a two-tier hierarchical small cell network. Cross-tier and inter-tier interference not only jeopardize primary macrocell communication but also limit the spectral efficiency of small cell communication. This paper focuses on distributed interference management for downlink small cell networks. We address the optimization of transmit strategies from both the game theoretical and the network utility maximization (NUM) perspectives and show that they can be unified in a generalized Nash equilibrium problem (GNEP) framework. Specifically, the small cell network design is first formulated as a GNEP, where the SBSs and MBS compete for the spectral resources by maximizing their own rates while satisfying global quality of service (QoS) constraints. We analyze the GNEP via variational inequality theory and propose distributed algorithms, which only require the broadcasting of some pricing information, to achieve a generalized Nash equilibrium (GNE). Then, we also consider a nonconvex NUM problem that aims to maximize the sum rate of all BSs subject to global QoS constraints. We establish the connection between the NUM problem and a penalized GNEP and show that its stationary solution can be obtained via a fixed point iteration of the GNE. We propose GNEP-based distributed algorithms that achieve a stationary solution of the NUM problem at the expense of additional signaling overhead and complexity. The convergence of the proposed algorithms is proved and guaranteed for properly chosen algorithm parameters. The proposed GNEP framework can scale from a QoS constrained game to an NUM design for small cell networks by trading off signaling overhead and complexity.
AbstractList Deployment of small cell base stations (SBSs) overlaying the coverage area of a macrocell BS (MBS) results in a two-tier hierarchical small cell network. Cross-tier and inter-tier interference not only jeopardize primary macrocell communication but also limit the spectral efficiency of small cell communication. This paper focuses on distributed interference management for downlink small cell networks. We address the optimization of transmit strategies from both the game theoretical and the network utility maximization (NUM) perspectives and show that they can be unified in a generalized Nash equilibrium problem (GNEP) framework. Specifically, the small cell network design is first formulated as a GNEP, where the SBSs and MBS compete for the spectral resources by maximizing their own rates while satisfying global quality of service (QoS) constraints. We analyze the GNEP via variational inequality theory and propose distributed algorithms, which only require the broadcasting of some pricing information, to achieve a generalized Nash equilibrium (GNE). Then, we also consider a nonconvex NUM problem that aims to maximize the sum rate of all BSs subject to global QoS constraints. We establish the connection between the NUM problem and a penalized GNEP and show that its stationary solution can be obtained via a fixed point iteration of the GNE. We propose GNEP-based distributed algorithms that achieve a stationary solution of the NUM problem at the expense of additional signaling overhead and complexity. The convergence of the proposed algorithms is proved and guaranteed for properly chosen algorithm parameters. The proposed GNEP framework can scale from a QoS constrained game to an NUM design for small cell networks by trading off signaling overhead and complexity.
Author Jiaheng Wang
Schober, Robert
Xiaohu You
Wei Guan
Yongming Huang
Author_xml – sequence: 1
  surname: Jiaheng Wang
  fullname: Jiaheng Wang
  email: jhwang@seu.edu.cn
  organization: Nat. Mobile Commun. Res. Lab., Southeast Univ., Nanjing, China
– sequence: 2
  surname: Wei Guan
  fullname: Wei Guan
  email: weiguan@seu.edu.cn
  organization: Nat. Mobile Commun. Res. Lab., Southeast Univ., Nanjing, China
– sequence: 3
  surname: Yongming Huang
  fullname: Yongming Huang
  email: huangym@seu.edu.cn
  organization: Nat. Mobile Commun. Res. Lab., Southeast Univ., Nanjing, China
– sequence: 4
  givenname: Robert
  surname: Schober
  fullname: Schober, Robert
  email: robert.schober@fau.de
  organization: Inst. for Digital Commun., Friedrich Alexander Univ. Erlangen-Nuremberg, Erlangen, Germany
– sequence: 5
  surname: Xiaohu You
  fullname: Xiaohu You
  email: xhyu@seu.edu.cn
  organization: Nat. Mobile Commun. Res. Lab., Southeast Univ., Nanjing, China
BookMark eNp9kF1LwzAUhoMouE1_gHhT8Lozp22a1LtR96GMTZhel7Q9wcx-zCRD9NfbuuGFF97kQHif8_EMyWnTNkjIFdAxAE1uHzeTdBxQ4OMgZiJJkhMyAMaETykVp2RAeRj6gkN8TobWbimFKBLBgKzutXVG53uHpbfeOV3rL-l023it8hYajTTFqy5k5W1qWVVeit2zQvfRmjd75028-Wr65M2MrLH_uiBnSlYWL491RF5m0-d04S_X84d0svSLkCXOD_OypEwxilzmsZIBhIwrFnHMY5CcITBAXhRlGUV5FDNWljzIlUpiCTlGZTgiN4e-O9O-79G6bNvuTdONzECIkAnGEtGl-CFVmNZagyortPu5zhmpqwxo1svLenlZLy87yutI-EPujK6l-fyXuT4wGhF_87zbBgSE3zn-fHU
CODEN ISACEM
CitedBy_id crossref_primary_10_1002_ett_3254
crossref_primary_10_3390_s22093589
crossref_primary_10_1109_TCOMM_2024_3418893
crossref_primary_10_1109_TCOMM_2019_2938514
crossref_primary_10_1109_TWC_2020_3041339
crossref_primary_10_1016_j_phycom_2024_102301
crossref_primary_10_1109_TMC_2023_3297213
crossref_primary_10_1109_TVT_2019_2927127
crossref_primary_10_1109_TCOMM_2017_2778094
crossref_primary_10_1109_TSP_2017_2690387
crossref_primary_10_1109_TSP_2019_2926017
crossref_primary_10_1109_TCOMM_2018_2869562
crossref_primary_10_1109_TVT_2017_2749601
crossref_primary_10_1109_LCOMM_2017_2787676
crossref_primary_10_3390_e25030413
crossref_primary_10_1109_TNSM_2024_3524503
crossref_primary_10_1109_TSP_2017_2723353
crossref_primary_10_1007_s11432_018_9596_5
crossref_primary_10_1109_JIOT_2021_3131771
crossref_primary_10_1109_MWC_2019_1800353
crossref_primary_10_1109_ACCESS_2018_2856831
crossref_primary_10_1109_COMST_2018_2870996
crossref_primary_10_1109_ACCESS_2021_3131823
crossref_primary_10_1109_TCOMM_2020_2979971
crossref_primary_10_1109_TVT_2020_2966629
crossref_primary_10_1109_TWC_2018_2860963
crossref_primary_10_1109_TCOMM_2020_3045050
crossref_primary_10_1109_JSAC_2017_2725618
crossref_primary_10_1093_nsr_nwab069
Cites_doi 10.1109/TSP.2015.2500200
10.1109/TWC.2015.2496942
10.1109/MWC.2014.6845056
10.1017/CBO9781139061421
10.1109/JSAC.2014.2328098
10.1109/TWC.2013.022213.120016
10.1109/TSP.2010.2043138
10.1109/TWC.2012.020812.110025
10.1109/TCOMM.2015.2397888
10.1109/JSAC.2002.1007390
10.1109/TSP.2010.2092773
10.1109/TIT.2008.926399
10.1109/TSP.2015.2452231
10.1109/MSP.2010.936021
10.1109/TWC.2015.2407355
10.1017/CBO9780511804458.013
10.1007/s10287-004-0010-0
10.1109/JSAC.2014.141213
10.1109/TWC.2015.2403321
10.1109/49.414651
10.1109/TWC.2014.2318719
10.1109/TWC.2009.081386
10.1109/MWC.2015.7306534
10.1007/s10288-007-0054-4
10.1109/TIT.2014.2317791
10.1109/JSAC.2015.2416990
10.1109/TWC.2015.2456055
10.2307/1911749
10.1109/TWC.2014.2367032
10.1017/CBO9780511804441
10.1109/TWC.2015.2425397
10.1109/JSAC.2012.120401
10.1109/TWC.2012.012712.110073
10.1109/TVT.2013.2284572
10.1109/JSTSP.2007.914876
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSAC.2017.2658999
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 264
ExternalDocumentID 10_1109_JSAC_2017_2658999
7835181
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20160069; BK20130019
  funderid: 10.13039/501100004608
– fundername: Alexander von Humboldt Foundation, and the Fundamental Research Funds for the Central Universities
– fundername: 973 Program of China
  grantid: 2013CB336600
– fundername: National Natural Science Foundation of China
  grantid: 61571107; 61422105; 61531011; 61221002; 61521061; 61461136003
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c359t-3bdd05f50e7ab6fa21357f547eb61a75e151e7ccdd44b4655dd72bff96a1be4d3
IEDL.DBID RIE
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400412400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8716
IngestDate Mon Jun 30 10:15:32 EDT 2025
Sat Nov 29 03:22:58 EST 2025
Tue Nov 18 21:50:12 EST 2025
Wed Aug 27 02:47:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-3bdd05f50e7ab6fa21357f547eb61a75e151e7ccdd44b4655dd72bff96a1be4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1883585598
PQPubID 85481
PageCount 16
ParticipantIDs proquest_journals_1883585598
crossref_citationtrail_10_1109_JSAC_2017_2658999
ieee_primary_7835181
crossref_primary_10_1109_JSAC_2017_2658999
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
(ref39) 2010
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref17
ref38
ref16
ref19
ref18
facchinei (ref23) 2003
(ref1) 2013
ref24
cottle (ref40) 1992
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
bertsekas (ref41) 1999
ref7
ref9
ref4
scutari (ref27) 2011
ref3
ref6
ref5
luo (ref35) 2008; 2
razaviyayn (ref42) 2014
References_xml – ident: ref31
  doi: 10.1109/TSP.2015.2500200
– ident: ref34
  doi: 10.1109/TWC.2015.2496942
– ident: ref4
  doi: 10.1109/MWC.2014.6845056
– ident: ref5
  doi: 10.1017/CBO9781139061421
– ident: ref2
  doi: 10.1109/JSAC.2014.2328098
– ident: ref21
  doi: 10.1109/TWC.2013.022213.120016
– ident: ref26
  doi: 10.1109/TSP.2010.2043138
– ident: ref20
  doi: 10.1109/TWC.2012.020812.110025
– ident: ref12
  doi: 10.1109/TCOMM.2015.2397888
– ident: ref16
  doi: 10.1109/JSAC.2002.1007390
– ident: ref18
  doi: 10.1109/TSP.2010.2092773
– ident: ref25
  doi: 10.1109/TIT.2008.926399
– ident: ref29
  doi: 10.1109/TSP.2015.2452231
– ident: ref24
  doi: 10.1109/MSP.2010.936021
– ident: ref22
  doi: 10.1109/TWC.2015.2407355
– ident: ref32
  doi: 10.1017/CBO9780511804458.013
– ident: ref37
  doi: 10.1007/s10287-004-0010-0
– ident: ref11
  doi: 10.1109/JSAC.2014.141213
– ident: ref6
  doi: 10.1109/TWC.2015.2403321
– ident: ref15
  doi: 10.1109/49.414651
– ident: ref28
  doi: 10.1109/TWC.2014.2318719
– year: 2014
  ident: ref42
  article-title: Parallel successive convex approximation for nonsmooth nonconvex optimization
– ident: ref8
  doi: 10.1109/TWC.2009.081386
– ident: ref7
  doi: 10.1109/MWC.2015.7306534
– year: 2010
  ident: ref39
  publication-title: Further Advancements for E-UTRA Physical Layer Aspects (Release 9)
– ident: ref33
  doi: 10.1007/s10288-007-0054-4
– year: 1992
  ident: ref40
  publication-title: The Linear Complementarity Problem
– year: 1999
  ident: ref41
  publication-title: Nonlinear Programming
– ident: ref17
  doi: 10.1109/TIT.2014.2317791
– year: 2011
  ident: ref27
  article-title: Monotone games for cognitive radio systems
  publication-title: Distributed Decision Making and Control
– ident: ref14
  doi: 10.1109/JSAC.2015.2416990
– ident: ref19
  doi: 10.1109/TWC.2015.2456055
– ident: ref36
  doi: 10.2307/1911749
– ident: ref13
  doi: 10.1109/TWC.2014.2367032
– ident: ref38
  doi: 10.1017/CBO9780511804441
– ident: ref30
  doi: 10.1109/TWC.2015.2425397
– ident: ref3
  doi: 10.1109/JSAC.2012.120401
– ident: ref9
  doi: 10.1109/TWC.2012.012712.110073
– year: 2013
  ident: ref1
  article-title: 5G radio access, research, and vision
– year: 2003
  ident: ref23
  publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems
– ident: ref10
  doi: 10.1109/TVT.2013.2284572
– volume: 2
  start-page: 57
  year: 2008
  ident: ref35
  article-title: Spectrum management: Complexity and duality
  publication-title: IEEE J Sel Topics Signal Process
  doi: 10.1109/JSTSP.2007.914876
SSID ssj0014482
Score 2.4251018
Snippet Deployment of small cell base stations (SBSs) overlaying the coverage area of a macrocell BS (MBS) results in a two-tier hierarchical small cell network....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 249
SubjectTerms Algorithms
Complexity
Computer architecture
Distributed optimization
Economic models
Game theory
Games
generalized Nash equilibrium problem
Interference
Macrocell networks
Maximization
Microprocessors
network utility maximization
Networks
Optimization
Overlaying
Quality of service
Quality of service architectures
Radio equipment
small cell network
variational inequality
Title Distributed Optimization of Hierarchical Small Cell Networks: A GNEP Framework
URI https://ieeexplore.ieee.org/document/7835181
https://www.proquest.com/docview/1883585598
Volume 35
WOSCitedRecordID wos000400412400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0008
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014482
  issn: 0733-8716
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5q8aAHX1WsVtmDJzFtNrvJZr2V2lo8xEIVegvZFwhpK334-81s0ioogpcQyE5YZjYz2Z2Z70PoJoCoZiLf40wqj_E49Aqfp72MqtiI2BIpmSOb4EkSTyZiVEN3214YY4wrPjNtuHW5fD1Xazgq68ApBYE-6x3Oedmrtc0YFNsMlzHglHqwCagymMQXnadxtwdFXLwNMxMO5vUrBjlSlR-e2IWXweH_JnaEDqrfSNwt7X6MamZ2gva_gQs2UPIAmLhAZ2U0fi48w7RqucRzi4dv0HjseFByPJ5meY57prgkZVX48h538WPSH-HBpnjrFL0O-i-9oVexJ3iKhmLlUam1H9rQNzyTkc0CQkNuQwYkKCTjoSliveFKac2YBBQ1rXkgrRVRRqRhmp6h-mw-M-cIE6sKGauIHyumqBRKWGWDTFHLhOJRE_kbfaaqghYHhos8dVsMX6RgghRMkFYmaKLbrch7iavx1-AG6Hw7sFJ3E7U2RkurL2-Zkrh4GAPs_MXvUpdoD95dVl63UH21WJsrtKs-Vm_LxbVbVJ-iTMnH
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED9EBfXBb3E6NQ8-idWmSZfGtzGd86sKKvhWmi8YzE3c5t9vL-2moAi-lEJzNNyld03u7vcDOIwwqtlGGAiudMBFEgeFzzNBznRiZeKoUtyTTYg0TV5e5MMMHE97Yay1vvjMnuCtz-WbgR7jUdkpnlJQ7LOeizmPaNmtNc0ZFBsNnzMQjAW4DahymDSUp9ePzRaWcYkTnJv0QK9fUcjTqvzwxT7AtFf-N7VVWK5-JEmztPwazNj-Oix9gxfcgPQcUXGR0Moacl_4hteq6ZIMHOl0sfXYM6H0yONr3uuRli0uaVkXPjwjTXKZXjyQ9qR8axOe2xdPrU5Q8ScEmsVyFDBlTBi7OLQiVw2XR5TFwsUcaVBoLmJbRHsrtDaGc4U4asaISDknGzlVlhu2BbP9Qd9uA6FOFzJO0zDRXDMltXTaRblmjkstGjUIJ_rMdAUujhwXvcxvMkKZoQkyNEFWmaAGR1ORtxJZ46_BG6jz6cBK3TWoT4yWVd_eMKNJ8TBB4Pmd36UOYKHzdHeb3V6lN7uwiO8p67DrMDt6H9s9mNcfo-7wfd8vsE9K0s0O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Optimization+of+Hierarchical+Small+Cell+Networks%3A+A+GNEP+Framework&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Wang%2C+Jiaheng&rft.au=Guan%2C+Wei&rft.au=Huang%2C+Yongming&rft.au=Schober%2C+Robert&rft.date=2017-02-01&rft.issn=0733-8716&rft.volume=35&rft.issue=2&rft.spage=249&rft.epage=264&rft_id=info:doi/10.1109%2FJSAC.2017.2658999&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSAC_2017_2658999
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon