A Tight Algorithm for Strongly Connected Steiner Subgraph on Two Terminals with Demands

Given an edge-weighted directed graph G = ( V , E ) on n vertices and a set T = { t 1 , t 2 , … , t p } of p terminals, the objective of the Strongly Connected Steiner Subgraph ( p -SCSS) problem is to find an edge set H ⊆ E of minimum weight such that G [ H ] contains an t i → t j path for each 1 ≤...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica Vol. 77; no. 4; pp. 1216 - 1239
Main Authors: Chitnis, Rajesh, Esfandiari, Hossein, Hajiaghayi, MohammadTaghi, Khandekar, Rohit, Kortsarz, Guy, Seddighin, Saeed
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2017
Springer Nature B.V
Subjects:
ISSN:0178-4617, 1432-0541
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Given an edge-weighted directed graph G = ( V , E ) on n vertices and a set T = { t 1 , t 2 , … , t p } of p terminals, the objective of the Strongly Connected Steiner Subgraph ( p -SCSS) problem is to find an edge set H ⊆ E of minimum weight such that G [ H ] contains an t i → t j path for each 1 ≤ i ≠ j ≤ p . The p -SCSS problem is NP-hard, but Feldman and Ruhl [FOCS ’99; SICOMP ’06] gave a novel n O ( p ) time algorithm. In this paper, we investigate the computational complexity of a variant of 2-SCSS where we have demands for the number of paths between each terminal pair. Formally, the 2 -SCSS- ( k 1 , k 2 ) problem is defined as follows: given an edge-weighted directed graph G = ( V , E ) with weight function ω : E → R ≥ 0 , two terminal vertices s ,  t , and integers k 1 , k 2 ; the objective is to find a set of k 1 paths F 1 , F 2 , … , F k 1 from s ⇝ t and k 2 paths B 1 , B 2 , … , B k 2 from t ⇝ s such that ∑ e ∈ E ω ( e ) · ϕ ( e ) is minimized, where ϕ ( e ) = max { | { i ∈ [ k 1 ] : e ∈ F i } | , | { j ∈ [ k 2 ] : e ∈ B j } | } . For each k ≥ 1 , we show the following: The 2 -SCSS- ( k , 1 ) problem can be solved in time n O ( k ) . A matching lower bound for our algorithm: the 2 -SCSS- ( k , 1 ) problem does not have an f ( k ) · n o ( k ) time algorithm for any computable function f , unless the Exponential Time Hypothesis fails. Our algorithm for 2 -SCSS- ( k , 1 ) relies on a structural result regarding an optimal solution followed by using the idea of a “token game” similar to that of Feldman and Ruhl. We show with an example that the structural result does not hold for the 2 -SCSS- ( k 1 , k 2 ) problem if min { k 1 , k 2 } ≥ 2 . Therefore 2 -SCSS- ( k , 1 ) is the most general problem one can attempt to solve with our techniques. To obtain the lower bound matching the algorithm, we reduce from a special variant of the Grid Tiling problem introduced by Marx [FOCS ’07; ICALP ’12].
AbstractList Given an edge-weighted directed graph G = ( V , E ) on n vertices and a set T = { t 1 , t 2 , … , t p } of p terminals, the objective of the Strongly Connected Steiner Subgraph (p-SCSS) problem is to find an edge set H ⊆ E of minimum weight such that G[H] contains an t i → t j path for each 1 ≤ i ≠ j ≤ p . The p-SCSS problem is NP-hard, but Feldman and Ruhl [FOCS ’99; SICOMP ’06] gave a novel n O ( p ) time algorithm. In this paper, we investigate the computational complexity of a variant of 2-SCSS where we have demands for the number of paths between each terminal pair. Formally, the 2 -SCSS- ( k 1 , k 2 ) problem is defined as follows: given an edge-weighted directed graph G = ( V , E ) with weight function ω : E → R ≥ 0 , two terminal vertices s, t, and integers k 1 , k 2 ; the objective is to find a set of k 1 paths F 1 , F 2 , … , F k 1 from s ⇝ t and k 2 paths B 1 , B 2 , … , B k 2 from t ⇝ s such that ∑ e ∈ E ω ( e ) · ϕ ( e ) is minimized, where ϕ ( e ) = max { | { i ∈ [ k 1 ] : e ∈ F i } | , | { j ∈ [ k 2 ] : e ∈ B j } | } . For each k ≥ 1 , we show the following: The 2 -SCSS- ( k , 1 ) problem can be solved in time n O ( k ) . A matching lower bound for our algorithm: the 2 -SCSS- ( k , 1 ) problem does not have an f ( k ) · n o ( k ) time algorithm for any computable function f, unless the Exponential Time Hypothesis fails. Our algorithm for 2 -SCSS- ( k , 1 ) relies on a structural result regarding an optimal solution followed by using the idea of a “token game” similar to that of Feldman and Ruhl. We show with an example that the structural result does not hold for the 2 -SCSS- ( k 1 , k 2 ) problem if min { k 1 , k 2 } ≥ 2 . Therefore 2 -SCSS- ( k , 1 ) is the most general problem one can attempt to solve with our techniques. To obtain the lower bound matching the algorithm, we reduce from a special variant of the Grid Tiling problem introduced by Marx [FOCS ’07; ICALP ’12].
Given an edge-weighted directed graph G = ( V , E ) on n vertices and a set T = { t 1 , t 2 , … , t p } of p terminals, the objective of the Strongly Connected Steiner Subgraph ( p -SCSS) problem is to find an edge set H ⊆ E of minimum weight such that G [ H ] contains an t i → t j path for each 1 ≤ i ≠ j ≤ p . The p -SCSS problem is NP-hard, but Feldman and Ruhl [FOCS ’99; SICOMP ’06] gave a novel n O ( p ) time algorithm. In this paper, we investigate the computational complexity of a variant of 2-SCSS where we have demands for the number of paths between each terminal pair. Formally, the 2 -SCSS- ( k 1 , k 2 ) problem is defined as follows: given an edge-weighted directed graph G = ( V , E ) with weight function ω : E → R ≥ 0 , two terminal vertices s ,  t , and integers k 1 , k 2 ; the objective is to find a set of k 1 paths F 1 , F 2 , … , F k 1 from s ⇝ t and k 2 paths B 1 , B 2 , … , B k 2 from t ⇝ s such that ∑ e ∈ E ω ( e ) · ϕ ( e ) is minimized, where ϕ ( e ) = max { | { i ∈ [ k 1 ] : e ∈ F i } | , | { j ∈ [ k 2 ] : e ∈ B j } | } . For each k ≥ 1 , we show the following: The 2 -SCSS- ( k , 1 ) problem can be solved in time n O ( k ) . A matching lower bound for our algorithm: the 2 -SCSS- ( k , 1 ) problem does not have an f ( k ) · n o ( k ) time algorithm for any computable function f , unless the Exponential Time Hypothesis fails. Our algorithm for 2 -SCSS- ( k , 1 ) relies on a structural result regarding an optimal solution followed by using the idea of a “token game” similar to that of Feldman and Ruhl. We show with an example that the structural result does not hold for the 2 -SCSS- ( k 1 , k 2 ) problem if min { k 1 , k 2 } ≥ 2 . Therefore 2 -SCSS- ( k , 1 ) is the most general problem one can attempt to solve with our techniques. To obtain the lower bound matching the algorithm, we reduce from a special variant of the Grid Tiling problem introduced by Marx [FOCS ’07; ICALP ’12].
Author Hajiaghayi, MohammadTaghi
Kortsarz, Guy
Esfandiari, Hossein
Chitnis, Rajesh
Seddighin, Saeed
Khandekar, Rohit
Author_xml – sequence: 1
  givenname: Rajesh
  surname: Chitnis
  fullname: Chitnis, Rajesh
  email: rajeshchitnis@gmail.com
  organization: The Weizmann Institute of Science
– sequence: 2
  givenname: Hossein
  surname: Esfandiari
  fullname: Esfandiari, Hossein
  organization: Department of Computer Science, University of Maryland
– sequence: 3
  givenname: MohammadTaghi
  surname: Hajiaghayi
  fullname: Hajiaghayi, MohammadTaghi
  organization: Department of Computer Science, University of Maryland
– sequence: 4
  givenname: Rohit
  surname: Khandekar
  fullname: Khandekar, Rohit
  organization: KCG Holdings Inc
– sequence: 5
  givenname: Guy
  surname: Kortsarz
  fullname: Kortsarz, Guy
  organization: Department of Computer Science, Rutgers University-Camden
– sequence: 6
  givenname: Saeed
  surname: Seddighin
  fullname: Seddighin, Saeed
  organization: Department of Computer Science, University of Maryland
BookMark eNp9kEtrwzAQhEVJoUnaH9CboGe3u7Zs2ceQPiHQQ116FH7IjoIjpZJCyL-vgnsohfawLOzMtwwzIxNttCTkGuEWAfidA2BpEgFmYVga5WdkiiyJI0gZTsgUkOcRy5BfkJlzGwCMeZFNyceClqpfe7oYemOVX29pZyx989bofjjSpdFaNl624SSVlkHa172tdmtqNC0PhpbSbpWuBkcPAaf3clvp1l2S8y7c5NX3npP3x4dy-RytXp9elotV1CRp4aMki1nNsC4wh67peJe2kjeIVQ1tIbHIEVnLeZ0Epcp5CzVrujhrsemQZzUmc3Iz_t1Z87mXzouN2dtTHIF5DjxLAYrg4qOrscY5KzvRKF95ZbS3lRoEgji1KMYWRWhRnFoUeSDxF7mzalvZ479MPDIueHUv7Y9Mf0JfaDyF4w
CitedBy_id crossref_primary_10_1007_s00453_019_00580_x
crossref_primary_10_1137_18M122371X
Cites_doi 10.1145/948205.948247
10.1007/978-3-319-13524-3_14
10.1006/jcss.2000.1727
10.1145/780542.780628
10.1109/90.532865
10.1007/978-3-642-20807-2_7
10.1137/S0097539704441241
10.1137/1.9781611973402.129
10.1109/FOCS.2007.26
10.1145/781027.781069
10.1007/978-3-642-31594-7_57
10.1007/978-3-662-48350-3_72
10.1006/jagm.1999.1042
10.1016/j.jcss.2006.04.007
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00453-016-0145-8
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 1239
ExternalDocumentID 10_1007_s00453_016_0145_8
GrantInformation_xml – fundername: National Science Foundation (US)
  grantid: CAREER 1053605
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: National Science Foundation (US)
  grantid: 1218620
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Office of Naval Research (US)
  grantid: YIP Award N000141110662
  funderid: http://dx.doi.org/10.13039/100000006
– fundername: National Science Foundation (US)
  grantid: CCF-1161626
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Defense Advanced Research Projects Agency (US)
  grantid: FA9550-12-1-0423
  funderid: http://dx.doi.org/10.13039/100000185
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c359t-3624b41b9180fcf7f5de7c11ab0d9e198114d77b37f5a87d0b4cf26d1cf176b13
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395509500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 16:27:03 EDT 2025
Tue Nov 18 21:28:19 EST 2025
Sat Nov 29 02:20:27 EST 2025
Fri Feb 21 02:40:20 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Exponential time hypothesis
Directed graphs
FPT algorithms
Strongly connected Steiner subgraph
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-3624b41b9180fcf7f5de7c11ab0d9e198114d77b37f5a87d0b4cf26d1cf176b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://research.birmingham.ac.uk/en/publications/11e63ff3-1fa8-46fa-9ced-52cf5847001a
PQID 1880765009
PQPubID 2043795
PageCount 24
ParticipantIDs proquest_journals_1880765009
crossref_citationtrail_10_1007_s00453_016_0145_8
crossref_primary_10_1007_s00453_016_0145_8
springer_journals_10_1007_s00453_016_0145_8
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Marx, D.: A tight lower bound for planar multiway cut with fixed number of terminals. In: Automata, Languages, and Programming-39th International Colloquium, ICALP 2012, Warwick. Part I, pp. 677–688 (2012)
Chitnis, R.H., Esfandiari, H., Hajiaghayi, M., Khandekar, R., Kortsarz, G., Seddighin, S.: A tight algorithm for strongly connected Steiner subgraph on two terminals with demands (extended abstract). In: Parameterized and Exact Computation-9th International Symposium, IPEC 2014, Wroclaw, pp. 159–171 (2014)
RamanathanSMulticast tree generation in networks with asymmetric linksIEEE ACM Trans. Netw. (TON)199644558568142561610.1109/90.532865
Ramachandran, K., Kokku, R., Mahindra, R., Rangarajan, S.: Wireless network connectivity in data centers, US Patent App. 12/499,906. http://www.google.com/patents/US20100172292 (2010)
FeldmanJRuhlMThe directed Steiner network problem is tractable for a constant number of terminalsSIAM J. Comput.2006362543561224773910.1137/S00975397044412411118.05039
Guo, C., Lu, G., Li, D., Wu, H., Shi, Y., Zhang, D., Zhang, Y., Lu, S.: Hybrid butterfly cube architecture for modular data centers, US Patent 8,065,433. https://www.google.com/patents/US8065433 (2011)
ChenJHuangXKanjIAXiaGStrong computational lower bounds via parameterized complexityJ. Comput. Syst. Sci.200672813461367227341210.1016/j.jcss.2006.04.0071119.68092
Chakrabarty, D., Chekuri, C., Khanna, S., Korula, N.: Approximability of capacitated network design. In: Integer Programming and Combinatoral Optimization-15th International Conference, IPCO 2011, New York, pp. 78–91 (2011)
Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, STOC 2003, San Diego, pp. 585–594 (2003)
Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility location problems using voronoi diagrams. In: Algorithms-ESA 2015-23rd Annual European Symposium, Patras, pp. 865–877 (2015)
Chitnis, R.H., Hajiaghayi, M., Marx, D.: Tight bounds for planar strongly connected Steiner subgraph with fixed number of terminals (and extensions). In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, pp. 1782–1801 (2014)
Marx, D., Pilipczuk, M.: Everything you always wanted to know about the parameterized complexity of Subgraph Isomorphism (but were afraid to ask). In: 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014), Lyon, pp. 542–553 (2014)
Teixeira, R., Marzullo, K., Savage, S., Voelker, G.M.: Characterizing and measuring path diversity of internet topologies. In: International Conference on Measurements and Modeling of Computer Systems, SIGMETRICS 2003, San Diego, pp. 304–305 (2003)
Goemans, M.X., Goldberg, A.V., Plotkin, S.A., Shmoys, D.B., Tardos, É., Williamson, D.P.: Improved approximation algorithms for network design problems. In: Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA 1994, Arlington, pp. 223–232 (1994)
Teixeira, R., Marzullo, K., Savage, S., Voelker, G.M.: In search of path diversity in ISP networks. In: 3rd ACM SIGCOMM Internet Measurement Conference, IMC 2003, Miami Beach, pp. 313–318 (2003)
Marx, D.: On the optimality of planar and geometric approximation schemes. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), Providence, pp. 338–348 (2007)
Charikar, M., Chekuri, C., Cheung, T.Y., Dai, Z., Goel, A., Guha, S., Li, M.: Approximation algorithms for directed Steiner problems. J. Algorithms 33(1), 73–91 (1999)
ImpagliazzoRPaturiROn the complexity of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-SATJ. Comput. Syst. Sci.2001622367375182059710.1006/jcss.2000.17270990.68079
J Chen (145_CR3) 2006; 72
R Impagliazzo (145_CR10) 2001; 62
145_CR15
145_CR17
145_CR18
145_CR1
145_CR2
S Ramanathan (145_CR16) 1996; 4
J Feldman (145_CR6) 2006; 36
145_CR11
145_CR12
145_CR13
145_CR14
145_CR8
145_CR9
145_CR4
145_CR5
145_CR7
References_xml – reference: Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility location problems using voronoi diagrams. In: Algorithms-ESA 2015-23rd Annual European Symposium, Patras, pp. 865–877 (2015)
– reference: Chitnis, R.H., Hajiaghayi, M., Marx, D.: Tight bounds for planar strongly connected Steiner subgraph with fixed number of terminals (and extensions). In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, pp. 1782–1801 (2014)
– reference: Marx, D.: A tight lower bound for planar multiway cut with fixed number of terminals. In: Automata, Languages, and Programming-39th International Colloquium, ICALP 2012, Warwick. Part I, pp. 677–688 (2012)
– reference: RamanathanSMulticast tree generation in networks with asymmetric linksIEEE ACM Trans. Netw. (TON)199644558568142561610.1109/90.532865
– reference: ChenJHuangXKanjIAXiaGStrong computational lower bounds via parameterized complexityJ. Comput. Syst. Sci.200672813461367227341210.1016/j.jcss.2006.04.0071119.68092
– reference: Ramachandran, K., Kokku, R., Mahindra, R., Rangarajan, S.: Wireless network connectivity in data centers, US Patent App. 12/499,906. http://www.google.com/patents/US20100172292 (2010)
– reference: Chakrabarty, D., Chekuri, C., Khanna, S., Korula, N.: Approximability of capacitated network design. In: Integer Programming and Combinatoral Optimization-15th International Conference, IPCO 2011, New York, pp. 78–91 (2011)
– reference: Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, STOC 2003, San Diego, pp. 585–594 (2003)
– reference: FeldmanJRuhlMThe directed Steiner network problem is tractable for a constant number of terminalsSIAM J. Comput.2006362543561224773910.1137/S00975397044412411118.05039
– reference: Marx, D., Pilipczuk, M.: Everything you always wanted to know about the parameterized complexity of Subgraph Isomorphism (but were afraid to ask). In: 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014), Lyon, pp. 542–553 (2014)
– reference: Marx, D.: On the optimality of planar and geometric approximation schemes. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), Providence, pp. 338–348 (2007)
– reference: Teixeira, R., Marzullo, K., Savage, S., Voelker, G.M.: In search of path diversity in ISP networks. In: 3rd ACM SIGCOMM Internet Measurement Conference, IMC 2003, Miami Beach, pp. 313–318 (2003)
– reference: Guo, C., Lu, G., Li, D., Wu, H., Shi, Y., Zhang, D., Zhang, Y., Lu, S.: Hybrid butterfly cube architecture for modular data centers, US Patent 8,065,433. https://www.google.com/patents/US8065433 (2011)
– reference: Teixeira, R., Marzullo, K., Savage, S., Voelker, G.M.: Characterizing and measuring path diversity of internet topologies. In: International Conference on Measurements and Modeling of Computer Systems, SIGMETRICS 2003, San Diego, pp. 304–305 (2003)
– reference: Charikar, M., Chekuri, C., Cheung, T.Y., Dai, Z., Goel, A., Guha, S., Li, M.: Approximation algorithms for directed Steiner problems. J. Algorithms 33(1), 73–91 (1999)
– reference: ImpagliazzoRPaturiROn the complexity of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-SATJ. Comput. Syst. Sci.2001622367375182059710.1006/jcss.2000.17270990.68079
– reference: Goemans, M.X., Goldberg, A.V., Plotkin, S.A., Shmoys, D.B., Tardos, É., Williamson, D.P.: Improved approximation algorithms for network design problems. In: Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA 1994, Arlington, pp. 223–232 (1994)
– reference: Chitnis, R.H., Esfandiari, H., Hajiaghayi, M., Khandekar, R., Kortsarz, G., Seddighin, S.: A tight algorithm for strongly connected Steiner subgraph on two terminals with demands (extended abstract). In: Parameterized and Exact Computation-9th International Symposium, IPEC 2014, Wroclaw, pp. 159–171 (2014)
– ident: 145_CR7
– ident: 145_CR8
– ident: 145_CR18
  doi: 10.1145/948205.948247
– ident: 145_CR4
  doi: 10.1007/978-3-319-13524-3_14
– volume: 62
  start-page: 367
  issue: 2
  year: 2001
  ident: 145_CR10
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.2000.1727
– ident: 145_CR9
  doi: 10.1145/780542.780628
– volume: 4
  start-page: 558
  issue: 4
  year: 1996
  ident: 145_CR16
  publication-title: IEEE ACM Trans. Netw. (TON)
  doi: 10.1109/90.532865
– ident: 145_CR1
  doi: 10.1007/978-3-642-20807-2_7
– volume: 36
  start-page: 543
  issue: 2
  year: 2006
  ident: 145_CR6
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539704441241
– ident: 145_CR5
  doi: 10.1137/1.9781611973402.129
– ident: 145_CR14
  doi: 10.1109/FOCS.2007.26
– ident: 145_CR17
  doi: 10.1145/781027.781069
– ident: 145_CR13
  doi: 10.1007/978-3-642-31594-7_57
– ident: 145_CR12
  doi: 10.1007/978-3-662-48350-3_72
– ident: 145_CR15
– ident: 145_CR2
  doi: 10.1006/jagm.1999.1042
– volume: 72
  start-page: 1346
  issue: 8
  year: 2006
  ident: 145_CR3
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2006.04.007
– ident: 145_CR11
SSID ssj0012796
Score 2.1694224
Snippet Given an edge-weighted directed graph G = ( V , E ) on n vertices and a set T = { t 1 , t 2 , … , t p } of p terminals, the objective of the Strongly Connected...
Given an edge-weighted directed graph G = ( V , E ) on n vertices and a set T = { t 1 , t 2 , … , t p } of p terminals, the objective of the Strongly Connected...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1216
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Graph theory
Graphs
Integers
Matching
Mathematics of Computing
Minimum weight
Terminals
Theory of Computation
Tiling
Weighting functions
Title A Tight Algorithm for Strongly Connected Steiner Subgraph on Two Terminals with Demands
URI https://link.springer.com/article/10.1007/s00453-016-0145-8
https://www.proquest.com/docview/1880765009
Volume 77
WOSCitedRecordID wos000395509500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLagMLBQTlEoyAMTyFKco47HCqgYUIVogG6Rr5RKaYKaAOLfY7tJOARIsMb2U-Trfc_v-AA4FgwHRPgMCYEDQ2HGEQ19F1GiNL5wHEGlLZl_RYbDcDym11Ued1FHu9cuSXtTN8luBn2Y2B9jAfsBCpfBitZ2oeFruBndNa4Dl1hSLkM7j3ytn2tX5nciPiujd4T5xSlqdc2g_a-_3ADrFbSE_cVe2ARLKtsC7Zq2AVaneBvc92FkTHLYTyf5fFo-zKBGrnBkHsUn6Su0sS9CI1H9SZncQKhvF1vYGuYZjF5yGC0iaNICmmdceK5mJmF4B9wOLqKzS1TxKyDhBbREWnf53Mec4tBJREKSQCoiMGbckVRhGmpbSRLCPd3CQiId7ovE7UksEkx6HHu7oJXlmdoDUCZKCsZcT2qZCeW8JznxNHpnjPkBDzrAqSc6FlXxccOBkcZN2WQ7cbEJODMTF4cdcNIMeVxU3vitc7devbg6hEVsSs0RjUAd2gGn9Wp9aP5J2P6feh-ANdeoehvN0wWtcv6kDsGqeC6nxfzI7s03DnXdNQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BQYILZRVl9YETKFKcOHV8rFhURKkQDcst8paCFFrUFhB_j-0mZREgwTW2R5G3eeOZeQOwJzmOqCTckxJHtoSZ8FhMAo9RbfCF70umHGV-i7bb8e0tuyjyuIdltHvpknQ39STZzaIPG_tjLWASefE0zBCjsCxh_mXneuI6CKgrymXLznvE6OfSlfmdiM_K6B1hfnGKOl1zUv3XXy7CQgEtUWO8F5ZgSveWoVqWbUDFKV6BmwZKrEmOGnm3P7gf3T0gg1xRxz6Kd_NX5GJfpEGi5pO2uYHI3C6O2Br1eyh56aNkHEGTD5F9xkVH-sEmDK_C1clxctj0ivoKngwjNvKM7iKCYMFw7Gcyo1mkNJUYc-ErpjGLja2kKBWhaeExVb4gMgvqCssM07rA4RpUev2eXgekMq0k50GojMyMCVFXgoYGvXPOSSSiGvjlRKeyIB-3NTDydEKb7CYutQFnduLSuAb7kyGPY-aN3zpvlauXFodwmFqqOWoQqM9qcFCu1ofmn4Rt_Kn3Lsw1k_NW2jptn23CfGDVvovs2YLKaPCkt2FWPo_uh4Mdt0_fAHWg4Bk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60injxLVar7sGTEswmm272WNSiKEWwPm5hX1GhptJGxX_vTprUByqI1-xmCfvIfLPzzXwAO1rSiGsmPa1phBJmyhMxCzzBrcMXvq-FKUrmn_FOJ765EeelzumwYrtXIclRTgNWacry_UeT7o8T3xCJIA8IvWEWefEkTDHk0aO7fnE1DiMEvBDoQgl6jzlbXYU1vxvis2F6R5tfAqSF3WnP__uLF2CuhJykNdojizBhsyWYr-QcSHm6l-G6RbroqpNW77Y_uM_vHohDtOQCL8tve6-k4MRoh1DdI4s5g8T9dYqC16Sfke5Ln3RHzJrekOD1Ljm0D5hIvAKX7aPuwbFX6i54OoxE7jmbxhSjStDYT3XK08hYrimVyjfCUhE7H8pwrkLXImNufMV0GjQN1SnlTUXDVahl_cyuATGpNVrKIDRuzFQo1TSKhw7VSylZpKI6-NWkJ7osSo7aGL1kXE65mLgEiWg4cUlch93xK4-jihy_dW5UK5mUh3OYYAk67pCpL-qwV63ch-afBlv_U-9tmDk_bCdnJ53TDZgNEA0UhJ8G1PLBk92Eaf2c3w8HW8WWfQPbFej9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Tight+Algorithm+for+Strongly+Connected+Steiner+Subgraph+on+Two+Terminals+with+Demands&rft.jtitle=Algorithmica&rft.au=Chitnis%2C+Rajesh&rft.au=Esfandiari%2C+Hossein&rft.au=Hajiaghayi%2C+MohammadTaghi&rft.au=Khandekar%2C+Rohit&rft.date=2017-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=77&rft.issue=4&rft.spage=1216&rft.epage=1239&rft_id=info:doi/10.1007%2Fs00453-016-0145-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon