Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning Approach
The development of mobile devices with improving communication and perceptual capabilities has brought about a proliferation of numerous complex and computation-intensive mobile applications. Mobile devices with limited resources face more severe capacity constraints than ever before. As a new conce...
Saved in:
| Published in: | IEEE transactions on emerging topics in computing Vol. 9; no. 3; pp. 1529 - 1541 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2168-6750, 2168-6750 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The development of mobile devices with improving communication and perceptual capabilities has brought about a proliferation of numerous complex and computation-intensive mobile applications. Mobile devices with limited resources face more severe capacity constraints than ever before. As a new concept of network architecture and an extension of cloud computing, Mobile Edge Computing (MEC) seems to be a promising solution to meet this emerging challenge. However, MEC also has some limitations, such as the high cost of infrastructure deployment and maintenance, as well as the severe pressure that the complex and mutative edge computing environment brings to MEC servers. At this point, how to allocate computing resources and network resources rationally to satisfy the requirements of mobile devices under the changeable MEC conditions has become a great aporia. To combat this issue, we propose a smart, Deep Reinforcement Learning based Resource Allocation (DRLRA) scheme, which can allocate computing and network resources adaptively, reduce the average service time and balance the use of resources under varying MEC environment. Experimental results show that the proposed DRLRA performs better than the traditional OSPF algorithm in the mutative MEC conditions. |
|---|---|
| AbstractList | The development of mobile devices with improving communication and perceptual capabilities has brought about a proliferation of numerous complex and computation-intensive mobile applications. Mobile devices with limited resources face more severe capacity constraints than ever before. As a new concept of network architecture and an extension of cloud computing, Mobile Edge Computing (MEC) seems to be a promising solution to meet this emerging challenge. However, MEC also has some limitations, such as the high cost of infrastructure deployment and maintenance, as well as the severe pressure that the complex and mutative edge computing environment brings to MEC servers. At this point, how to allocate computing resources and network resources rationally to satisfy the requirements of mobile devices under the changeable MEC conditions has become a great aporia. To combat this issue, we propose a smart, Deep Reinforcement Learning based Resource Allocation (DRLRA) scheme, which can allocate computing and network resources adaptively, reduce the average service time and balance the use of resources under varying MEC environment. Experimental results show that the proposed DRLRA performs better than the traditional OSPF algorithm in the mutative MEC conditions. |
| Author | Kato, Nei Zhao, Lei Wang, Jiadai Liu, Jiajia |
| Author_xml | – sequence: 1 givenname: Jiadai orcidid: 0000-0002-2631-8792 surname: Wang fullname: Wang, Jiadai email: jdwang_xd@163.com organization: State Key Laboratory of Integrated Services Networks, School of Cyber Engineering, Xidian University, Xi'an, China – sequence: 2 givenname: Lei orcidid: 0000-0002-8382-611X surname: Zhao fullname: Zhao, Lei email: dreamofsophy@gmail.com organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada – sequence: 3 givenname: Jiajia orcidid: 0000-0003-4273-8866 surname: Liu fullname: Liu, Jiajia email: liujiajia@nwpu.edu.cn organization: School of Cybersecurity, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Nei orcidid: 0000-0001-8769-302X surname: Kato fullname: Kato, Nei email: kato@it.is.tohoku.ac.jp organization: Graduate School of Information Sciences, Tohoku University, Aobayama 6-3-09, Sendai, Japan |
| BookMark | eNp9kM1LwzAchoNMcM79AeIl4LkzH0vSeCtzfsBE0HnyUNL0l9nRNTXtDv73Zm6IeDCXBPI-efN7TtGg8Q0gdE7JhFKir5bz5WzCCNUTpgmTkh6hIaMyTaQSZPDrfILGXbcmcaVUaqmG6O1lY0KPn6Hz22ABZ3Xtrekr32DnA370RVUDnpcrwDO_abd91ayucYZvANpIVU1MWdhA0-MFmNDEa5y1bfDGvp-hY2fqDsaHfYReb-NP75PF093DLFsklgvdJ8xNrSwYZ2lhBNe8ZEIXpBBq6pxxRNJSWeYYpwp06rRkhhFnaUp1KUuZlnyELvfvxtqPLXR9vo7DNLEyZ0IJyinhIqboPmWD77oALm9DFYf_zCnJdxrzncZ8pzE_aIyM-sPYqv-20wdT1f-SF3uyAoCfplQKpTTlX70OgL0 |
| CODEN | ITETBT |
| CitedBy_id | crossref_primary_10_1016_j_phycom_2023_102240 crossref_primary_10_1109_ACCESS_2024_3477497 crossref_primary_10_1109_TSC_2025_3528346 crossref_primary_10_1109_TITS_2020_2982186 crossref_primary_10_1109_TWC_2023_3298265 crossref_primary_10_1016_j_comcom_2020_05_037 crossref_primary_10_1016_j_cosrev_2025_100769 crossref_primary_10_1109_TVT_2020_2990482 crossref_primary_10_1109_ACCESS_2022_3143815 crossref_primary_10_1109_TVT_2020_2972133 crossref_primary_10_1109_TMC_2022_3183098 crossref_primary_10_1109_ACCESS_2025_3577968 crossref_primary_10_7717_peerj_cs_2128 crossref_primary_10_1109_COMST_2020_3011561 crossref_primary_10_1109_COMST_2024_3442149 crossref_primary_10_1109_COMST_2022_3212586 crossref_primary_10_1109_JIOT_2024_3524506 crossref_primary_10_1109_JIOT_2021_3057594 crossref_primary_10_1109_JIOT_2020_3038793 crossref_primary_10_1109_TCCN_2024_3391303 crossref_primary_10_1109_TETC_2021_3115793 crossref_primary_10_1109_TVT_2020_2981657 crossref_primary_10_3390_s24061863 crossref_primary_10_1109_TVT_2020_2997685 crossref_primary_10_1109_TSMC_2023_3327959 crossref_primary_10_1109_JIOT_2024_3369620 crossref_primary_10_1109_ACCESS_2020_2986330 crossref_primary_10_1186_s13677_023_00461_3 crossref_primary_10_1109_JIOT_2021_3135632 crossref_primary_10_1109_TNSM_2023_3292272 crossref_primary_10_1002_sat_1467 crossref_primary_10_1186_s13677_023_00529_0 crossref_primary_10_1109_JIOT_2021_3078514 crossref_primary_10_3390_s25020502 crossref_primary_10_1109_TCCN_2024_3349452 crossref_primary_10_3390_pr11041017 crossref_primary_10_1109_JIOT_2024_3397674 crossref_primary_10_1007_s11036_019_01349_w crossref_primary_10_1109_TVT_2022_3172792 crossref_primary_10_1109_TVT_2021_3049862 crossref_primary_10_1109_TVT_2019_2937842 crossref_primary_10_1109_TNSM_2021_3123959 crossref_primary_10_1016_j_iot_2023_100826 crossref_primary_10_1016_j_iot_2023_100948 crossref_primary_10_1109_JIOT_2022_3146239 crossref_primary_10_1109_TCOMM_2022_3151879 crossref_primary_10_1109_TCCN_2024_3378219 crossref_primary_10_3390_s22114099 crossref_primary_10_1007_s10586_024_04271_3 crossref_primary_10_1109_COMST_2021_3089688 crossref_primary_10_1109_TVT_2022_3143425 crossref_primary_10_1016_j_ress_2024_110466 crossref_primary_10_1109_TCE_2023_3338620 crossref_primary_10_1109_JIOT_2023_3265344 crossref_primary_10_1109_TWC_2024_3360147 crossref_primary_10_1109_TCC_2021_3107596 crossref_primary_10_1109_JSAC_2022_3227102 crossref_primary_10_1109_TVT_2021_3068255 crossref_primary_10_3390_s24082489 crossref_primary_10_1109_TVT_2022_3232806 crossref_primary_10_1109_TVT_2020_2966701 crossref_primary_10_7717_peerj_cs_2457 crossref_primary_10_1155_2022_1927937 crossref_primary_10_1109_TVT_2021_3086179 crossref_primary_10_1016_j_comcom_2020_01_035 crossref_primary_10_1109_TVT_2020_2982178 crossref_primary_10_1155_2022_7104377 crossref_primary_10_1007_s11761_024_00419_6 crossref_primary_10_1155_2023_6134837 crossref_primary_10_1109_TMC_2024_3521247 crossref_primary_10_1109_JIOT_2023_3297834 crossref_primary_10_1109_TETC_2021_3073744 crossref_primary_10_1109_TVT_2022_3170505 crossref_primary_10_1016_j_comcom_2025_108105 crossref_primary_10_1109_TMC_2024_3389011 crossref_primary_10_1016_j_jpdc_2023_04_004 crossref_primary_10_1109_ACCESS_2021_3081770 crossref_primary_10_1109_TVT_2020_3002222 crossref_primary_10_1016_j_future_2023_10_012 crossref_primary_10_1109_TVT_2020_2987839 crossref_primary_10_1016_j_procs_2020_10_043 crossref_primary_10_1007_s10586_024_04577_2 crossref_primary_10_3390_app10051663 crossref_primary_10_1016_j_phycom_2024_102455 crossref_primary_10_1109_JIOT_2020_2982248 crossref_primary_10_1007_s10115_020_01489_6 crossref_primary_10_3390_app13116708 crossref_primary_10_3390_fi16030103 crossref_primary_10_1109_TVT_2021_3125109 crossref_primary_10_1109_TWC_2020_3003284 crossref_primary_10_1109_ACCESS_2020_3033557 crossref_primary_10_1109_MM_2021_3112264 crossref_primary_10_1109_JIOT_2020_2978516 crossref_primary_10_1109_TVT_2020_3005724 crossref_primary_10_1007_s10586_024_04893_7 crossref_primary_10_1109_TNSE_2022_3141728 crossref_primary_10_1109_MNET_001_1900329 crossref_primary_10_1109_JIOT_2023_3283335 crossref_primary_10_1002_dac_70146 crossref_primary_10_1109_JAS_2020_1003438 crossref_primary_10_32604_cmc_2023_034770 crossref_primary_10_1109_TVT_2020_2982000 crossref_primary_10_1109_ICJECE_2025_3574344 crossref_primary_10_1109_MC_2019_2929566 crossref_primary_10_1109_TETC_2021_3137980 crossref_primary_10_1109_ACCESS_2024_3359708 crossref_primary_10_1109_JIOT_2020_2984088 crossref_primary_10_3390_s22239546 crossref_primary_10_1007_s40747_023_01255_5 crossref_primary_10_1109_JIOT_2021_3086910 crossref_primary_10_1109_TVT_2020_3029109 crossref_primary_10_3390_s23104806 crossref_primary_10_1109_JIOT_2021_3051031 crossref_primary_10_1109_ACCESS_2024_3405411 crossref_primary_10_1109_ACCESS_2023_3256522 crossref_primary_10_1109_JIOT_2024_3366252 crossref_primary_10_1109_JIOT_2023_3235993 crossref_primary_10_1109_ACCESS_2022_3183647 crossref_primary_10_1109_TVT_2020_2975849 crossref_primary_10_3390_s22239434 crossref_primary_10_1109_ACCESS_2022_3221740 crossref_primary_10_1016_j_phycom_2024_102484 crossref_primary_10_1109_COMST_2021_3073036 crossref_primary_10_1186_s13677_024_00603_1 crossref_primary_10_1016_j_advengsoft_2023_103487 crossref_primary_10_3390_math12182934 crossref_primary_10_1109_JIOT_2024_3427686 crossref_primary_10_1109_TMC_2021_3068632 crossref_primary_10_1109_TWC_2024_3406729 crossref_primary_10_3390_drones5040148 crossref_primary_10_1109_TGCN_2024_3514578 crossref_primary_10_1109_TVT_2020_2980965 crossref_primary_10_1109_TMC_2023_3282645 crossref_primary_10_1109_TMC_2024_3415661 crossref_primary_10_1109_TVT_2020_2977418 crossref_primary_10_1109_TII_2020_3001355 crossref_primary_10_3390_electronics11152464 crossref_primary_10_1109_COMST_2020_2988367 crossref_primary_10_1007_s11276_020_02518_6 crossref_primary_10_1109_TVT_2022_3164896 crossref_primary_10_1109_MWC_010_2300353 crossref_primary_10_1007_s40860_025_00243_5 crossref_primary_10_1109_ACCESS_2025_3567068 crossref_primary_10_1109_JIOT_2021_3051419 crossref_primary_10_1109_TWC_2021_3051772 crossref_primary_10_1109_ACCESS_2022_3185992 crossref_primary_10_1109_TMC_2022_3213410 crossref_primary_10_1109_TMC_2020_3043736 crossref_primary_10_1109_TVT_2020_2995877 crossref_primary_10_1007_s11276_023_03426_1 crossref_primary_10_3390_electronics12030562 crossref_primary_10_1016_j_adhoc_2023_103305 crossref_primary_10_1016_j_iot_2024_101242 crossref_primary_10_1109_TNSM_2021_3072433 crossref_primary_10_1109_TWC_2019_2946797 crossref_primary_10_1007_s43926_025_00134_4 crossref_primary_10_1109_TETC_2024_3479202 crossref_primary_10_1007_s11227_022_04338_1 crossref_primary_10_1016_j_icte_2022_05_001 crossref_primary_10_1002_cpe_7995 crossref_primary_10_1007_s13198_023_02157_y crossref_primary_10_1109_TVT_2021_3096928 crossref_primary_10_1007_s11227_024_06578_9 crossref_primary_10_1016_j_icte_2025_06_015 crossref_primary_10_1016_j_adhoc_2025_103977 crossref_primary_10_1109_TNSM_2023_3316626 crossref_primary_10_1109_TII_2021_3106973 crossref_primary_10_1109_TWC_2023_3260767 crossref_primary_10_1109_JIOT_2023_3340669 crossref_primary_10_1002_ett_4762 crossref_primary_10_1109_TCOMM_2021_3066495 crossref_primary_10_1109_TWC_2020_2968426 crossref_primary_10_1038_s41598_025_14429_7 crossref_primary_10_1109_TCC_2021_3113605 crossref_primary_10_1109_JIOT_2023_3312118 crossref_primary_10_1109_TVT_2020_2984835 crossref_primary_10_1109_TCCN_2023_3310151 crossref_primary_10_1002_dac_5415 crossref_primary_10_1109_JIOT_2024_3444898 crossref_primary_10_1109_TWC_2022_3213638 crossref_primary_10_1016_j_jnca_2022_103568 crossref_primary_10_1016_j_compeleceng_2021_107539 crossref_primary_10_1109_TETC_2020_2978229 crossref_primary_10_1109_TWC_2019_2955129 crossref_primary_10_1109_ACCESS_2022_3175850 crossref_primary_10_1109_JIOT_2022_3233383 crossref_primary_10_1109_TETCI_2020_3007905 crossref_primary_10_1109_COMST_2024_3369250 crossref_primary_10_1109_TVT_2020_3013990 crossref_primary_10_3390_e27080803 crossref_primary_10_1109_JIOT_2024_3391923 crossref_primary_10_1109_TWC_2023_3321334 crossref_primary_10_1007_s11227_023_05656_8 crossref_primary_10_1007_s11277_021_09087_7 crossref_primary_10_1109_ACCESS_2020_3028240 crossref_primary_10_1109_TCCN_2020_3018157 crossref_primary_10_1109_TITS_2020_2995622 crossref_primary_10_1109_TCCN_2020_3018159 crossref_primary_10_3390_pr12091804 crossref_primary_10_1109_TVT_2020_2978027 crossref_primary_10_1109_JIOT_2020_3034153 crossref_primary_10_1109_TASE_2025_3560121 crossref_primary_10_1109_ACCESS_2022_3187701 crossref_primary_10_1109_ACCESS_2025_3586800 crossref_primary_10_1109_TVT_2020_2975559 crossref_primary_10_1109_TVT_2021_3064426 crossref_primary_10_1631_FITEE_2300741 crossref_primary_10_1109_TII_2020_3019386 crossref_primary_10_1109_JIOT_2019_2935543 crossref_primary_10_1109_TITS_2024_3391831 crossref_primary_10_1109_ACCESS_2023_3278591 crossref_primary_10_1109_TWC_2020_2995594 crossref_primary_10_1145_3555802 crossref_primary_10_3390_s23094413 crossref_primary_10_1109_JIOT_2024_3491944 crossref_primary_10_1109_ACCESS_2020_3038605 crossref_primary_10_1109_JSYST_2020_2993800 crossref_primary_10_1109_TVT_2024_3367657 crossref_primary_10_1155_2021_9014559 crossref_primary_10_1109_TVT_2021_3074304 crossref_primary_10_1109_TVT_2024_3397707 crossref_primary_10_1109_JIOT_2021_3085777 crossref_primary_10_1109_TCCN_2023_3342441 crossref_primary_10_1002_cpe_8130 crossref_primary_10_1109_TVT_2022_3214075 crossref_primary_10_1109_ACCESS_2020_3004861 crossref_primary_10_1109_TVT_2023_3297362 crossref_primary_10_1109_TGCN_2020_3044566 crossref_primary_10_1109_TVT_2020_2979941 crossref_primary_10_3390_s24237760 crossref_primary_10_1109_ACCESS_2020_3025432 crossref_primary_10_1109_JIOT_2023_3285359 crossref_primary_10_1109_JIOT_2023_3347524 crossref_primary_10_3390_wevj15020039 crossref_primary_10_1109_TVT_2019_2945398 crossref_primary_10_1109_JIOT_2024_3350072 crossref_primary_10_1109_TWC_2022_3224045 crossref_primary_10_1109_TVT_2020_3008926 crossref_primary_10_1109_JIOT_2023_3333826 crossref_primary_10_3390_sym16070906 crossref_primary_10_1109_TGCN_2022_3146487 crossref_primary_10_1109_ACCESS_2024_3502400 crossref_primary_10_1007_s11042_024_18123_0 crossref_primary_10_1109_TVT_2022_3179363 crossref_primary_10_1109_ACCESS_2022_3192628 crossref_primary_10_1109_TETC_2021_3063517 |
| Cites_doi | 10.1109/INM.2015.7140324 10.1109/TNET.2016.2632970 10.1007/s00521-015-1916-x 10.1109/MWC.2017.1600423 10.1109/CloudNet.2017.8071527 10.1145/2534169.2491700 10.1109/LWC.2017.2696539 10.1109/MCOM.2016.1600492CM 10.1109/TETC.2017.2675911 10.1109/MWC.2017.1700244 10.1109/TVT.2018.2790421 10.1109/GLOCOM.2017.8254084 10.1109/JIOT.2016.2628938 10.1109/TWC.2017.2685578 10.1109/TETC.2013.2278699 10.1109/TWC.2016.2633522 10.1109/TVT.2017.2672701 10.1109/JIOT.2018.2838574 10.1109/WAINA.2017.101 10.1109/JIOT.2018.2838584 10.1109/COMST.2017.2707140 10.1109/JSAC.2016.2611964 10.1109/MNET.2018.1700293 10.1109/TC.2016.2536019 10.1109/JSAC.2011.111002 10.1109/MCOM.2018.1700622 10.1038/nature14236 10.1109/TWC.2017.2717986 10.1109/TETC.2016.2598478 10.1109/IEEE.EDGE.2017.42 10.1109/JSAC.2018.2815360 10.1109/TVT.2018.2808171 10.1109/TBC.2015.2511625 10.1109/TC.2017.2709742 10.1038/nature14539 10.1109/COMST.2017.2745201 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TETC.2019.2902661 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-6750 |
| EndPage | 1541 |
| ExternalDocumentID | 10_1109_TETC_2019_2902661 8657791 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: China 111 Project grantid: B16037 – fundername: Science and Technology Innovation Program grantid: 201809168CX9JC10 – fundername: Fundamental Research Funds for the Central Universities grantid: JB171501; JB181506; JB181507; JB181508 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 61771374; 61771373; 61801360; 61601357 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF KQ8 M43 O9- OCL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-2f4c6b2328ba5393d259b0b574ffaf061d7c2f2317e98f962a20fc1819d6d68d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 318 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000697823100040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-6750 |
| IngestDate | Sun Nov 30 05:14:28 EST 2025 Sat Nov 29 05:38:17 EST 2025 Tue Nov 18 22:24:33 EST 2025 Wed Aug 27 02:27:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-2f4c6b2328ba5393d259b0b574ffaf061d7c2f2317e98f962a20fc1819d6d68d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8382-611X 0000-0002-2631-8792 0000-0003-4273-8866 0000-0001-8769-302X |
| PQID | 2575131035 |
| PQPubID | 4437215 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_8657791 crossref_primary_10_1109_TETC_2019_2902661 proquest_journals_2575131035 crossref_citationtrail_10_1109_TETC_2019_2902661 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on emerging topics in computing |
| PublicationTitleAbbrev | TETC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref30 ha (ref37) 2013 ref11 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 lecun (ref33) 2015; 521 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 gu (ref32) 2016 ref5 brockman (ref31) 2016 |
| References_xml | – ident: ref39 doi: 10.1109/INM.2015.7140324 – ident: ref35 doi: 10.1109/TNET.2016.2632970 – ident: ref34 doi: 10.1007/s00521-015-1916-x – ident: ref2 doi: 10.1109/MWC.2017.1600423 – ident: ref23 doi: 10.1109/CloudNet.2017.8071527 – ident: ref18 doi: 10.1145/2534169.2491700 – start-page: 2829 year: 2016 ident: ref32 article-title: Continuous deep Q-learning with model-based acceleration publication-title: Proc Int Conf Mach Learn – ident: ref13 doi: 10.1109/LWC.2017.2696539 – ident: ref9 doi: 10.1109/MCOM.2016.1600492CM – ident: ref3 doi: 10.1109/TETC.2017.2675911 – ident: ref29 doi: 10.1109/MWC.2017.1700244 – ident: ref22 doi: 10.1109/TVT.2018.2790421 – ident: ref15 doi: 10.1109/GLOCOM.2017.8254084 – ident: ref1 doi: 10.1109/JIOT.2016.2628938 – ident: ref38 doi: 10.1109/TWC.2017.2685578 – ident: ref25 doi: 10.1109/TETC.2013.2278699 – ident: ref12 doi: 10.1109/TWC.2016.2633522 – ident: ref21 doi: 10.1109/TVT.2017.2672701 – ident: ref10 doi: 10.1109/JIOT.2018.2838574 – ident: ref30 doi: 10.1109/WAINA.2017.101 – ident: ref6 doi: 10.1109/JIOT.2018.2838584 – ident: ref26 doi: 10.1109/COMST.2017.2707140 – ident: ref7 doi: 10.1109/JSAC.2016.2611964 – ident: ref27 doi: 10.1109/MNET.2018.1700293 – ident: ref24 doi: 10.1109/TC.2016.2536019 – ident: ref36 doi: 10.1109/JSAC.2011.111002 – ident: ref17 doi: 10.1109/MCOM.2018.1700622 – ident: ref16 doi: 10.1038/nature14236 – ident: ref4 doi: 10.1109/TWC.2017.2717986 – ident: ref14 doi: 10.1109/TETC.2016.2598478 – ident: ref19 doi: 10.1109/IEEE.EDGE.2017.42 – ident: ref20 doi: 10.1109/JSAC.2018.2815360 – ident: ref11 doi: 10.1109/TVT.2018.2808171 – year: 2016 ident: ref31 article-title: OpenAI Gym – start-page: 166 year: 2013 ident: ref37 article-title: The impact of mobile multimedia applications on data center consolidation publication-title: Proc IEEE Int Conf Cloud Eng – ident: ref5 doi: 10.1109/TBC.2015.2511625 – ident: ref28 doi: 10.1109/TC.2017.2709742 – volume: 521 year: 2015 ident: ref33 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref8 doi: 10.1109/COMST.2017.2745201 |
| SSID | ssj0000816967 |
| Score | 2.6328237 |
| Snippet | The development of mobile devices with improving communication and perceptual capabilities has brought about a proliferation of numerous complex and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1529 |
| SubjectTerms | Algorithms Applications programs Cloud computing Computer architecture Deep learning deep reinforcement learning Delays Edge computing Electronic devices Machine learning Mobile computing Mobile edge computing Mobile handsets Resource allocation Resource management Routing Servers |
| Title | Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning Approach |
| URI | https://ieeexplore.ieee.org/document/8657791 https://www.proquest.com/docview/2575131035 |
| Volume | 9 |
| WOSCitedRecordID | wos000697823100040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-6750 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816967 issn: 2168-6750 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHX1WsVsnBk7jtNrubh7dFWzxoEaxS8LDs5lGE2pY-_P0mabooiuBtDxnIzkwyj8x8A3CBufFZiSABxZEOYqpxwKVqB5oZ5aKaSeXAql_uaa_HBgP-WIGrshdGKeWKz1TTfrq3fDkRS5sqazGSUGpb1TcopaterTKfYgdIcEL9w2U75K1-p39ja7d4E_PQ2qFvpsfNUvlxATur0t393372YMd7jyhdiXsfKmp8ANtfMAVr8Pr0brQBrdPyKB1Zc2XZj4x_ih4mhbkHUEcOFVpNdDBU1yhFt0pNDZUDUhUuZ4g89uoQpR54_BCeu-Z37wI_QSEQUcIXAdaxIIVxmliRJxGPpAl2irBIaKx1ro0pl1RgbVw8qjjTnOAch1oYo88lkYTJ6Aiq48lYHQMykQuJqIxYIXSswjyPhXFtsCCcxeZc6zqEa-ZmwsOL2ykXo8yFGSHPrDwyK4_My6MOlyXJdIWt8dfimhVAudDzvg6NtQQzf_rmGbaPSXaAWnLyO9UpbGFbm-LKbhtQXcyW6gw2xcfibT47d4r1Ce02ywY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH5IFdSDu1itmoMnceo0M5PFW9GWim0RrFLwMMxkKUJtSxd_v0maFkURvM0hDzL5krw13wO4wNzYrESQgOJIBzHVOOBSVQLNzOaimknlyKpfmrTdZt0uf1yBq-VbGKWUKz5TZfvpcvlyKGY2VHbNSEKpfaq-msQxrsxfay0jKraFBCfUpy4rIb_u1Dq3tnqLlzEPrSb6pnxcN5UfV7DTK_Xt_81oB7a8_Yiqc8B3YUUN9mDzC6vgPrw-vZv9gBaBeVTtW4VlAUDGQkWtYW5uAlSTPYXmPR2M1A2qojulRkbKUakKFzVEnn21h6qeevwAnuvmdxuB76EQiCjh0wDrWJDcmE0sz5KIR9K4O3mYJzTWOtNGmUsqsDZGHlWcaU5whkMtjNrnkkjCZHQIhcFwoI4AGd-FRFRGLBc6VmGWxcIYN1gQzmJzsnURwsXipsITjNs-F_3UORohTy0eqcUj9XgU4XIpMpqza_w1eN8CsBzo174IpQWCqT9_kxTbdJJtoZYc_y51DuuNTquZNu_bDyewgW2liivCLUFhOp6pU1gTH9O3yfjMbbJPpe7OTQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+Resource+Allocation+for+Mobile+Edge+Computing%3A+A+Deep+Reinforcement+Learning+Approach&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computing&rft.au=Wang%2C+Jiadai&rft.au=Zhao%2C+Lei&rft.au=Liu%2C+Jiajia&rft.au=Kato%2C+Nei&rft.date=2021-07-01&rft.pub=IEEE&rft.eissn=2168-6750&rft.volume=9&rft.issue=3&rft.spage=1529&rft.epage=1541&rft_id=info:doi/10.1109%2FTETC.2019.2902661&rft.externalDocID=8657791 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-6750&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-6750&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-6750&client=summon |