Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning Approach

The development of mobile devices with improving communication and perceptual capabilities has brought about a proliferation of numerous complex and computation-intensive mobile applications. Mobile devices with limited resources face more severe capacity constraints than ever before. As a new conce...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on emerging topics in computing Vol. 9; no. 3; pp. 1529 - 1541
Main Authors: Wang, Jiadai, Zhao, Lei, Liu, Jiajia, Kato, Nei
Format: Journal Article
Language:English
Published: New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-6750, 2168-6750
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The development of mobile devices with improving communication and perceptual capabilities has brought about a proliferation of numerous complex and computation-intensive mobile applications. Mobile devices with limited resources face more severe capacity constraints than ever before. As a new concept of network architecture and an extension of cloud computing, Mobile Edge Computing (MEC) seems to be a promising solution to meet this emerging challenge. However, MEC also has some limitations, such as the high cost of infrastructure deployment and maintenance, as well as the severe pressure that the complex and mutative edge computing environment brings to MEC servers. At this point, how to allocate computing resources and network resources rationally to satisfy the requirements of mobile devices under the changeable MEC conditions has become a great aporia. To combat this issue, we propose a smart, Deep Reinforcement Learning based Resource Allocation (DRLRA) scheme, which can allocate computing and network resources adaptively, reduce the average service time and balance the use of resources under varying MEC environment. Experimental results show that the proposed DRLRA performs better than the traditional OSPF algorithm in the mutative MEC conditions.
AbstractList The development of mobile devices with improving communication and perceptual capabilities has brought about a proliferation of numerous complex and computation-intensive mobile applications. Mobile devices with limited resources face more severe capacity constraints than ever before. As a new concept of network architecture and an extension of cloud computing, Mobile Edge Computing (MEC) seems to be a promising solution to meet this emerging challenge. However, MEC also has some limitations, such as the high cost of infrastructure deployment and maintenance, as well as the severe pressure that the complex and mutative edge computing environment brings to MEC servers. At this point, how to allocate computing resources and network resources rationally to satisfy the requirements of mobile devices under the changeable MEC conditions has become a great aporia. To combat this issue, we propose a smart, Deep Reinforcement Learning based Resource Allocation (DRLRA) scheme, which can allocate computing and network resources adaptively, reduce the average service time and balance the use of resources under varying MEC environment. Experimental results show that the proposed DRLRA performs better than the traditional OSPF algorithm in the mutative MEC conditions.
Author Kato, Nei
Zhao, Lei
Wang, Jiadai
Liu, Jiajia
Author_xml – sequence: 1
  givenname: Jiadai
  orcidid: 0000-0002-2631-8792
  surname: Wang
  fullname: Wang, Jiadai
  email: jdwang_xd@163.com
  organization: State Key Laboratory of Integrated Services Networks, School of Cyber Engineering, Xidian University, Xi'an, China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-8382-611X
  surname: Zhao
  fullname: Zhao, Lei
  email: dreamofsophy@gmail.com
  organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada
– sequence: 3
  givenname: Jiajia
  orcidid: 0000-0003-4273-8866
  surname: Liu
  fullname: Liu, Jiajia
  email: liujiajia@nwpu.edu.cn
  organization: School of Cybersecurity, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Nei
  orcidid: 0000-0001-8769-302X
  surname: Kato
  fullname: Kato, Nei
  email: kato@it.is.tohoku.ac.jp
  organization: Graduate School of Information Sciences, Tohoku University, Aobayama 6-3-09, Sendai, Japan
BookMark eNp9kM1LwzAchoNMcM79AeIl4LkzH0vSeCtzfsBE0HnyUNL0l9nRNTXtDv73Zm6IeDCXBPI-efN7TtGg8Q0gdE7JhFKir5bz5WzCCNUTpgmTkh6hIaMyTaQSZPDrfILGXbcmcaVUaqmG6O1lY0KPn6Hz22ABZ3Xtrekr32DnA370RVUDnpcrwDO_abd91ayucYZvANpIVU1MWdhA0-MFmNDEa5y1bfDGvp-hY2fqDsaHfYReb-NP75PF093DLFsklgvdJ8xNrSwYZ2lhBNe8ZEIXpBBq6pxxRNJSWeYYpwp06rRkhhFnaUp1KUuZlnyELvfvxtqPLXR9vo7DNLEyZ0IJyinhIqboPmWD77oALm9DFYf_zCnJdxrzncZ8pzE_aIyM-sPYqv-20wdT1f-SF3uyAoCfplQKpTTlX70OgL0
CODEN ITETBT
CitedBy_id crossref_primary_10_1016_j_phycom_2023_102240
crossref_primary_10_1109_ACCESS_2024_3477497
crossref_primary_10_1109_TSC_2025_3528346
crossref_primary_10_1109_TITS_2020_2982186
crossref_primary_10_1109_TWC_2023_3298265
crossref_primary_10_1016_j_comcom_2020_05_037
crossref_primary_10_1016_j_cosrev_2025_100769
crossref_primary_10_1109_TVT_2020_2990482
crossref_primary_10_1109_ACCESS_2022_3143815
crossref_primary_10_1109_TVT_2020_2972133
crossref_primary_10_1109_TMC_2022_3183098
crossref_primary_10_1109_ACCESS_2025_3577968
crossref_primary_10_7717_peerj_cs_2128
crossref_primary_10_1109_COMST_2020_3011561
crossref_primary_10_1109_COMST_2024_3442149
crossref_primary_10_1109_COMST_2022_3212586
crossref_primary_10_1109_JIOT_2024_3524506
crossref_primary_10_1109_JIOT_2021_3057594
crossref_primary_10_1109_JIOT_2020_3038793
crossref_primary_10_1109_TCCN_2024_3391303
crossref_primary_10_1109_TETC_2021_3115793
crossref_primary_10_1109_TVT_2020_2981657
crossref_primary_10_3390_s24061863
crossref_primary_10_1109_TVT_2020_2997685
crossref_primary_10_1109_TSMC_2023_3327959
crossref_primary_10_1109_JIOT_2024_3369620
crossref_primary_10_1109_ACCESS_2020_2986330
crossref_primary_10_1186_s13677_023_00461_3
crossref_primary_10_1109_JIOT_2021_3135632
crossref_primary_10_1109_TNSM_2023_3292272
crossref_primary_10_1002_sat_1467
crossref_primary_10_1186_s13677_023_00529_0
crossref_primary_10_1109_JIOT_2021_3078514
crossref_primary_10_3390_s25020502
crossref_primary_10_1109_TCCN_2024_3349452
crossref_primary_10_3390_pr11041017
crossref_primary_10_1109_JIOT_2024_3397674
crossref_primary_10_1007_s11036_019_01349_w
crossref_primary_10_1109_TVT_2022_3172792
crossref_primary_10_1109_TVT_2021_3049862
crossref_primary_10_1109_TVT_2019_2937842
crossref_primary_10_1109_TNSM_2021_3123959
crossref_primary_10_1016_j_iot_2023_100826
crossref_primary_10_1016_j_iot_2023_100948
crossref_primary_10_1109_JIOT_2022_3146239
crossref_primary_10_1109_TCOMM_2022_3151879
crossref_primary_10_1109_TCCN_2024_3378219
crossref_primary_10_3390_s22114099
crossref_primary_10_1007_s10586_024_04271_3
crossref_primary_10_1109_COMST_2021_3089688
crossref_primary_10_1109_TVT_2022_3143425
crossref_primary_10_1016_j_ress_2024_110466
crossref_primary_10_1109_TCE_2023_3338620
crossref_primary_10_1109_JIOT_2023_3265344
crossref_primary_10_1109_TWC_2024_3360147
crossref_primary_10_1109_TCC_2021_3107596
crossref_primary_10_1109_JSAC_2022_3227102
crossref_primary_10_1109_TVT_2021_3068255
crossref_primary_10_3390_s24082489
crossref_primary_10_1109_TVT_2022_3232806
crossref_primary_10_1109_TVT_2020_2966701
crossref_primary_10_7717_peerj_cs_2457
crossref_primary_10_1155_2022_1927937
crossref_primary_10_1109_TVT_2021_3086179
crossref_primary_10_1016_j_comcom_2020_01_035
crossref_primary_10_1109_TVT_2020_2982178
crossref_primary_10_1155_2022_7104377
crossref_primary_10_1007_s11761_024_00419_6
crossref_primary_10_1155_2023_6134837
crossref_primary_10_1109_TMC_2024_3521247
crossref_primary_10_1109_JIOT_2023_3297834
crossref_primary_10_1109_TETC_2021_3073744
crossref_primary_10_1109_TVT_2022_3170505
crossref_primary_10_1016_j_comcom_2025_108105
crossref_primary_10_1109_TMC_2024_3389011
crossref_primary_10_1016_j_jpdc_2023_04_004
crossref_primary_10_1109_ACCESS_2021_3081770
crossref_primary_10_1109_TVT_2020_3002222
crossref_primary_10_1016_j_future_2023_10_012
crossref_primary_10_1109_TVT_2020_2987839
crossref_primary_10_1016_j_procs_2020_10_043
crossref_primary_10_1007_s10586_024_04577_2
crossref_primary_10_3390_app10051663
crossref_primary_10_1016_j_phycom_2024_102455
crossref_primary_10_1109_JIOT_2020_2982248
crossref_primary_10_1007_s10115_020_01489_6
crossref_primary_10_3390_app13116708
crossref_primary_10_3390_fi16030103
crossref_primary_10_1109_TVT_2021_3125109
crossref_primary_10_1109_TWC_2020_3003284
crossref_primary_10_1109_ACCESS_2020_3033557
crossref_primary_10_1109_MM_2021_3112264
crossref_primary_10_1109_JIOT_2020_2978516
crossref_primary_10_1109_TVT_2020_3005724
crossref_primary_10_1007_s10586_024_04893_7
crossref_primary_10_1109_TNSE_2022_3141728
crossref_primary_10_1109_MNET_001_1900329
crossref_primary_10_1109_JIOT_2023_3283335
crossref_primary_10_1002_dac_70146
crossref_primary_10_1109_JAS_2020_1003438
crossref_primary_10_32604_cmc_2023_034770
crossref_primary_10_1109_TVT_2020_2982000
crossref_primary_10_1109_ICJECE_2025_3574344
crossref_primary_10_1109_MC_2019_2929566
crossref_primary_10_1109_TETC_2021_3137980
crossref_primary_10_1109_ACCESS_2024_3359708
crossref_primary_10_1109_JIOT_2020_2984088
crossref_primary_10_3390_s22239546
crossref_primary_10_1007_s40747_023_01255_5
crossref_primary_10_1109_JIOT_2021_3086910
crossref_primary_10_1109_TVT_2020_3029109
crossref_primary_10_3390_s23104806
crossref_primary_10_1109_JIOT_2021_3051031
crossref_primary_10_1109_ACCESS_2024_3405411
crossref_primary_10_1109_ACCESS_2023_3256522
crossref_primary_10_1109_JIOT_2024_3366252
crossref_primary_10_1109_JIOT_2023_3235993
crossref_primary_10_1109_ACCESS_2022_3183647
crossref_primary_10_1109_TVT_2020_2975849
crossref_primary_10_3390_s22239434
crossref_primary_10_1109_ACCESS_2022_3221740
crossref_primary_10_1016_j_phycom_2024_102484
crossref_primary_10_1109_COMST_2021_3073036
crossref_primary_10_1186_s13677_024_00603_1
crossref_primary_10_1016_j_advengsoft_2023_103487
crossref_primary_10_3390_math12182934
crossref_primary_10_1109_JIOT_2024_3427686
crossref_primary_10_1109_TMC_2021_3068632
crossref_primary_10_1109_TWC_2024_3406729
crossref_primary_10_3390_drones5040148
crossref_primary_10_1109_TGCN_2024_3514578
crossref_primary_10_1109_TVT_2020_2980965
crossref_primary_10_1109_TMC_2023_3282645
crossref_primary_10_1109_TMC_2024_3415661
crossref_primary_10_1109_TVT_2020_2977418
crossref_primary_10_1109_TII_2020_3001355
crossref_primary_10_3390_electronics11152464
crossref_primary_10_1109_COMST_2020_2988367
crossref_primary_10_1007_s11276_020_02518_6
crossref_primary_10_1109_TVT_2022_3164896
crossref_primary_10_1109_MWC_010_2300353
crossref_primary_10_1007_s40860_025_00243_5
crossref_primary_10_1109_ACCESS_2025_3567068
crossref_primary_10_1109_JIOT_2021_3051419
crossref_primary_10_1109_TWC_2021_3051772
crossref_primary_10_1109_ACCESS_2022_3185992
crossref_primary_10_1109_TMC_2022_3213410
crossref_primary_10_1109_TMC_2020_3043736
crossref_primary_10_1109_TVT_2020_2995877
crossref_primary_10_1007_s11276_023_03426_1
crossref_primary_10_3390_electronics12030562
crossref_primary_10_1016_j_adhoc_2023_103305
crossref_primary_10_1016_j_iot_2024_101242
crossref_primary_10_1109_TNSM_2021_3072433
crossref_primary_10_1109_TWC_2019_2946797
crossref_primary_10_1007_s43926_025_00134_4
crossref_primary_10_1109_TETC_2024_3479202
crossref_primary_10_1007_s11227_022_04338_1
crossref_primary_10_1016_j_icte_2022_05_001
crossref_primary_10_1002_cpe_7995
crossref_primary_10_1007_s13198_023_02157_y
crossref_primary_10_1109_TVT_2021_3096928
crossref_primary_10_1007_s11227_024_06578_9
crossref_primary_10_1016_j_icte_2025_06_015
crossref_primary_10_1016_j_adhoc_2025_103977
crossref_primary_10_1109_TNSM_2023_3316626
crossref_primary_10_1109_TII_2021_3106973
crossref_primary_10_1109_TWC_2023_3260767
crossref_primary_10_1109_JIOT_2023_3340669
crossref_primary_10_1002_ett_4762
crossref_primary_10_1109_TCOMM_2021_3066495
crossref_primary_10_1109_TWC_2020_2968426
crossref_primary_10_1038_s41598_025_14429_7
crossref_primary_10_1109_TCC_2021_3113605
crossref_primary_10_1109_JIOT_2023_3312118
crossref_primary_10_1109_TVT_2020_2984835
crossref_primary_10_1109_TCCN_2023_3310151
crossref_primary_10_1002_dac_5415
crossref_primary_10_1109_JIOT_2024_3444898
crossref_primary_10_1109_TWC_2022_3213638
crossref_primary_10_1016_j_jnca_2022_103568
crossref_primary_10_1016_j_compeleceng_2021_107539
crossref_primary_10_1109_TETC_2020_2978229
crossref_primary_10_1109_TWC_2019_2955129
crossref_primary_10_1109_ACCESS_2022_3175850
crossref_primary_10_1109_JIOT_2022_3233383
crossref_primary_10_1109_TETCI_2020_3007905
crossref_primary_10_1109_COMST_2024_3369250
crossref_primary_10_1109_TVT_2020_3013990
crossref_primary_10_3390_e27080803
crossref_primary_10_1109_JIOT_2024_3391923
crossref_primary_10_1109_TWC_2023_3321334
crossref_primary_10_1007_s11227_023_05656_8
crossref_primary_10_1007_s11277_021_09087_7
crossref_primary_10_1109_ACCESS_2020_3028240
crossref_primary_10_1109_TCCN_2020_3018157
crossref_primary_10_1109_TITS_2020_2995622
crossref_primary_10_1109_TCCN_2020_3018159
crossref_primary_10_3390_pr12091804
crossref_primary_10_1109_TVT_2020_2978027
crossref_primary_10_1109_JIOT_2020_3034153
crossref_primary_10_1109_TASE_2025_3560121
crossref_primary_10_1109_ACCESS_2022_3187701
crossref_primary_10_1109_ACCESS_2025_3586800
crossref_primary_10_1109_TVT_2020_2975559
crossref_primary_10_1109_TVT_2021_3064426
crossref_primary_10_1631_FITEE_2300741
crossref_primary_10_1109_TII_2020_3019386
crossref_primary_10_1109_JIOT_2019_2935543
crossref_primary_10_1109_TITS_2024_3391831
crossref_primary_10_1109_ACCESS_2023_3278591
crossref_primary_10_1109_TWC_2020_2995594
crossref_primary_10_1145_3555802
crossref_primary_10_3390_s23094413
crossref_primary_10_1109_JIOT_2024_3491944
crossref_primary_10_1109_ACCESS_2020_3038605
crossref_primary_10_1109_JSYST_2020_2993800
crossref_primary_10_1109_TVT_2024_3367657
crossref_primary_10_1155_2021_9014559
crossref_primary_10_1109_TVT_2021_3074304
crossref_primary_10_1109_TVT_2024_3397707
crossref_primary_10_1109_JIOT_2021_3085777
crossref_primary_10_1109_TCCN_2023_3342441
crossref_primary_10_1002_cpe_8130
crossref_primary_10_1109_TVT_2022_3214075
crossref_primary_10_1109_ACCESS_2020_3004861
crossref_primary_10_1109_TVT_2023_3297362
crossref_primary_10_1109_TGCN_2020_3044566
crossref_primary_10_1109_TVT_2020_2979941
crossref_primary_10_3390_s24237760
crossref_primary_10_1109_ACCESS_2020_3025432
crossref_primary_10_1109_JIOT_2023_3285359
crossref_primary_10_1109_JIOT_2023_3347524
crossref_primary_10_3390_wevj15020039
crossref_primary_10_1109_TVT_2019_2945398
crossref_primary_10_1109_JIOT_2024_3350072
crossref_primary_10_1109_TWC_2022_3224045
crossref_primary_10_1109_TVT_2020_3008926
crossref_primary_10_1109_JIOT_2023_3333826
crossref_primary_10_3390_sym16070906
crossref_primary_10_1109_TGCN_2022_3146487
crossref_primary_10_1109_ACCESS_2024_3502400
crossref_primary_10_1007_s11042_024_18123_0
crossref_primary_10_1109_TVT_2022_3179363
crossref_primary_10_1109_ACCESS_2022_3192628
crossref_primary_10_1109_TETC_2021_3063517
Cites_doi 10.1109/INM.2015.7140324
10.1109/TNET.2016.2632970
10.1007/s00521-015-1916-x
10.1109/MWC.2017.1600423
10.1109/CloudNet.2017.8071527
10.1145/2534169.2491700
10.1109/LWC.2017.2696539
10.1109/MCOM.2016.1600492CM
10.1109/TETC.2017.2675911
10.1109/MWC.2017.1700244
10.1109/TVT.2018.2790421
10.1109/GLOCOM.2017.8254084
10.1109/JIOT.2016.2628938
10.1109/TWC.2017.2685578
10.1109/TETC.2013.2278699
10.1109/TWC.2016.2633522
10.1109/TVT.2017.2672701
10.1109/JIOT.2018.2838574
10.1109/WAINA.2017.101
10.1109/JIOT.2018.2838584
10.1109/COMST.2017.2707140
10.1109/JSAC.2016.2611964
10.1109/MNET.2018.1700293
10.1109/TC.2016.2536019
10.1109/JSAC.2011.111002
10.1109/MCOM.2018.1700622
10.1038/nature14236
10.1109/TWC.2017.2717986
10.1109/TETC.2016.2598478
10.1109/IEEE.EDGE.2017.42
10.1109/JSAC.2018.2815360
10.1109/TVT.2018.2808171
10.1109/TBC.2015.2511625
10.1109/TC.2017.2709742
10.1038/nature14539
10.1109/COMST.2017.2745201
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TETC.2019.2902661
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-6750
EndPage 1541
ExternalDocumentID 10_1109_TETC_2019_2902661
8657791
Genre orig-research
GrantInformation_xml – fundername: China 111 Project
  grantid: B16037
– fundername: Science and Technology Innovation Program
  grantid: 201809168CX9JC10
– fundername: Fundamental Research Funds for the Central Universities
  grantid: JB171501; JB181506; JB181507; JB181508
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61771374; 61771373; 61801360; 61601357
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
KQ8
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-2f4c6b2328ba5393d259b0b574ffaf061d7c2f2317e98f962a20fc1819d6d68d3
IEDL.DBID RIE
ISICitedReferencesCount 318
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000697823100040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-6750
IngestDate Sun Nov 30 05:14:28 EST 2025
Sat Nov 29 05:38:17 EST 2025
Tue Nov 18 22:24:33 EST 2025
Wed Aug 27 02:27:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-2f4c6b2328ba5393d259b0b574ffaf061d7c2f2317e98f962a20fc1819d6d68d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8382-611X
0000-0002-2631-8792
0000-0003-4273-8866
0000-0001-8769-302X
PQID 2575131035
PQPubID 4437215
PageCount 13
ParticipantIDs ieee_primary_8657791
crossref_primary_10_1109_TETC_2019_2902661
proquest_journals_2575131035
crossref_citationtrail_10_1109_TETC_2019_2902661
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on emerging topics in computing
PublicationTitleAbbrev TETC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref30
ha (ref37) 2013
ref11
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
lecun (ref33) 2015; 521
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
gu (ref32) 2016
ref5
brockman (ref31) 2016
References_xml – ident: ref39
  doi: 10.1109/INM.2015.7140324
– ident: ref35
  doi: 10.1109/TNET.2016.2632970
– ident: ref34
  doi: 10.1007/s00521-015-1916-x
– ident: ref2
  doi: 10.1109/MWC.2017.1600423
– ident: ref23
  doi: 10.1109/CloudNet.2017.8071527
– ident: ref18
  doi: 10.1145/2534169.2491700
– start-page: 2829
  year: 2016
  ident: ref32
  article-title: Continuous deep Q-learning with model-based acceleration
  publication-title: Proc Int Conf Mach Learn
– ident: ref13
  doi: 10.1109/LWC.2017.2696539
– ident: ref9
  doi: 10.1109/MCOM.2016.1600492CM
– ident: ref3
  doi: 10.1109/TETC.2017.2675911
– ident: ref29
  doi: 10.1109/MWC.2017.1700244
– ident: ref22
  doi: 10.1109/TVT.2018.2790421
– ident: ref15
  doi: 10.1109/GLOCOM.2017.8254084
– ident: ref1
  doi: 10.1109/JIOT.2016.2628938
– ident: ref38
  doi: 10.1109/TWC.2017.2685578
– ident: ref25
  doi: 10.1109/TETC.2013.2278699
– ident: ref12
  doi: 10.1109/TWC.2016.2633522
– ident: ref21
  doi: 10.1109/TVT.2017.2672701
– ident: ref10
  doi: 10.1109/JIOT.2018.2838574
– ident: ref30
  doi: 10.1109/WAINA.2017.101
– ident: ref6
  doi: 10.1109/JIOT.2018.2838584
– ident: ref26
  doi: 10.1109/COMST.2017.2707140
– ident: ref7
  doi: 10.1109/JSAC.2016.2611964
– ident: ref27
  doi: 10.1109/MNET.2018.1700293
– ident: ref24
  doi: 10.1109/TC.2016.2536019
– ident: ref36
  doi: 10.1109/JSAC.2011.111002
– ident: ref17
  doi: 10.1109/MCOM.2018.1700622
– ident: ref16
  doi: 10.1038/nature14236
– ident: ref4
  doi: 10.1109/TWC.2017.2717986
– ident: ref14
  doi: 10.1109/TETC.2016.2598478
– ident: ref19
  doi: 10.1109/IEEE.EDGE.2017.42
– ident: ref20
  doi: 10.1109/JSAC.2018.2815360
– ident: ref11
  doi: 10.1109/TVT.2018.2808171
– year: 2016
  ident: ref31
  article-title: OpenAI Gym
– start-page: 166
  year: 2013
  ident: ref37
  article-title: The impact of mobile multimedia applications on data center consolidation
  publication-title: Proc IEEE Int Conf Cloud Eng
– ident: ref5
  doi: 10.1109/TBC.2015.2511625
– ident: ref28
  doi: 10.1109/TC.2017.2709742
– volume: 521
  year: 2015
  ident: ref33
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref8
  doi: 10.1109/COMST.2017.2745201
SSID ssj0000816967
Score 2.6328237
Snippet The development of mobile devices with improving communication and perceptual capabilities has brought about a proliferation of numerous complex and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1529
SubjectTerms Algorithms
Applications programs
Cloud computing
Computer architecture
Deep learning
deep reinforcement learning
Delays
Edge computing
Electronic devices
Machine learning
Mobile computing
Mobile edge computing
Mobile handsets
Resource allocation
Resource management
Routing
Servers
Title Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning Approach
URI https://ieeexplore.ieee.org/document/8657791
https://www.proquest.com/docview/2575131035
Volume 9
WOSCitedRecordID wos000697823100040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-6750
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816967
  issn: 2168-6750
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHX1WsVsnBk7jtNrubh7dFWzxoEaxS8LDs5lGE2pY-_P0mabooiuBtDxnIzkwyj8x8A3CBufFZiSABxZEOYqpxwKVqB5oZ5aKaSeXAql_uaa_HBgP-WIGrshdGKeWKz1TTfrq3fDkRS5sqazGSUGpb1TcopaterTKfYgdIcEL9w2U75K1-p39ja7d4E_PQ2qFvpsfNUvlxATur0t393372YMd7jyhdiXsfKmp8ANtfMAVr8Pr0brQBrdPyKB1Zc2XZj4x_ih4mhbkHUEcOFVpNdDBU1yhFt0pNDZUDUhUuZ4g89uoQpR54_BCeu-Z37wI_QSEQUcIXAdaxIIVxmliRJxGPpAl2irBIaKx1ro0pl1RgbVw8qjjTnOAch1oYo88lkYTJ6Aiq48lYHQMykQuJqIxYIXSswjyPhXFtsCCcxeZc6zqEa-ZmwsOL2ykXo8yFGSHPrDwyK4_My6MOlyXJdIWt8dfimhVAudDzvg6NtQQzf_rmGbaPSXaAWnLyO9UpbGFbm-LKbhtQXcyW6gw2xcfibT47d4r1Ce02ywY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH5IFdSDu1itmoMnceo0M5PFW9GWim0RrFLwMMxkKUJtSxd_v0maFkURvM0hDzL5krw13wO4wNzYrESQgOJIBzHVOOBSVQLNzOaimknlyKpfmrTdZt0uf1yBq-VbGKWUKz5TZfvpcvlyKGY2VHbNSEKpfaq-msQxrsxfay0jKraFBCfUpy4rIb_u1Dq3tnqLlzEPrSb6pnxcN5UfV7DTK_Xt_81oB7a8_Yiqc8B3YUUN9mDzC6vgPrw-vZv9gBaBeVTtW4VlAUDGQkWtYW5uAlSTPYXmPR2M1A2qojulRkbKUakKFzVEnn21h6qeevwAnuvmdxuB76EQiCjh0wDrWJDcmE0sz5KIR9K4O3mYJzTWOtNGmUsqsDZGHlWcaU5whkMtjNrnkkjCZHQIhcFwoI4AGd-FRFRGLBc6VmGWxcIYN1gQzmJzsnURwsXipsITjNs-F_3UORohTy0eqcUj9XgU4XIpMpqza_w1eN8CsBzo174IpQWCqT9_kxTbdJJtoZYc_y51DuuNTquZNu_bDyewgW2liivCLUFhOp6pU1gTH9O3yfjMbbJPpe7OTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+Resource+Allocation+for+Mobile+Edge+Computing%3A+A+Deep+Reinforcement+Learning+Approach&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computing&rft.au=Wang%2C+Jiadai&rft.au=Zhao%2C+Lei&rft.au=Liu%2C+Jiajia&rft.au=Kato%2C+Nei&rft.date=2021-07-01&rft.pub=IEEE&rft.eissn=2168-6750&rft.volume=9&rft.issue=3&rft.spage=1529&rft.epage=1541&rft_id=info:doi/10.1109%2FTETC.2019.2902661&rft.externalDocID=8657791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-6750&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-6750&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-6750&client=summon