Agent-Based Adaptive Dynamic Round Robin (AADRR) Scheduling Algorithm

Scheduling techniques are essential to increase resource utilization and task execution within modern computing environments. Round Robin Scheduling (RR) ensures a fair distribution of processes needing attention but often leads to inefficiencies in systems with heterogeneous tasks or different prio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 13; pp. 18308 - 18324
Main Authors: Iqbal Khan, Zafar, Khan, Muzafar, Nasir Mehmood Shah, Syed
Format: Journal Article
Language:English
Published: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Scheduling techniques are essential to increase resource utilization and task execution within modern computing environments. Round Robin Scheduling (RR) ensures a fair distribution of processes needing attention but often leads to inefficiencies in systems with heterogeneous tasks or different priorities due to large latency or resource usage differences. To address such problems, this paper introduces the Agent-based Adaptive Dynamic Round Robin (AADRR) process scheduling technique, which enhances process scheduling by continuously adjusting the time quantum and criteria, combining CPU burst time and priority. In the proposed AADRR, all processes are ranked dynamically by a software agent based on user preferences and current system load. This agent operates independently by keeping an eye on system parameters and making the required adjustments in real-time without requiring human intervention. We place processes in the queue according to their order of importance. A dynamic time quantum policy is suitable whenever it meets the mean duration of each process in the queue. Every round has the time quantum adjusted based on this method average burst time. AADRR highlights that the short processes are managed properly and the long processes are completed within a few rounds to fairly complete and maintain all the processes in the system. The proposed AADRR is more suitable for periodic tasks that employ a dynamic scheduling system and adapt time quantum according to the system state and job features. Additionally, AADRR efficiently manages preemptable tasks, using dynamic scheduling policies to accommodate variations in process priority and CPU burst times, ensuring fair scheduling, efficient resource utilization, and dynamic adaptability. To validate the effectiveness of the AADRR algorithm, we performed a comparative performance analysis with twelve other algorithms, including five traditional CPU scheduling algorithms and seven advanced job scheduling techniques, demonstrating optimal performance results. In our experiments, synthetic workload traces were generated using the Monte Carlo probability distribution method, which is scientifically recommended for creating diverse workload traces. Small, medium, and large datasets were used, with the small workload traces obtained from published studies and the large traces produced by the Monte Carlo simulation. AADRR efficiently reduces average turnaround times and average waiting times for each workload and performs better in response time. AADRR may not always provide the most favorable measures in all scenarios. Still, it performs better than other scheduling techniques in system performance, while being more efficient and flexible for different workloads.
AbstractList Scheduling techniques are essential to increase resource utilization and task execution within modern computing environments. Round Robin Scheduling (RR) ensures a fair distribution of processes needing attention but often leads to inefficiencies in systems with heterogeneous tasks or different priorities due to large latency or resource usage differences. To address such problems, this paper introduces the Agent-based Adaptive Dynamic Round Robin (AADRR) process scheduling technique, which enhances process scheduling by continuously adjusting the time quantum and criteria, combining CPU burst time and priority. In the proposed AADRR, all processes are ranked dynamically by a software agent based on user preferences and current system load. This agent operates independently by keeping an eye on system parameters and making the required adjustments in real-time without requiring human intervention. We place processes in the queue according to their order of importance. A dynamic time quantum policy is suitable whenever it meets the mean duration of each process in the queue. Every round has the time quantum adjusted based on this method average burst time. AADRR highlights that the short processes are managed properly and the long processes are completed within a few rounds to fairly complete and maintain all the processes in the system. The proposed AADRR is more suitable for periodic tasks that employ a dynamic scheduling system and adapt time quantum according to the system state and job features. Additionally, AADRR efficiently manages preemptable tasks, using dynamic scheduling policies to accommodate variations in process priority and CPU burst times, ensuring fair scheduling, efficient resource utilization, and dynamic adaptability. To validate the effectiveness of the AADRR algorithm, we performed a comparative performance analysis with twelve other algorithms, including five traditional CPU scheduling algorithms and seven advanced job scheduling techniques, demonstrating optimal performance results. In our experiments, synthetic workload traces were generated using the Monte Carlo probability distribution method, which is scientifically recommended for creating diverse workload traces. Small, medium, and large datasets were used, with the small workload traces obtained from published studies and the large traces produced by the Monte Carlo simulation. AADRR efficiently reduces average turnaround times and average waiting times for each workload and performs better in response time. AADRR may not always provide the most favorable measures in all scenarios. Still, it performs better than other scheduling techniques in system performance, while being more efficient and flexible for different workloads.
Author Nasir Mehmood Shah, Syed
Iqbal Khan, Zafar
Khan, Muzafar
Author_xml – sequence: 1
  givenname: Zafar
  orcidid: 0009-0005-9173-0643
  surname: Iqbal Khan
  fullname: Iqbal Khan, Zafar
  email: zafar.khan@ist.edu.pk
  organization: Department of Software Engineering, National University of Modern Languages, Islamabad, Pakistan
– sequence: 2
  givenname: Muzafar
  orcidid: 0000-0001-6846-3739
  surname: Khan
  fullname: Khan, Muzafar
  organization: Department of Software Engineering, National University of Modern Languages, Islamabad, Pakistan
– sequence: 3
  givenname: Syed
  orcidid: 0000-0002-5623-1815
  surname: Nasir Mehmood Shah
  fullname: Nasir Mehmood Shah, Syed
  organization: Department of Computer Science, Institute of Space Technology, KICSIT Kahuta Campus, Islamabad, Pakistan
BookMark eNpNkF1LwzAUhoNMUOd-gV4UvNGLznw0aXNZt_kBA2HT65AmpzNja2baCf57MyuyXCQnL-d9zuG9QIPGN4DQFcFjQrC8LyeT2XI5ppjyMeMsw4ycoHNKhEzjVwyO6jM0ats1jqeIEs_P0axcQdOlD7oFm5RW7zr3Bcn0u9FbZ5KF3zc23pVrktuynC4Wd8nSfIDdb1yzSsrNygfXfWwv0WmtNy2M_t4hen-cvU2e0_nr08uknKeGcdml1NYSciEFNZZnlmJTc4MxtZnJc4wNCFIwAVQSU9WgMwOSQcENqTHmQCs2RC8913q9Vrvgtjp8K6-d-hV8WCkdOmc2oHRlBQYZ2VpmFmxVVIUpaCYErnmuWWTd9Kxd8J97aDu19vvQxPUVI4KwnBT40MX6LhN82wao_6cSrA7xqz5-dYhf_cUfXde9ywHAkaPglEXoD6zwgLY
CODEN IAECCG
Cites_doi 10.1007/978-3-540-72590-9_134
10.1007/s41870-021-00630-0
10.3844/ajassp.2009.1831.1837
10.5815/ijitcs.2013.07.07
10.3390/fi15030104
10.33899/edusj.2023.137735.1317
10.21474/ijar01/8506
10.3390/app10155134
10.5120/ijca2017914569
10.1016/j.heliyon.2024.e29959
10.1109/C-CODE.2017.7918936
10.55447/jaet.07.02.115
10.1109/SoutheastCon42311.2019.9020439
10.5815/ijmecs.2019.10.04
10.1016/j.procs.2020.01.037
10.63001/thebioscan.2024.v19.i02.pp132-142
10.14569/IJACSA.2022.0130463
10.1186/s13677-017-0085-0
10.1109/ICGCIoT.2018.8752975
10.1007/978-3-031-62277-9_1
10.1016/j.aej.2022.04.006
10.1109/NMITCON58196.2023.10276146
10.33899/edusj.2022.135082.1273
10.11591/ijece.v9i1.pp190-202
10.34028/iajit/17/1/11
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3534031
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals - NZ
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 18324
ExternalDocumentID oai_doaj_org_article_abd60e92d4a94dedb8b8c824660f57a3
10_1109_ACCESS_2025_3534031
10852303
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-2df9e76962cd54d20cf5c002d4c7700ce61836e291cbfea4ce93e85c1f005e2b3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001410187600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:08 EDT 2025
Mon Jun 30 13:00:02 EDT 2025
Sat Nov 29 04:27:21 EST 2025
Wed Aug 27 01:53:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-2df9e76962cd54d20cf5c002d4c7700ce61836e291cbfea4ce93e85c1f005e2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6846-3739
0009-0005-9173-0643
0000-0002-5623-1815
OpenAccessLink https://ieeexplore.ieee.org/document/10852303
PQID 3161371803
PQPubID 4845423
PageCount 17
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3534031
ieee_primary_10852303
doaj_primary_oai_doaj_org_article_abd60e92d4a94dedb8b8c824660f57a3
proquest_journals_3161371803
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
Yaashuwanth (ref26) 2010; 2
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref19
ref18
Evwiekpaefe (ref13) 2022; 8
Ali (ref7) 2021; 21
Yaashuwanth (ref25) 2010; 10
Gupta (ref16) 2016; 26
ref24
ref23
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
Salmani (ref31) 2005
References_xml – ident: ref11
  doi: 10.1007/978-3-540-72590-9_134
– year: 2005
  ident: ref31
  article-title: A modified maximum urgency first scheduling algorithm for real-time tasks
  publication-title: World Acad. Sci., Eng. Technol.
– volume: 26
  start-page: 66
  issue: 4
  year: 2016
  ident: ref16
  article-title: Design and performance evaluation of smart job first dynamic round Robin (SJFDRR) scheduling algorithm with smart time quantum
  publication-title: Amer. Sci. Res. J. Eng., Technol., Sci. (ASRJETS)
– ident: ref20
  doi: 10.1007/s41870-021-00630-0
– ident: ref10
  doi: 10.3844/ajassp.2009.1831.1837
– ident: ref27
  doi: 10.5815/ijitcs.2013.07.07
– volume: 2
  start-page: 126
  issue: 2
  year: 2010
  ident: ref26
  article-title: Intelligent time slice for round Robin in real time operating systems
  publication-title: IJRRAS
– ident: ref3
  doi: 10.3390/fi15030104
– ident: ref8
  doi: 10.33899/edusj.2023.137735.1317
– ident: ref30
  doi: 10.21474/ijar01/8506
– ident: ref15
  doi: 10.3390/app10155134
– volume: 21
  start-page: 19
  issue: 1
  year: 2021
  ident: ref7
  article-title: A review on the cpu scheduling algorithms: Comparative study
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– ident: ref22
  doi: 10.5120/ijca2017914569
– ident: ref1
  doi: 10.1016/j.heliyon.2024.e29959
– ident: ref12
  doi: 10.1109/C-CODE.2017.7918936
– ident: ref14
  doi: 10.55447/jaet.07.02.115
– ident: ref4
  doi: 10.1109/SoutheastCon42311.2019.9020439
– ident: ref6
  doi: 10.5815/ijmecs.2019.10.04
– volume: 8
  start-page: 114
  year: 2022
  ident: ref13
  article-title: Improved shortest job first CPU scheduling algorithm
  publication-title: Dutse J. Pure Appl. Sci. (DUJOPAS)
– ident: ref18
  doi: 10.1016/j.procs.2020.01.037
– ident: ref9
  doi: 10.63001/thebioscan.2024.v19.i02.pp132-142
– ident: ref19
  doi: 10.14569/IJACSA.2022.0130463
– ident: ref28
  doi: 10.1186/s13677-017-0085-0
– ident: ref24
  doi: 10.1109/ICGCIoT.2018.8752975
– ident: ref2
  doi: 10.1007/978-3-031-62277-9_1
– volume: 10
  start-page: 43
  issue: 3
  year: 2010
  ident: ref25
  article-title: Design of real time scheduler simulator and development of modified round Robin architecture for real time system
  publication-title: Int. J. Comput. Electr. Eng.
– ident: ref21
  doi: 10.1016/j.aej.2022.04.006
– ident: ref5
  doi: 10.1109/NMITCON58196.2023.10276146
– ident: ref23
  doi: 10.33899/edusj.2022.135082.1273
– ident: ref17
  doi: 10.11591/ijece.v9i1.pp190-202
– ident: ref29
  doi: 10.34028/iajit/17/1/11
SSID ssj0000816957
Score 2.3342912
Snippet Scheduling techniques are essential to increase resource utilization and task execution within modern computing environments. Round Robin Scheduling (RR)...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 18308
SubjectTerms Adaptive algorithms
Algorithms
Central processing units
context switching (NCS)
CPU scheduling algorithms
CPUs
Design of experiments
Dynamic scheduling
dynamic time quantum (DTQ)
Heuristic algorithms
Monte Carlo methods
Monte Carlo probability distribution
Monte Carlo simulation
Operating systems
Priority scheduling
Queues
Real time
Real-time systems
Resource management
Resource scheduling
Resource utilization
Round robin
round robin (RR)
Scheduling
Software agents
Switches
System performance
Task scheduling
Time factors
Time measurement
Workload
Workloads
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals - NZ
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxGA1SPOhBXCrWjRw8KDg2k3VyHNuKBxGpC72FyTK1oG1pq7_fJDOVigcv3oYwkMl7820heR8AZwhpTUpLE24lSqjkLsk4M4kombGYFUxHUZ-XO3F_nw0G8mGl1Vc4E1bJA1fAtQttOXISW1pIap3Vmc5MhinnqGSiiDqfSMiVYir64CzlkolaZihFsp13On5FviDE7IowQhFJf4SiqNhft1j55ZdjsLnZBlt1lgjz6ut2wJob74LNFe3APdDLw6Wo5NpHIQtzW0yD34LdqsE87IduSTBe7oLned7t9y_go-fHhoPnQ5i_DSez0eL1vQmeb3pPnduk7omQGMLkIsG2lE5wybGxjFqMjAfVezVLjRAIGce9jXKHZWp06QpqnCQuYyYtvbk5rMk-aIwnY3cAIGW2SAsecjpBnX8sUx304bA3Seu4aYHLJTxqWklfqFgyIKkqNFVAU9VotsB1gPD71aBbHQc8m6pmU_3FZgs0AwEr82Vh29qPHy8ZUbWRzRXx2SrxsRWRw_-Y-whshPVU-yvHoLGYfbgTsG4-F6P57DT-X1-C0dD1
  priority: 102
  providerName: Directory of Open Access Journals
Title Agent-Based Adaptive Dynamic Round Robin (AADRR) Scheduling Algorithm
URI https://ieeexplore.ieee.org/document/10852303
https://www.proquest.com/docview/3161371803
https://doaj.org/article/abd60e92d4a94dedb8b8c824660f57a3
Volume 13
WOSCitedRecordID wos001410187600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4V1EN7ANpSseUhH3popQYcP-NjWHbFoUXV9iFuVmxPYCXYXS1Lj_3ttZ2woqp64BJZUaI4nzMvZ-YbgPeUOsfbIAoVDC2EUVhUSvpCt9IHJhvpMqnPz8_64qK6vDRf-2L1XAuDiDn5DI_TMP_LD3N_n7bKTlKmfHSZ-QZsaK26Yq31hkrqIGGk7pmFSmpO6uEwvkSMAZk85pILysu_rE8m6e-7qvyjirN9GW8_cWY7sNU7kqTuVv4VPMPZa3j5iF7wDYzqVDdVnEZDFUgdmkVSbeSs60FPJqmhEsn1X-RDXZ9NJh_Jt7iEIeWmX5H65mq-nK6ub3fhx3j0fXhe9G0TCs-lWRUstAa1Mor5IEVg1Efco-ILwmtNqUcVxVghM6V3LTbCo-FYSV-2USKROf4WNmfzGe4BETI0ZaOS26cFxmFbukQhx6LUBlR-AJ8e4LSLjh3D5qiCGtuhbxP6tkd_AKcJ8vWlido6n4hY2l5SbOOComjidBsjAgZXucpXTChFW6kbPoDdhP-j53XQD-DgYQVtL4d3lkeHlkfzS_m7_9y2Dy_SFLtdlQPYXC3v8RCe-1-r6d3yKIfo8fjl9-gof25_AI56z8I
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RqFQ49AligVIfemilBhy_Eh_DAgJ1u6q2tOJmxfYEkGB3tbvw-7GdgKiqHrhZUaI432QeHnu-AfhMqbW88SJTXtNMaIVZqaTLikY6z2QtbSL1-TMohsPy_Fz_7IrVUy0MIqbDZ7gXh2kv30_cbUyV7ceT8iFk5i9gRQrBaFuu9ZhSiT0ktCw6bqGc6v2q3w-fEVaBTO5xyQXl-V_-J9H0d31V_jHGycMcv3nm3N7C6y6UJFUr-3ewhOP3sPaEYPADHFWxcio7CK7Kk8rX02jcyGHbhZ6MYkslkirAyJeqOhyNvpJfQYg-nk6_INX1xWR2tbi8WYffx0dn_ZOsa5yQOS71ImO-0VgorZjzUnhGXUA-mD4vXFFQ6lAFRVbIdO5sg7VwqDmW0uVN0Elklm_A8ngyxk0gQvo6r1UM_AqBYdjkNpLIsaC3HpXrwbcHOM205ccwaV1BtWnRNxF906Hfg4MI-eOtkdw6XQhYmk5XTG29oqjDdGstPHpb2tKVTChFG1nUvAfrEf8n72uh78HOgwRNp4lzw0NIy4MDpnzrP499glcnZz8GZnA6_L4Nq3G6bY5lB5YXs1v8CC_d3eJqPttNv9s9u03Q4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agent-Based+Adaptive+Dynamic+Round+Robin+%28AADRR%29+Scheduling+Algorithm&rft.jtitle=IEEE+access&rft.au=Iqbal+Khan%2C+Zafar&rft.au=Khan%2C+Muzafar&rft.au=Nasir+Mehmood+Shah%2C+Syed&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=18308&rft.epage=18324&rft_id=info:doi/10.1109%2FACCESS.2025.3534031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3534031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon