Cauchy-type integrals in several complex variables

We present the theory of Cauchy–Fantappié integral operators, with emphasis on the situation when the domain of integration, D , has minimal boundary regularity. Among these operators we focus on those that are more closely related to the classical Cauchy integral for a planar domain, whose kernel i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Bulletin of mathematical sciences Ročník 3; číslo 2; s. 241 - 285
Hlavní autori: Lanzani, Loredana, Stein, Elias M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.08.2013
World Scientific Publishing Co. Pte., Ltd
Predmet:
ISSN:1664-3607, 1664-3615
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present the theory of Cauchy–Fantappié integral operators, with emphasis on the situation when the domain of integration, D , has minimal boundary regularity. Among these operators we focus on those that are more closely related to the classical Cauchy integral for a planar domain, whose kernel is a holomorphic function of the parameter z ∈ D . The goal is to prove L p estimates for these operators and, as a consequence, to obtain L p estimates for the canonical Cauchy–Szegö and Bergman projection operators (which are not of Cauchy–Fantappié type).
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We present the theory of Cauchy-Fantappié integral operators, with emphasis on the situation when the domain of integration, ..., has minimal boundary regularity. Among these operators we focus on those that are more closely related to the classical Cauchy integral for a planar domain, whose kernel is a holomorphic function of the parameter ... The goal is to prove ... estimates for these operators and, as a consequence, to obtain ... estimates for the canonical Cauchy-Szegö and Bergman projection operators (which are not of Cauchy-Fantappié type).
We present the theory of Cauchy–Fantappié integral operators, with emphasis on the situation when the domain of integration, D , has minimal boundary regularity. Among these operators we focus on those that are more closely related to the classical Cauchy integral for a planar domain, whose kernel is a holomorphic function of the parameter z ∈ D . The goal is to prove L p estimates for these operators and, as a consequence, to obtain L p estimates for the canonical Cauchy–Szegö and Bergman projection operators (which are not of Cauchy–Fantappié type).
Author Lanzani, Loredana
Stein, Elias M.
Author_xml – sequence: 1
  givenname: Loredana
  surname: Lanzani
  fullname: Lanzani, Loredana
  email: loredana.lanzani@gmail.com
  organization: Department of Mathematics, University of Arkansas
– sequence: 2
  givenname: Elias M.
  surname: Stein
  fullname: Stein, Elias M.
  organization: Department of Mathematics, Princeton University
BookMark eNp9kEtLxDAUhYOM4DjOD3BXcF3No3l0KYMvGHCj65CmN2OHTluTzGD_vRkqIoIGLjmL891zOedo1vUdIHRJ8DXBWN4EwphkOSZpMFP5eILmRIgiZ4Lw2bfG8gwtQ9ji9LgsS1nOEV2ZvX0b8zgOkDVdhI03bUgqC3CApDPb74YWPrKD8Y2pWggX6NQlDyy__gV6vb97WT3m6-eHp9XtOreMlzHlMWXAQiUdZ45QgRlAqWgtXFUoKaytcU0sxoXhNaZKOmCGOpCcFhVjNVugq2nv4Pv3PYSot_3edylSE8GpwqxQZXKRyWV9H4IHpwff7IwfNcH62I6e2tGpHX1sR4-Jkb8Y20QTm76L3jTtvySdyJBSug34Hzf9CX0CO5p66A
CitedBy_id crossref_primary_10_1007_s12220_021_00794_y
crossref_primary_10_1080_17476933_2016_1221947
crossref_primary_10_1007_s40627_024_00144_y
crossref_primary_10_1016_j_aim_2019_106930
crossref_primary_10_1007_s11785_018_0872_8
crossref_primary_10_1016_j_aim_2014_07_016
crossref_primary_10_1016_j_aim_2020_107012
crossref_primary_10_1016_j_jmaa_2025_129440
crossref_primary_10_1007_s00020_015_2227_4
crossref_primary_10_1016_j_jmaa_2015_12_012
crossref_primary_10_1016_j_jmaa_2018_05_049
crossref_primary_10_1007_s12220_020_00443_w
crossref_primary_10_1007_s13324_020_00466_0
crossref_primary_10_1215_00127094_3714757
crossref_primary_10_1007_s11785_019_00926_x
crossref_primary_10_1080_17476933_2023_2221642
crossref_primary_10_1007_s11425_017_9115_5
crossref_primary_10_1007_s11785_015_0518_z
crossref_primary_10_1007_s11785_018_0831_4
crossref_primary_10_1016_j_jfa_2024_110746
crossref_primary_10_1007_s00208_018_1778_5
Cites_doi 10.5565/PUBLMAT_50206_08
10.1215/S0012-7094-78-04513-1
10.4064/sm-80-2-89-107
10.1007/PL00004593
10.1016/j.jfa.2009.04.011
10.24033/asens.1469
10.1215/S0012-7094-94-07307-9
10.1007/BF02786580
10.5802/aif.1727
10.1002/mana.200710649
10.1007/BF02392975
10.4171/RMI/17
10.1007/978-1-4757-1918-5
10.1007/BF01418930
10.1080/17476933.2011.586694
10.1090/amsip/019
10.1090/chel/340
10.1007/BF02921866
10.2307/1971487
10.1007/978-3-0348-7871-5
10.1006/aima.1994.1082
10.1007/978-1-4613-8098-6
10.2307/2007045
10.1215/S0012-7094-77-04429-5
10.1515/9781400881529
10.1070/SM1969v007n04ABEH001105
10.1215/S0012-7094-89-05822-5
10.1007/BF01351561
10.1007/BF01406845
ContentType Journal Article
Copyright The Author(s) 2013
Copyright_xml – notice: The Author(s) 2013
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s13373-013-0038-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1664-3615
EndPage 285
ExternalDocumentID 3585311751
10_1007_s13373_013_0038_y
Genre Feature
GroupedDBID -A0
2VQ
4.4
40G
5VS
8FE
8FG
AAKKN
AAYZH
ABEEZ
ABJCF
ACACY
ACGFS
ACIPV
ACIWK
ACULB
ADBBV
ADINQ
AENEX
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
EBS
EJD
GROUPED_DOAJ
H4N
HCIFZ
HZ~
IAO
ISR
ITC
J9A
KQ8
L6V
M7S
M~E
O9-
OK1
PIMPY
PROAC
PTHSS
RSV
RWJ
SMT
SOJ
U2A
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c359t-3638aeceb7f53f12603ee982d6fb4876ccd0d1c004a5d0287fe3a2fe7524b33d3
IEDL.DBID BENPR
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000339659700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-3607
IngestDate Fri Jul 25 12:02:44 EDT 2025
Tue Nov 18 22:22:48 EST 2025
Sat Nov 29 02:55:00 EST 2025
Fri Feb 21 02:31:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 32A36
32A50
42B
31B
Language English
License http://creativecommons.org/licenses/by-nc/2.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-3638aeceb7f53f12603ee982d6fb4876ccd0d1c004a5d0287fe3a2fe7524b33d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink https://www.proquest.com/docview/1652803489?pq-origsite=%requestingapplication%
PQID 1652803489
PQPubID 2034791
PageCount 45
ParticipantIDs proquest_journals_1652803489
crossref_primary_10_1007_s13373_013_0038_y
crossref_citationtrail_10_1007_s13373_013_0038_y
springer_journals_10_1007_s13373_013_0038_y
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Singapore
PublicationTitle Bulletin of mathematical sciences
PublicationTitleAbbrev Bull. Math. Sci
PublicationYear 2013
Publisher Springer International Publishing
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: Springer International Publishing
– name: World Scientific Publishing Co. Pte., Ltd
References Lanzani, L., Stein E.M.: The Bergman projection in Lp for domains with minimal smoothness. Illinois J. Math. (to appear) (arXiv:1201.4148)
PhongDSteinEMEstimates for the Bergman and Szegö projections on strongly pseudo-convex domainsDuke Math. J.197744369570410.1215/S0012-7094-77-04429-5450623450623, 0392.32014, 10.1215/S0012-7094-77-04429-5
Henkin, G.M.: Integral representations of functions holomorphic in strictly pseudo-convex domains and applications to the ∂¯-problem. Mat. Sb. 82, 300–308 (1970). Engl. Transl.: Math. USSR Sb. 11 (1970) 273–281
KrantzSPelosoMThe Bergman kernel and projection on non-smooth worm domainsHouston J. Math.20083487395024483872448387, 1161.32016
LanzaniLSteinEMCauchy–Szegö and Bergman projections on non-smooth planar domainsJ. Geom. Anal.200414638610.1007/BF0292186620305752030575, 1046.30023, 10.1007/BF02921866
McNealJSteinEMMapping properties of the Bergman projection on convex domains of finite typeDuke Math. J.199473117719910.1215/S0012-7094-94-07307-912572821257282, 0801.32008, 10.1215/S0012-7094-94-07307-9
LigockaEThe Hölder continuity of the Bergman projection and proper holomorphic mappingsStudia Math.19848089107781328781328, 0566.32017
EhsaniDLiebILp-estimates for the Bergman projection on strictly pseudo-convex non-smooth domainsMath. Nachr.200828191692910.1002/mana.20071064924315672431567, 1147.32004, 10.1002/mana.200710649
Folland, G.B., Kohn, J.J.: The Neumann problem for the Cauchy–Riemann complex. In: Ann. Math. Studies, vol. 75. Princeton University Press, Princeton (1972)
Henkin, G.: Integral representations of functions holomorphic in strictly pseudo-convex domains and some applications. Mat. Sb. 78, 611–632 (1969). Engl. Transl.: Math. USSR Sb. 7 (1969) 597–616
McNealJEstimates on the Bergman kernel of convex domainsAdv. Math.199410910813910.1006/aima.1994.108213027591302759, 0816.32018, 10.1006/aima.1994.1082
McNealJBoundary behavior of the Bergman kernel function in C2Duke Math. J.198958249951210.1215/S0012-7094-89-05822-510164311016431, 0675.32020, 10.1215/S0012-7094-89-05822-5
HenkinGMLeitererJTheory of Functions on Complex Manifolds1984BaselBirkhäuser0726.32001
BarrettDLanzaniLThe Leray transform on weighted boundary spaces for convex Rembrandt domainsJ. Funct. Anal.20092572780281910.1016/j.jfa.2009.04.01125597172559717, 1181.32002, 10.1016/j.jfa.2009.04.011
CharpentierPDupainYEstimates for the Bergman and Szegő Projections for pseudo-convex domains of finite type with locally diagonalizable Levi formsPubl. Math.20065041344610.5565/PUBLMAT_50206_0822736682273668, 1120.32002
HörmanderLNotions of Convexity1994BaselBirkhäuser0835.32001
Bekollé, D., Bonami, A.: Inegalites a poids pour le noyau de Bergman. C. R. Acad. Sci. Paris Ser. A-B 286(18), A775–A778 (1978)
McNealJSteinEMThe Szegö projection on convex domainsMath. Zeit.199722451955310.1007/PL0000459314520481452048, 0948.32004, 10.1007/PL00004593
SteinEMBoundary Behavior of Holomorphic Functions of Several Complex Variables1972PrincetonPrinceton University Press0242.32005
Andersson, M., Passare, M., Sigurdsson, R.: Complex convexity and analytic functionals. Birkhäuser, Basel (2004)
HanssonTOn Hardy spaces in complex ellipsoidsAnn. Inst. Fourier (Grenoble)1999491477150110.5802/aif.172717238241723824, 0944.32004, 10.5802/aif.1727
KrantzSFunction theory of several complex variables20012ProvidenceAmerican Mathematical Society1087.32001
HedenmalmHThe dual of a Bergman space on simply connected domainsJ. d’ Analyse20028831133510.1007/BF0278658019797751979775, 1043.46024, 10.1007/BF02786580
ChenS-CShawM-CPartial differential equations in several complex variables2001ProvidenceAmerican Mathematical Society0963.32001
RudinWFunction Theory in the Unit Ball of Cn1980BerlinSpringer10.1007/978-1-4613-8098-60495.32001, 10.1007/978-1-4613-8098-6
BarrettDEBehavior of the Bergman projection on the Diederich-Fornæss wormActa Math.199216811010.1007/BF0239297511498631149863, 0779.32013, 10.1007/BF02392975
DavidGJournéJLSemmesSOprateurs de Caldern-Zygmund, fonctions para-accrtives et interpolationRev. Mat. Iberoamericana19851415610.4171/RMI/17850408850408, 0604.42014, 10.4171/RMI/17
RamirezEEin divisionproblem und randintegraldarstellungen in der komplexen analysisAnn. Math.197018417218710.1007/BF013515610189.09702, 10.1007/BF01351561
BarrettDEIrregularity of the Bergman projection on a smooth bounded domainAnn. Math.198411943143610.2307/20070450566.32016, 10.2307/2007045
KerzmanNSteinEMThe Cauchy–Szegö kernel in terms of the Cauchy–Fantappié kernelsDuke Math. J.19782519722410.1215/S0012-7094-78-04513-1508154508154, 10.1215/S0012-7094-78-04513-1
DavidGOpérateurs intégraux singuliers sur certain courbes du plan complexeAnn. Sci. Éc. Norm. Sup.1984171571890537.42016
NagelARosayJ-PSteinEMWaingerSEstimates for the Bergman and Szegö kernels in C2Ann. Math.1989129211314910.2307/1971487979602979602, 0667.32016, 10.2307/1971487
BellS.LigockaE.A simplification and extension of Fefferman’s theorem on biholomorphic mappingsInvent. Math.1980573283289
BonamiALohouéNProjecteurs de Bergman et Szegő pour une classe de domaines faiblement pseudo-convexes et estimations LpCompositio Math.1982462159226659922659922, 0538.32005
FeffermanCThe Bergman kernel and biholomorphic mappings of pseudo-convex domainsInvent. Math.19742616510.1007/BF01406845350069350069, 0289.32012, 10.1007/BF01406845
Zeytuncu, Y.: Lp-regularity of weighted Bergman projections. Trans. AMS. (2013, to appear)
RangeMHolomorphic Functions and Integral Representations in Several Complex Variables1986BerlinSpringer10.1007/978-1-4757-1918-50591.32002, 10.1007/978-1-4757-1918-5
38_CR1
L Lanzani (38_CR24) 2004; 14
38_CR5
38_CR6
L Hörmander (38_CR20) 1994
M Range (38_CR34) 1986
38_CR25
J McNeal (38_CR27) 1989; 58
J McNeal (38_CR29) 1994; 73
P Charpentier (38_CR8) 2006; 50
C Fefferman (38_CR13) 1974; 26
G David (38_CR10) 1984; 17
A Nagel (38_CR31) 1989; 129
DE Barrett (38_CR2) 1984; 119
G David (38_CR11) 1985; 1
D Ehsani (38_CR12) 2008; 281
J McNeal (38_CR30) 1997; 224
38_CR17
S Krantz (38_CR22) 2001
D Phong (38_CR32) 1977; 44
38_CR37
38_CR14
N Kerzman (38_CR21) 1978; 25
S Krantz (38_CR23) 2008; 34
DE Barrett (38_CR3) 1992; 168
E Ligocka (38_CR26) 1984; 80
J McNeal (38_CR28) 1994; 109
A Bonami (38_CR7) 1982; 46
S-C Chen (38_CR9) 2001
38_CR18
GM Henkin (38_CR19) 1984
EM Stein (38_CR36) 1972
W Rudin (38_CR35) 1980
H Hedenmalm (38_CR16) 2002; 88
E Ramirez (38_CR33) 1970; 184
D Barrett (38_CR4) 2009; 257
T Hansson (38_CR15) 1999; 49
References_xml – reference: EhsaniDLiebILp-estimates for the Bergman projection on strictly pseudo-convex non-smooth domainsMath. Nachr.200828191692910.1002/mana.20071064924315672431567, 1147.32004, 10.1002/mana.200710649
– reference: KrantzSFunction theory of several complex variables20012ProvidenceAmerican Mathematical Society1087.32001
– reference: Folland, G.B., Kohn, J.J.: The Neumann problem for the Cauchy–Riemann complex. In: Ann. Math. Studies, vol. 75. Princeton University Press, Princeton (1972)
– reference: Henkin, G.: Integral representations of functions holomorphic in strictly pseudo-convex domains and some applications. Mat. Sb. 78, 611–632 (1969). Engl. Transl.: Math. USSR Sb. 7 (1969) 597–616
– reference: Andersson, M., Passare, M., Sigurdsson, R.: Complex convexity and analytic functionals. Birkhäuser, Basel (2004)
– reference: RangeMHolomorphic Functions and Integral Representations in Several Complex Variables1986BerlinSpringer10.1007/978-1-4757-1918-50591.32002, 10.1007/978-1-4757-1918-5
– reference: FeffermanCThe Bergman kernel and biholomorphic mappings of pseudo-convex domainsInvent. Math.19742616510.1007/BF01406845350069350069, 0289.32012, 10.1007/BF01406845
– reference: HenkinGMLeitererJTheory of Functions on Complex Manifolds1984BaselBirkhäuser0726.32001
– reference: ChenS-CShawM-CPartial differential equations in several complex variables2001ProvidenceAmerican Mathematical Society0963.32001
– reference: Bekollé, D., Bonami, A.: Inegalites a poids pour le noyau de Bergman. C. R. Acad. Sci. Paris Ser. A-B 286(18), A775–A778 (1978)
– reference: McNealJSteinEMMapping properties of the Bergman projection on convex domains of finite typeDuke Math. J.199473117719910.1215/S0012-7094-94-07307-912572821257282, 0801.32008, 10.1215/S0012-7094-94-07307-9
– reference: RudinWFunction Theory in the Unit Ball of Cn1980BerlinSpringer10.1007/978-1-4613-8098-60495.32001, 10.1007/978-1-4613-8098-6
– reference: BarrettDEIrregularity of the Bergman projection on a smooth bounded domainAnn. Math.198411943143610.2307/20070450566.32016, 10.2307/2007045
– reference: HörmanderLNotions of Convexity1994BaselBirkhäuser0835.32001
– reference: McNealJEstimates on the Bergman kernel of convex domainsAdv. Math.199410910813910.1006/aima.1994.108213027591302759, 0816.32018, 10.1006/aima.1994.1082
– reference: SteinEMBoundary Behavior of Holomorphic Functions of Several Complex Variables1972PrincetonPrinceton University Press0242.32005
– reference: CharpentierPDupainYEstimates for the Bergman and Szegő Projections for pseudo-convex domains of finite type with locally diagonalizable Levi formsPubl. Math.20065041344610.5565/PUBLMAT_50206_0822736682273668, 1120.32002
– reference: LanzaniLSteinEMCauchy–Szegö and Bergman projections on non-smooth planar domainsJ. Geom. Anal.200414638610.1007/BF0292186620305752030575, 1046.30023, 10.1007/BF02921866
– reference: HanssonTOn Hardy spaces in complex ellipsoidsAnn. Inst. Fourier (Grenoble)1999491477150110.5802/aif.172717238241723824, 0944.32004, 10.5802/aif.1727
– reference: McNealJBoundary behavior of the Bergman kernel function in C2Duke Math. J.198958249951210.1215/S0012-7094-89-05822-510164311016431, 0675.32020, 10.1215/S0012-7094-89-05822-5
– reference: HedenmalmHThe dual of a Bergman space on simply connected domainsJ. d’ Analyse20028831133510.1007/BF0278658019797751979775, 1043.46024, 10.1007/BF02786580
– reference: DavidGJournéJLSemmesSOprateurs de Caldern-Zygmund, fonctions para-accrtives et interpolationRev. Mat. Iberoamericana19851415610.4171/RMI/17850408850408, 0604.42014, 10.4171/RMI/17
– reference: Lanzani, L., Stein E.M.: The Bergman projection in Lp for domains with minimal smoothness. Illinois J. Math. (to appear) (arXiv:1201.4148)
– reference: NagelARosayJ-PSteinEMWaingerSEstimates for the Bergman and Szegö kernels in C2Ann. Math.1989129211314910.2307/1971487979602979602, 0667.32016, 10.2307/1971487
– reference: PhongDSteinEMEstimates for the Bergman and Szegö projections on strongly pseudo-convex domainsDuke Math. J.197744369570410.1215/S0012-7094-77-04429-5450623450623, 0392.32014, 10.1215/S0012-7094-77-04429-5
– reference: KerzmanNSteinEMThe Cauchy–Szegö kernel in terms of the Cauchy–Fantappié kernelsDuke Math. J.19782519722410.1215/S0012-7094-78-04513-1508154508154, 10.1215/S0012-7094-78-04513-1
– reference: BarrettDEBehavior of the Bergman projection on the Diederich-Fornæss wormActa Math.199216811010.1007/BF0239297511498631149863, 0779.32013, 10.1007/BF02392975
– reference: Zeytuncu, Y.: Lp-regularity of weighted Bergman projections. Trans. AMS. (2013, to appear)
– reference: LigockaEThe Hölder continuity of the Bergman projection and proper holomorphic mappingsStudia Math.19848089107781328781328, 0566.32017
– reference: McNealJSteinEMThe Szegö projection on convex domainsMath. Zeit.199722451955310.1007/PL0000459314520481452048, 0948.32004, 10.1007/PL00004593
– reference: RamirezEEin divisionproblem und randintegraldarstellungen in der komplexen analysisAnn. Math.197018417218710.1007/BF013515610189.09702, 10.1007/BF01351561
– reference: BonamiALohouéNProjecteurs de Bergman et Szegő pour une classe de domaines faiblement pseudo-convexes et estimations LpCompositio Math.1982462159226659922659922, 0538.32005
– reference: KrantzSPelosoMThe Bergman kernel and projection on non-smooth worm domainsHouston J. Math.20083487395024483872448387, 1161.32016
– reference: BarrettDLanzaniLThe Leray transform on weighted boundary spaces for convex Rembrandt domainsJ. Funct. Anal.20092572780281910.1016/j.jfa.2009.04.01125597172559717, 1181.32002, 10.1016/j.jfa.2009.04.011
– reference: BellS.LigockaE.A simplification and extension of Fefferman’s theorem on biholomorphic mappingsInvent. Math.1980573283289
– reference: DavidGOpérateurs intégraux singuliers sur certain courbes du plan complexeAnn. Sci. Éc. Norm. Sup.1984171571890537.42016
– reference: Henkin, G.M.: Integral representations of functions holomorphic in strictly pseudo-convex domains and applications to the ∂¯-problem. Mat. Sb. 82, 300–308 (1970). Engl. Transl.: Math. USSR Sb. 11 (1970) 273–281
– volume: 50
  start-page: 413
  year: 2006
  ident: 38_CR8
  publication-title: Publ. Math.
  doi: 10.5565/PUBLMAT_50206_08
– volume: 25
  start-page: 197
  year: 1978
  ident: 38_CR21
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-78-04513-1
– volume: 80
  start-page: 89
  year: 1984
  ident: 38_CR26
  publication-title: Studia Math.
  doi: 10.4064/sm-80-2-89-107
– volume: 224
  start-page: 519
  year: 1997
  ident: 38_CR30
  publication-title: Math. Zeit.
  doi: 10.1007/PL00004593
– volume: 257
  start-page: 2780
  year: 2009
  ident: 38_CR4
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2009.04.011
– volume: 17
  start-page: 157
  year: 1984
  ident: 38_CR10
  publication-title: Ann. Sci. Éc. Norm. Sup.
  doi: 10.24033/asens.1469
– volume: 73
  start-page: 177
  issue: 1
  year: 1994
  ident: 38_CR29
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-94-07307-9
– volume: 88
  start-page: 311
  year: 2002
  ident: 38_CR16
  publication-title: J. d’ Analyse
  doi: 10.1007/BF02786580
– volume: 49
  start-page: 1477
  year: 1999
  ident: 38_CR15
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.1727
– volume: 281
  start-page: 916
  year: 2008
  ident: 38_CR12
  publication-title: Math. Nachr.
  doi: 10.1002/mana.200710649
– ident: 38_CR18
– volume: 168
  start-page: 1
  year: 1992
  ident: 38_CR3
  publication-title: Acta Math.
  doi: 10.1007/BF02392975
– volume: 1
  start-page: 1
  issue: 4
  year: 1985
  ident: 38_CR11
  publication-title: Rev. Mat. Iberoamericana
  doi: 10.4171/RMI/17
– volume-title: Holomorphic Functions and Integral Representations in Several Complex Variables
  year: 1986
  ident: 38_CR34
  doi: 10.1007/978-1-4757-1918-5
– ident: 38_CR6
  doi: 10.1007/BF01418930
– volume-title: Notions of Convexity
  year: 1994
  ident: 38_CR20
– volume-title: Boundary Behavior of Holomorphic Functions of Several Complex Variables
  year: 1972
  ident: 38_CR36
– ident: 38_CR5
– volume: 46
  start-page: 159
  issue: 2
  year: 1982
  ident: 38_CR7
  publication-title: Compositio Math.
– ident: 38_CR37
  doi: 10.1080/17476933.2011.586694
– volume-title: Partial differential equations in several complex variables
  year: 2001
  ident: 38_CR9
  doi: 10.1090/amsip/019
– volume-title: Function theory of several complex variables
  year: 2001
  ident: 38_CR22
  doi: 10.1090/chel/340
– volume: 14
  start-page: 63
  year: 2004
  ident: 38_CR24
  publication-title: J. Geom. Anal.
  doi: 10.1007/BF02921866
– volume: 129
  start-page: 113
  issue: 2
  year: 1989
  ident: 38_CR31
  publication-title: Ann. Math.
  doi: 10.2307/1971487
– ident: 38_CR1
  doi: 10.1007/978-3-0348-7871-5
– volume: 34
  start-page: 873
  year: 2008
  ident: 38_CR23
  publication-title: Houston J. Math.
– volume: 109
  start-page: 108
  year: 1994
  ident: 38_CR28
  publication-title: Adv. Math.
  doi: 10.1006/aima.1994.1082
– volume-title: Function Theory in the Unit Ball of C
  year: 1980
  ident: 38_CR35
  doi: 10.1007/978-1-4613-8098-6
– volume: 119
  start-page: 431
  year: 1984
  ident: 38_CR2
  publication-title: Ann. Math.
  doi: 10.2307/2007045
– volume: 44
  start-page: 695
  issue: 3
  year: 1977
  ident: 38_CR32
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-77-04429-5
– volume-title: Theory of Functions on Complex Manifolds
  year: 1984
  ident: 38_CR19
– ident: 38_CR14
  doi: 10.1515/9781400881529
– ident: 38_CR17
  doi: 10.1070/SM1969v007n04ABEH001105
– volume: 58
  start-page: 499
  issue: 2
  year: 1989
  ident: 38_CR27
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-89-05822-5
– volume: 184
  start-page: 172
  year: 1970
  ident: 38_CR33
  publication-title: Ann. Math.
  doi: 10.1007/BF01351561
– volume: 26
  start-page: 1
  year: 1974
  ident: 38_CR13
  publication-title: Invent. Math.
  doi: 10.1007/BF01406845
– ident: 38_CR25
SSID ssj0000579979
ssib050729703
ssib041538293
ssib059270981
Score 2.1360564
Snippet We present the theory of Cauchy–Fantappié integral operators, with emphasis on the situation when the domain of integration, D , has minimal boundary...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We present the theory of Cauchy-Fantappié integral operators, with emphasis on the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 241
SubjectTerms Mathematics
Mathematics and Statistics
SummonAdditionalLinks – databaseName: SpringerLINK
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCDb7FaJQdPSiDZZ_YoxeLF4kGht7DZzKJQqjRtsf_e3TRpqqigh0Agmw07s5OZ2Zn5BuDSmlwoS21IELOQJcQ6kbIslJEhMeZSJyQvm03Ifj8ZDNRDVcdd1NnudUiy_FM3xW6USp_7467ISel8HTY8mpjP4-o2kOPMi_CKDuMeGltWocYF4LdUqsTgi4VgIRWRrKOd333ls75qjNAvcdNSHfV2_7WQPdiprM_gZrFd9mENRwewfb-Ebi0OgXT11DzPQ382G1RgEsPC3QVOh_oDrKDMQsf3YObcbF94VRzBU-_2sXsXVo0VQkO5mrg100SjwUxaTm3sXBqKqBxXhM2cAyOMyaM8Nk5-NM-dASItUk0sSk5YRmlOj6E1eh3hCQSR9lk1SYQoOLOx0Roly7SbBY2SaNsQ1eRLTYU67ptfDNMGL9mTI3Xk8DilSTpvw9XylbcF5MZvgzs1T9JK-oo0Ftw33WKJasN1zYOVxz9Ndvqn0WewRUom-mzADrQm4ymew6aZTV6K8UW5KT8A8kXYQQ
  priority: 102
  providerName: Springer Nature
Title Cauchy-type integrals in several complex variables
URI https://link.springer.com/article/10.1007/s13373-013-0038-y
https://www.proquest.com/docview/1652803489
Volume 3
WOSCitedRecordID wos000339659700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-3615
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000579979
  issn: 1664-3607
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-3615
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050729703
  issn: 1664-3607
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1664-3615
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0000579979
  issn: 1664-3607
  databaseCode: M7S
  dateStart: 20110601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1664-3615
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0000579979
  issn: 1664-3607
  databaseCode: BENPR
  dateStart: 20110601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1664-3615
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0000579979
  issn: 1664-3607
  databaseCode: PIMPY
  dateStart: 20110601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 1664-3615
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0000579979
  issn: 1664-3607
  databaseCode: C24
  dateStart: 20110601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-ClgM7MAZM6yhVDpyYIhLbieMTYlUrOFBVjElwihznWSCh0jUFrZf97fNLHcqQxoVDokh2LPn5PT-_D_8ewKE1ZaostyFDLEKRMetEyopQRobFWEqdsbIuNiFHo-z6Wo29w63yaZXNnlhv1OWDIR_5cZwmVEhJZOpk-iukqlEUXfUlNNahTUhljs_b3wej8WXDUYLk-YVCSwgnW67ijoliMlL-5uUSDVwqVQP0xWkqQp5GsgmF1vftOJeUfuSeyG0Ui3-V2eqE-iqoWuuq4cf3znIbtvwpNThdstUnWMPJDny4eIZ4rXaB9fWjuV2E5MMNPOjEfeW-AqdrydEV1Nnq-Dt4cuY4XdCq9uDncHDVPwt9AYbQ8ETN3fR5ptFgIW3CbexMH46o3OqltnCGTmpMGZWxcXKmk9IdVKRFrplFmTBRcF7yz9CaPEzwCwSRpuybLEJME2FjozVKUWg3Chol0XYgaiiZG49OTkUy7vMVrjIRP3fEJzzTLF904Oj5l-kSmuOtzt2G4LmX0ipfUbsD35ole9H8v8G-vj3YPmyymkcoTbALrfnsEQ9gwzzN76pZz7NoD9b7TPRqH0CPMk5_0PvPwLWPzy_GN38BiwftTw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BqAQ9UPpSA2nrA1xAFuvdtdd7qBCiRUSQKAeQ4OSu17NqpSg8HNLmT_EbO-vYhCKVG4ceIlmKPVp5vnl4Z_YbgE1ni0Q74UKOmIcy5Y5MyslQMcsjLJRJeVENm1D9fnp-rgcLcNechfFtlY1PrBx1cWn9HvlulMR-kJJM9d7VdeinRvnqajNCYwaLY5z-ok-28kv3K-l3i_PDb6cHR2E9VSC0ItbjUBDiDFrMlYuFiyifF4ialpS4nLL3xNqCFZEl8Ji4oOirHArDHaqYy1yIQpDcRViSBHbWgqVBtze4aBAsvf94EEBjz8ut5nXOWHPFdH3Sc8Y-rrSuCAGjJJG0Nqaa0mt1vk8I5dud6MfIMU3_Dp7zjPhREbeKjYev_re3ugardRYe7M_M5jUs4OgNvOzdU9iWb4EfmFv7Yxr6PeqgJtUYlnQVUC7hN_KCqhsffwcTQ0acD7F8B2fPsuj30BpdjvADBMz47qKUISaxdJE1BpXMDUlBqxW6NrBGc5mt2df9EJBhNueN9srOSNmerzXNpm3Yvn_kakY98tTNnUbBWe2Fymyu3TbsNBB58Pe_hK0_LewzLB-d9k6yk27_eANWeIVP3xLZgdb45hY_wgs7Gf8sbz7V5hHA9-fGzh_IU0Wm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BrVB7oLQUdXmUHOilVYRjO3F8QAhBVyBghdRW4pY6zlhFWi2ULI_9a_w6xt6EhUrlxoHDSpE2GVmZbx7xjL8BWHe2yrQTLuaIZSxz7siknIwVszzBSpmcV2HYhOr18pMTfTwFt-1ZGN9W2frE4KirM-v3yDeSLPWDlGSuN1zTFnG82906_xv7CVK-0tqO0xhD5ABH1_T5Vm_u75Kuv3De_f5zZy9uJgzEVqR6GAtCn0GLpXKpcAnl9gJR0_IyV1Imn1lbsSqxBCSTVhSJlUNhuEOVclkKUQmSOw2vlMyYDG2DP1osS-9JHoTS1DN0q0nFM9VcMd2c-RzzkCutAzVgkmWSVsZUW4QNJ_2EUL7xiX6MXNTocRid5Mb_lHNDlOy-e8nvdx7mmtw82h4b03uYwsEHeHt0T2xbLwDfMZf2zyj2O9dRQ7XRr-kqogzDb-9FoUcfb6IrQ6Zd9rH-CL-eZdGLMDM4G-AniJjxPUc5Q8xS6RJrDCpZGpKCVit0HWCtFgvbcLL70SD9YsIm7RVfkOI9i2tejDrw9f6R8zEhyVM3r7TKLhrfVBcTTXfgWwuXB3__T9jS08LWYJYAUxzu9w6W4Q0PUPV9kiswM7y4xFV4ba-Gp_XF52AnEfx-buDcARwoTPY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cauchy-type+integrals+in+several+complex+variables&rft.jtitle=Bulletin+of+mathematical+sciences&rft.au=Lanzani%2C+Loredana&rft.au=Stein%2C+Elias+M&rft.date=2013-08-01&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=1664-3607&rft.eissn=1664-3615&rft.volume=3&rft.issue=2&rft.spage=241&rft_id=info:doi/10.1007%2Fs13373-013-0038-y&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3585311751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3607&client=summon