Deep Reinforcement Learning for Cooperative Content Caching in Vehicular Edge Computing and Networks

In this article, we propose a cooperative edge caching scheme, a new paradigm to jointly optimize the content placement and content delivery in the vehicular edge computing and networks, with the aid of the flexible trilateral cooperations among a macro-cell station, roadside units, and smart vehicl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal Jg. 7; H. 1; S. 247 - 257
Hauptverfasser: Qiao, Guanhua, Leng, Supeng, Maharjan, Sabita, Zhang, Yan, Ansari, Nirwan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2327-4662, 2327-4662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, we propose a cooperative edge caching scheme, a new paradigm to jointly optimize the content placement and content delivery in the vehicular edge computing and networks, with the aid of the flexible trilateral cooperations among a macro-cell station, roadside units, and smart vehicles. We formulate the joint optimization problem as a double time-scale Markov decision process (DTS-MDP), based on the fact that the time-scale of content timeliness changes less frequently as compared to the vehicle mobility and network states during the content delivery process. At the beginning of the large time-scale, the content placement/updating decision can be obtained according to the content popularity, vehicle driving paths, and resource availability. On the small time-scale, the joint vehicle scheduling and bandwidth allocation scheme is designed to minimize the content access cost while satisfying the constraint on content delivery latency. To solve the long-term mixed integer linear programming (LT-MILP) problem, we propose a nature-inspired method based on the deep deterministic policy gradient (DDPG) framework to obtain a suboptimal solution with a low computation complexity. The simulation results demonstrate that the proposed cooperative caching system can reduce the system cost, as well as the content delivery latency, and improve content hit ratio, as compared to the noncooperative and random edge caching schemes.
AbstractList In this article, we propose a cooperative edge caching scheme, a new paradigm to jointly optimize the content placement and content delivery in the vehicular edge computing and networks, with the aid of the flexible trilateral cooperations among a macro-cell station, roadside units, and smart vehicles. We formulate the joint optimization problem as a double time-scale Markov decision process (DTS-MDP), based on the fact that the time-scale of content timeliness changes less frequently as compared to the vehicle mobility and network states during the content delivery process. At the beginning of the large time-scale, the content placement/updating decision can be obtained according to the content popularity, vehicle driving paths, and resource availability. On the small time-scale, the joint vehicle scheduling and bandwidth allocation scheme is designed to minimize the content access cost while satisfying the constraint on content delivery latency. To solve the long-term mixed integer linear programming (LT-MILP) problem, we propose a nature-inspired method based on the deep deterministic policy gradient (DDPG) framework to obtain a suboptimal solution with a low computation complexity. The simulation results demonstrate that the proposed cooperative caching system can reduce the system cost, as well as the content delivery latency, and improve content hit ratio, as compared to the noncooperative and random edge caching schemes.
Author Qiao, Guanhua
Ansari, Nirwan
Zhang, Yan
Maharjan, Sabita
Leng, Supeng
Author_xml – sequence: 1
  givenname: Guanhua
  surname: Qiao
  fullname: Qiao, Guanhua
  email: qghuestc@126.com
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Supeng
  orcidid: 0000-0003-0049-5982
  surname: Leng
  fullname: Leng, Supeng
  email: spleng@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Sabita
  orcidid: 0000-0002-4616-8488
  surname: Maharjan
  fullname: Maharjan, Sabita
  email: sabita@simula.no
  organization: Center for Resilient Networks and Applications, Simula Metropolitan Center for Digital Engineering, Oslo, Norway
– sequence: 4
  givenname: Yan
  orcidid: 0000-0002-8561-5092
  surname: Zhang
  fullname: Zhang, Yan
  email: yanzhang@ieee.org
  organization: Department of Informatics, University of Oslo, Oslo, Norway
– sequence: 5
  givenname: Nirwan
  orcidid: 0000-0001-8541-3565
  surname: Ansari
  fullname: Ansari, Nirwan
  email: nirwan.ansari@njit.edu
  organization: Department of Electrical and Computer Engineering, Advanced Networking Laboratory, New Jersey Institute of Technology, Newark, NJ, USA
BookMark eNp9kFFLwzAQx4NMcM59APGl4HNn0jRp8yh16mQ4kOlrqMl1y9zSmqaK396UDREffMqR-_3uuP8pGtjaAkLnBE8IweLqYbZYThJMxCQRKeMpPkLDhCZZnHKeDH7VJ2jcthuMcdAYEXyI9A1AEz2BsVXtFOzA-mgOpbPGrqLwFRV13YArvfmAUFvfA0Wp1n3f2OgF1kZ129JFU73qiV3T-b5XWh09gv-s3Vt7ho6rctvC-PCO0PPtdFncx_PF3ay4nseKMuFjygUI4DgXmuiKUk0xZYA55jpjimgKIlOKKFUxzHQFVJMKXgORJlrRIIzQ5X5u4-r3DlovN3XnbFgpE0pzzgkVJFDZnlKublsHlVTGhwPDca40W0mw7FOVfaqyT1UeUg0m-WM2zuxK9_Wvc7F3DAD88HmeCZZR-g2QT4Vy
CODEN IITJAU
CitedBy_id crossref_primary_10_1145_3664613
crossref_primary_10_1016_j_future_2024_107704
crossref_primary_10_1109_TITS_2020_3015210
crossref_primary_10_1109_JIOT_2024_3465553
crossref_primary_10_1155_2020_8837751
crossref_primary_10_1109_ACCESS_2022_3143815
crossref_primary_10_1109_JSYST_2024_3442958
crossref_primary_10_1007_s10586_024_04305_w
crossref_primary_10_1109_JIOT_2024_3401219
crossref_primary_10_1109_JIOT_2024_3366009
crossref_primary_10_1109_TMC_2024_3367543
crossref_primary_10_1109_COMST_2024_3442149
crossref_primary_10_1109_JIOT_2021_3081480
crossref_primary_10_1109_MNET_011_2000663
crossref_primary_10_1109_TITS_2023_3250320
crossref_primary_10_1109_TNET_2023_3278032
crossref_primary_10_1186_s13677_023_00472_0
crossref_primary_10_1016_j_sysarc_2021_102000
crossref_primary_10_1016_j_vehcom_2021_100398
crossref_primary_10_1109_TMC_2024_3403851
crossref_primary_10_1016_j_vehcom_2021_100397
crossref_primary_10_1016_j_vehcom_2021_100399
crossref_primary_10_1109_TMM_2024_3366399
crossref_primary_10_3390_app12199987
crossref_primary_10_1109_TNSM_2021_3123959
crossref_primary_10_1016_j_dcan_2024_12_006
crossref_primary_10_1109_TITS_2020_3017172
crossref_primary_10_1109_TSC_2021_3106260
crossref_primary_10_1109_JIOT_2024_3388297
crossref_primary_10_1016_j_vehcom_2021_100391
crossref_primary_10_1155_2020_8842694
crossref_primary_10_1007_s00500_023_09354_8
crossref_primary_10_1109_TVT_2021_3132961
crossref_primary_10_1007_s11518_024_5604_1
crossref_primary_10_1016_j_adhoc_2023_103386
crossref_primary_10_1016_j_jnca_2024_103886
crossref_primary_10_1109_TWC_2023_3272348
crossref_primary_10_1145_3653975
crossref_primary_10_1145_3447032
crossref_primary_10_1109_JIOT_2021_3098003
crossref_primary_10_1016_j_comnet_2023_110075
crossref_primary_10_1016_j_neucom_2023_126258
crossref_primary_10_1109_TWC_2024_3467285
crossref_primary_10_1109_JIOT_2024_3506713
crossref_primary_10_3390_electronics11142130
crossref_primary_10_1109_JSEN_2024_3436612
crossref_primary_10_1109_TMC_2021_3123135
crossref_primary_10_1109_TVT_2022_3210570
crossref_primary_10_1109_ACCESS_2020_2985731
crossref_primary_10_1049_itr2_12255
crossref_primary_10_1109_TITS_2025_3549493
crossref_primary_10_1109_JSAC_2024_3365893
crossref_primary_10_1109_JIOT_2021_3078701
crossref_primary_10_1109_TPDS_2022_3222509
crossref_primary_10_3390_informatics7040043
crossref_primary_10_1109_JIOT_2020_2997720
crossref_primary_10_1109_TCOMM_2022_3161021
crossref_primary_10_3390_rs15112801
crossref_primary_10_1109_JIOT_2022_3161571
crossref_primary_10_1109_TMC_2022_3193499
crossref_primary_10_1016_j_comcom_2022_12_021
crossref_primary_10_1109_TVT_2021_3092346
crossref_primary_10_1109_TIV_2023_3344478
crossref_primary_10_1007_s10586_022_03803_z
crossref_primary_10_1109_JIOT_2021_3089280
crossref_primary_10_1016_j_adhoc_2023_103313
crossref_primary_10_3390_computers12030063
crossref_primary_10_1016_j_comnet_2024_110395
crossref_primary_10_3390_app13020780
crossref_primary_10_1109_TVT_2024_3384952
crossref_primary_10_1016_j_vehcom_2025_100912
crossref_primary_10_1109_JIOT_2021_3094507
crossref_primary_10_1109_TCOMM_2020_3044298
crossref_primary_10_1109_TII_2022_3186039
crossref_primary_10_1109_MCOMSTD_001_2000045
crossref_primary_10_1109_TWC_2024_3462760
crossref_primary_10_3390_s23010499
crossref_primary_10_1109_ACCESS_2023_3297280
crossref_primary_10_1109_ACCESS_2022_3140719
crossref_primary_10_1109_TVT_2021_3133291
crossref_primary_10_3390_s23249687
crossref_primary_10_1109_TVT_2023_3234336
crossref_primary_10_1016_j_jestch_2024_101699
crossref_primary_10_1109_JIOT_2023_3264281
crossref_primary_10_1109_TITS_2022_3224395
crossref_primary_10_1109_TVT_2020_3029109
crossref_primary_10_1109_JSAC_2021_3087232
crossref_primary_10_1109_TWC_2022_3204738
crossref_primary_10_1109_TIV_2023_3323217
crossref_primary_10_1109_TVT_2021_3121096
crossref_primary_10_1016_j_tra_2020_08_005
crossref_primary_10_1016_j_eswa_2023_122834
crossref_primary_10_1109_TNSM_2021_3136439
crossref_primary_10_1155_2021_3759631
crossref_primary_10_1109_JIOT_2023_3324381
crossref_primary_10_1109_JIOT_2022_3229009
crossref_primary_10_1109_JIOT_2021_3061467
crossref_primary_10_1155_2022_3501329
crossref_primary_10_1016_j_comnet_2022_108797
crossref_primary_10_1109_LCOMM_2022_3208941
crossref_primary_10_1109_TVT_2023_3244966
crossref_primary_10_1109_TITS_2020_3017474
crossref_primary_10_1109_JIOT_2022_3156100
crossref_primary_10_1109_TNSE_2022_3153172
crossref_primary_10_1109_JIOT_2023_3235661
crossref_primary_10_1016_j_adhoc_2025_103888
crossref_primary_10_1016_j_comnet_2024_110761
crossref_primary_10_1016_j_vehcom_2023_100689
crossref_primary_10_1007_s11042_023_15590_9
crossref_primary_10_3390_s22186995
crossref_primary_10_1016_j_tcs_2024_114462
crossref_primary_10_1109_TNSE_2024_3433544
crossref_primary_10_1016_j_future_2024_107679
crossref_primary_10_1109_TCC_2023_3234543
crossref_primary_10_1109_JSTSP_2022_3221271
crossref_primary_10_1109_JIOT_2021_3084912
crossref_primary_10_3390_pr10091838
crossref_primary_10_1016_j_sysarc_2024_103306
crossref_primary_10_1016_j_jnca_2020_102966
crossref_primary_10_1109_TNSM_2022_3198074
crossref_primary_10_1109_JIOT_2023_3317971
crossref_primary_10_1016_j_simpat_2023_102810
crossref_primary_10_1109_JIOT_2024_3389656
crossref_primary_10_1155_2022_6138434
crossref_primary_10_1109_JSYST_2021_3137011
crossref_primary_10_3390_s23031732
crossref_primary_10_1007_s00607_024_01396_6
crossref_primary_10_1109_TITS_2023_3263239
crossref_primary_10_1109_TNSM_2021_3086721
crossref_primary_10_1145_3448099
crossref_primary_10_1109_JIOT_2022_3176289
crossref_primary_10_1109_MWC_012_2100587
crossref_primary_10_1109_TVT_2023_3277191
crossref_primary_10_1109_TPDS_2024_3368763
crossref_primary_10_1109_JIOT_2020_3000300
crossref_primary_10_1109_TITS_2023_3264553
crossref_primary_10_1002_dac_70188
crossref_primary_10_1016_j_vehcom_2024_100860
crossref_primary_10_1109_JIOT_2023_3289994
crossref_primary_10_1007_s12083_021_01252_w
crossref_primary_10_1109_TITS_2022_3184973
crossref_primary_10_1109_ACCESS_2020_2964029
crossref_primary_10_1016_j_comnet_2022_109513
crossref_primary_10_1109_ACCESS_2025_3559465
crossref_primary_10_1109_JIOT_2023_3292374
crossref_primary_10_1007_s12083_022_01369_6
crossref_primary_10_1109_MCE_2024_3358025
crossref_primary_10_1109_TITS_2021_3131240
crossref_primary_10_1109_TCE_2024_3454270
crossref_primary_10_1145_3461841
crossref_primary_10_1109_JIOT_2022_3151667
crossref_primary_10_1109_TVT_2023_3285073
crossref_primary_10_1631_FITEE_2400025
crossref_primary_10_1016_j_simpat_2024_103025
crossref_primary_10_1109_ACCESS_2020_3030943
crossref_primary_10_1109_TVT_2021_3077072
crossref_primary_10_1016_j_comcom_2024_107928
crossref_primary_10_1109_JIOT_2025_3545418
crossref_primary_10_1109_TVT_2022_3226764
crossref_primary_10_1109_COMST_2022_3149714
crossref_primary_10_1109_ACCESS_2020_3024683
crossref_primary_10_1109_JIOT_2023_3279048
crossref_primary_10_1109_TITS_2024_3392596
crossref_primary_10_1109_JIOT_2021_3109003
crossref_primary_10_1016_j_comcom_2023_09_005
crossref_primary_10_1109_TITS_2021_3087833
crossref_primary_10_1109_TSC_2023_3335412
crossref_primary_10_1109_TGCN_2022_3146145
crossref_primary_10_1109_TCCN_2020_3002253
crossref_primary_10_1016_j_jnca_2024_104039
crossref_primary_10_1109_JIOT_2023_3349255
crossref_primary_10_1109_TMC_2024_3481276
crossref_primary_10_1049_tje2_12250
crossref_primary_10_1109_TVT_2024_3357086
crossref_primary_10_1109_JIOT_2020_2981557
crossref_primary_10_1109_TITS_2020_3030496
crossref_primary_10_1109_ACCESS_2020_3011705
crossref_primary_10_1109_JIOT_2023_3265434
crossref_primary_10_1109_TSC_2022_3190375
crossref_primary_10_3390_fi14070192
crossref_primary_10_1109_JIOT_2021_3052542
crossref_primary_10_1109_JIOT_2021_3110913
crossref_primary_10_1088_1742_6596_2732_1_012001
crossref_primary_10_1145_3718361
crossref_primary_10_1007_s11280_022_01011_8
crossref_primary_10_1109_COMST_2023_3338153
crossref_primary_10_1109_JIOT_2021_3086623
crossref_primary_10_1016_j_icte_2024_05_012
crossref_primary_10_1109_MIC_2023_3284693
crossref_primary_10_1109_TCSS_2021_3068369
crossref_primary_10_1016_j_jnca_2024_104000
crossref_primary_10_1016_j_suscom_2025_101114
crossref_primary_10_1109_JIOT_2021_3087719
crossref_primary_10_1109_TITS_2020_3002712
crossref_primary_10_1109_TSC_2022_3203700
crossref_primary_10_1109_JIOT_2021_3138434
crossref_primary_10_1109_JIOT_2022_3209256
crossref_primary_10_1109_TITS_2022_3171071
crossref_primary_10_1109_TVT_2024_3479290
crossref_primary_10_3390_electronics12102294
crossref_primary_10_1007_s12559_024_10380_3
crossref_primary_10_1007_s10791_024_09476_z
crossref_primary_10_1109_TVT_2024_3473738
crossref_primary_10_3390_sym16070906
crossref_primary_10_1109_JIOT_2021_3068427
crossref_primary_10_1109_JSAC_2020_3036946
crossref_primary_10_1109_TGCN_2021_3127923
crossref_primary_10_1109_MNET_021_2000292
crossref_primary_10_1016_j_jksuci_2023_101813
crossref_primary_10_1109_TCE_2025_3571029
crossref_primary_10_1109_TNSE_2023_3292570
Cites_doi 10.1109/SPAWC.2016.7536874
10.1109/JIOT.2019.2903191
10.1109/TITS.2011.2171951
10.1109/TVT.2017.2784562
10.1109/TMC.2016.2597851
10.1109/JSTSP.2017.2787979
10.1109/MWC.2018.1700303
10.1109/ACCESS.2017.2693440
10.1109/TVT.2015.2479942
10.1016/j.mechatronics.2017.10.010
10.1109/TSP.2011.2165211
10.1109/COMST.2018.2841349
10.1587/transcom.2017CQP0014
10.1109/MCOM.2014.6736746
10.1109/GLOCOM.2016.7842121
10.1109/MNET.2018.1800097
10.1109/GLOCOM.2016.7841723
10.1109/JIOT.2018.2866947
10.1109/ICC.2018.8422220
10.1109/TVT.2015.2480711
10.1109/TCOMM.2014.2337890
10.1007/978-1-4615-6331-0
10.1109/ACCESS.2017.2714191
10.1109/JSAC.2016.2545413
10.3390/s16070974
10.3390/jsan5040017
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2019.2945640
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 257
ExternalDocumentID 10_1109_JIOT_2019_2945640
8879573
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: ZYGX2016Z011
  funderid: 10.13039/501100012226
– fundername: Science and Technology Program of Sichuan Province, China
  grantid: 2019YFH0007
– fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2018YFC0807101
  funderid: 10.13039/501100012166
– fundername: EU H2020 Project COSAFE
  grantid: MSCA-RISE-2018-824019
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-369e9e6089d1df33d3035e0606d75c1d3e97cc1ccf505dfe3d1feb5e042dc3f33
IEDL.DBID RIE
ISICitedReferencesCount 269
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508181000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Sun Oct 05 00:18:34 EDT 2025
Sat Nov 29 06:16:48 EST 2025
Tue Nov 18 22:20:16 EST 2025
Wed Aug 27 02:40:58 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-369e9e6089d1df33d3035e0606d75c1d3e97cc1ccf505dfe3d1feb5e042dc3f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0049-5982
0000-0002-4616-8488
0000-0002-8561-5092
0000-0001-8541-3565
PQID 2338661391
PQPubID 2040421
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_JIOT_2019_2945640
crossref_primary_10_1109_JIOT_2019_2945640
proquest_journals_2338661391
ieee_primary_8879573
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
lillicrap (ref33) 2015
ref15
ref36
ref14
ref31
ref10
ref2
ref1
ref17
csaba (ref32) 2010
ref16
(ref34) 2016
ref19
(ref24) 2018
ref18
silver (ref30) 2014
zhang (ref28) 2018; e101 b
ref26
ref25
konda (ref29) 1999; 13
zhang (ref20) 2018
ref22
ref21
(ref35) 2016
ref27
ref8
ref7
kleinberg (ref11) 2004
ref9
ref4
ref3
ref6
ref5
breslau (ref23) 2014
References_xml – ident: ref7
  doi: 10.1109/SPAWC.2016.7536874
– ident: ref2
  doi: 10.1109/JIOT.2019.2903191
– start-page: 126
  year: 2014
  ident: ref23
  article-title: Web caching and Zipf-like distribution: Evidence and implications
  publication-title: Proc IEEE Comput Commun Soc (INFOCOM)
– year: 2015
  ident: ref33
  article-title: Continuous control with deep reinforcement learning
  publication-title: arXiv preprint arXiv 1509 02971
– ident: ref26
  doi: 10.1109/TITS.2011.2171951
– start-page: 1
  year: 2010
  ident: ref32
  article-title: Algorithms for reinforcement learning
  publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning
– ident: ref10
  doi: 10.1109/TVT.2017.2784562
– ident: ref13
  doi: 10.1109/TMC.2016.2597851
– ident: ref22
  doi: 10.1109/JSTSP.2017.2787979
– ident: ref3
  doi: 10.1109/MWC.2018.1700303
– year: 2016
  ident: ref35
  publication-title: Reimplementation of DDPG(Continuous Control With Deep Reinforcement Learning) Based on OpenAI Gym + Tensorflow
– ident: ref9
  doi: 10.1109/ACCESS.2017.2693440
– ident: ref27
  doi: 10.1109/TVT.2015.2479942
– ident: ref21
  doi: 10.1016/j.mechatronics.2017.10.010
– ident: ref36
  doi: 10.1109/TSP.2011.2165211
– ident: ref4
  doi: 10.1109/COMST.2018.2841349
– volume: e101 b
  start-page: 1625
  year: 2018
  ident: ref28
  article-title: A deep reinforcement learning based approach for cost- and energy-aware multi-flow mobile data offloading
  publication-title: IEICE Trans Commun
  doi: 10.1587/transcom.2017CQP0014
– ident: ref8
  doi: 10.1109/MCOM.2014.6736746
– year: 2016
  ident: ref34
  publication-title: DC Data Sets
– ident: ref15
  doi: 10.1109/GLOCOM.2016.7842121
– ident: ref31
  doi: 10.1109/MNET.2018.1800097
– year: 2018
  ident: ref24
  publication-title: Geohash Algorithm
– year: 2004
  ident: ref11
  publication-title: Algorithm Design
– ident: ref14
  doi: 10.1109/GLOCOM.2016.7841723
– ident: ref16
  doi: 10.1109/JIOT.2018.2866947
– ident: ref19
  doi: 10.1109/ICC.2018.8422220
– ident: ref18
  doi: 10.1109/TVT.2015.2480711
– start-page: 387
  year: 2014
  ident: ref30
  article-title: Determinstic policy gradient algorithms
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref25
  doi: 10.1109/TCOMM.2014.2337890
– year: 2018
  ident: ref20
  article-title: Cache-enabled dynamic rate allocation via deep self-transfer reinforcement learning
  publication-title: arXiv 1893 11334v1
– volume: 13
  start-page: 1008
  year: 1999
  ident: ref29
  article-title: Actor-critic algorithm
  publication-title: Proc NIPS
– ident: ref12
  doi: 10.1007/978-1-4615-6331-0
– ident: ref17
  doi: 10.1109/ACCESS.2017.2714191
– ident: ref6
  doi: 10.1109/JSAC.2016.2545413
– ident: ref5
  doi: 10.3390/s16070974
– ident: ref1
  doi: 10.3390/jsan5040017
SSID ssj0001105196
Score 2.5945418
Snippet In this article, we propose a cooperative edge caching scheme, a new paradigm to jointly optimize the content placement and content delivery in the vehicular...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 247
SubjectTerms Base stations
Caching
Computational modeling
Computer simulation
Content delivery
content placement
Cooperative caching
cooperative edge caching
deep deterministic policy gradient (DDPG)
double time-scale Markov decision process (DTS-MDP)
Edge computing
Indexes
Integer programming
Intelligent vehicles
Internet of Things
Linear programming
Machine learning
Markov processes
Mixed integer
Optimization
Placement
Roadsides
vehicular edge computing and networks
Title Deep Reinforcement Learning for Cooperative Content Caching in Vehicular Edge Computing and Networks
URI https://ieeexplore.ieee.org/document/8879573
https://www.proquest.com/docview/2338661391
Volume 7
WOSCitedRecordID wos000508181000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB20ePDit1itsgdPYjTJptnsUaqiHqqIireQ7Ey0IGlpq7_f2c22IorgLSSzJOTtx7zZ2TcAh6Uy7IWnZYAJxkHSxYznQe7LmMnKFJo5iWmKTah-P3t-1ncLcDw_C0NELvmMTuyl28vHoXm3obLTzFbGVnIRFpVSzVmtr3hKZJ2R1G9cRqE-vbm-fbC5W_ok1lY0Jfy29LhaKj8mYLeqXK7-73vWYMV7j-KsgXsdFqjegNVZZQbhB-om4DnRSNyTk0U1LgIovJLqi-BbojccjqgR_RZOoIoNek1epRjU4oleBy5BVVzgi7WwL7DPihpFv8kcn2zB4-XFQ-8q8PUUAiO7ehrIVJOmNMw0RlhJibx8dSlkCoOKIUFJWhkTGVOxW4QVSYwqKtkiidFIbrANrXpY0w6IJJSE7PtQIctEVUVmuikzt7hMmM4VYdKGcParc-PFxm3Ni7fckY5Q5xad3KKTe3TacDRvMmqUNv4y3rRwzA09Em3ozPDM_Vic5DGzcPZCpI52f2-1B8uxZdEusNKB1nT8TvuwZD6mg8n4wHWzT0fe0dM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5BigQX3lVDge6hJ4TB9q4fe6xSELSQIhQQN8veGdNIlRORhN_f2fUmCIEq9WbZs7Llbx_zzc5-A_C1ygx74WkVoMI4UAnmPA9yX8Zc1qbUzElMW2wi6_fzhwd9swTHi7MwROSSz-jEXrq9fByZmQ2Vnea2MnYml-FDolQctae1XiIqkXVHUr91GYX69Mflr4HN3tInsbayKeGrxcdVU3kzBbt15Xzj_75oE9a9_yi-tYBvwRI127Axr80g_FDdAfxONBa35IRRjYsBCq-l-ij4luiNRmNqZb-Fk6hig16bWSmGjbin30OXoirO8NFa2BfYZ2WDot_mjk924e78bNC7CHxFhcDIRE8DmWrSlIa5xghrKZEXsIRCJjGYMSgoSWfGRMbU7BhhTRKjmiq2UDEayQ0-QqcZNfQJhAolIXs_VMpKZXWZmyRl7hZXigldGaouhPNfXRgvN26rXvwpHO0IdWHRKSw6hUenC0eLJuNWa-NfxjsWjoWhR6IL-3M8Cz8aJ0XMPJz9EKmjvfdbfYHVi8H1VXF12f_5GdZiy6ldmGUfOtOnGR3AinmeDidPh67L_QVYRNUa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+for+Cooperative+Content+Caching+in+Vehicular+Edge+Computing+and+Networks&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Qiao%2C+Guanhua&rft.au=Leng%2C+Supeng&rft.au=Maharjan%2C+Sabita&rft.au=Zhang%2C+Yan&rft.date=2020-01-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=7&rft.issue=1&rft.spage=247&rft.epage=257&rft_id=info:doi/10.1109%2FJIOT.2019.2945640&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2019_2945640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon