Maintaining the Giant Component in Networks With Edge Weighted Augmentation Given Causal Failures

Understanding the relationship between various nodes of a network is critical for building a robust and resilient network. Studying and understanding the causes of network failures is vital to prevent electric grid blackouts, mitigate supply chain failures, and keep transportation systems functional...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 12; pp. 136588 - 136598
Main Authors: Zhang, Zuyuan, Radhakrishnan, Sridhar, Barker, Kash, Gonzalez, Andres D.
Format: Journal Article
Language:English
Published: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Understanding the relationship between various nodes of a network is critical for building a robust and resilient network. Studying and understanding the causes of network failures is vital to prevent electric grid blackouts, mitigate supply chain failures, and keep transportation systems functional, among others. Failure of one or more nodes may cause other nodes in the network to fail as well, that is, failures are causal. In general, these failure relationships extend beyond the immediate neighborhood of failed nodes. When any of the causal failures are applied (the nodes of the causal failures are removed), the network could be disconnected. One can add edges to the original network (augmentation problem) in such a way that the network remains connected after applying each of the causal failures, or the largest connected component in the disconnected network is at least a given specified size <inline-formula> <tex-math notation="LaTeX">\alpha \times n </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-giant component), where n is the number of nodes in the original network. By choosing this size, we guarantee that the network is active for a large population of entities represented by the nodes in the giant component. More formally, we consider the network augmentation problem when faced with causal failures as follows. Given a network <inline-formula> <tex-math notation="LaTeX">G=(V, E) </tex-math></inline-formula>, its complement <inline-formula> <tex-math notation="LaTeX">\bar {G}=(V, \bar {E}) </tex-math></inline-formula> with a cost function <inline-formula> <tex-math notation="LaTeX">c: \bar {E} \rightarrow R^{+} </tex-math></inline-formula> and the causality set <inline-formula> <tex-math notation="LaTeX">\mathcal {C} </tex-math></inline-formula>, find a subset of <inline-formula> <tex-math notation="LaTeX">\bar {E} </tex-math></inline-formula> with a minimum total cost such that the network maintains at least one <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-giant component when each causal failure in <inline-formula> <tex-math notation="LaTeX">\mathcal {C} </tex-math></inline-formula> is applied to the augmented graph. We prove the NP-hardness of this problem and present a mixed integer linear programming model to provide the exact solution to the problem. Furthermore, we design a heuristic algorithm by checking the connected components when applying each causality. Finally, experiments are conducted on synthetic Erdős-Rényi networks, and we demonstrate the efficacy and efficiency of the heuristic algorithm relative to the mixed-integer linear programming model.
AbstractList Understanding the relationship between various nodes of a network is critical for building a robust and resilient network. Studying and understanding the causes of network failures is vital to prevent electric grid blackouts, mitigate supply chain failures, and keep transportation systems functional, among others. Failure of one or more nodes may cause other nodes in the network to fail as well, that is, failures are causal. In general, these failure relationships extend beyond the immediate neighborhood of failed nodes. When any of the causal failures are applied (the nodes of the causal failures are removed), the network could be disconnected. One can add edges to the original network (augmentation problem) in such a way that the network remains connected after applying each of the causal failures, or the largest connected component in the disconnected network is at least a given specified size <tex-math notation="LaTeX">$\alpha \times n$ </tex-math> ( <tex-math notation="LaTeX">$\alpha $ </tex-math>-giant component), where n is the number of nodes in the original network. By choosing this size, we guarantee that the network is active for a large population of entities represented by the nodes in the giant component. More formally, we consider the network augmentation problem when faced with causal failures as follows. Given a network <tex-math notation="LaTeX">$G=(V, E)$ </tex-math>, its complement <tex-math notation="LaTeX">$\bar {G}=(V, \bar {E})$ </tex-math> with a cost function <tex-math notation="LaTeX">$c: \bar {E} \rightarrow R^{+}$ </tex-math> and the causality set <tex-math notation="LaTeX">$\mathcal {C}$ </tex-math>, find a subset of <tex-math notation="LaTeX">$\bar {E}$ </tex-math> with a minimum total cost such that the network maintains at least one <tex-math notation="LaTeX">$\alpha $ </tex-math>-giant component when each causal failure in <tex-math notation="LaTeX">$\mathcal {C}$ </tex-math> is applied to the augmented graph. We prove the NP-hardness of this problem and present a mixed integer linear programming model to provide the exact solution to the problem. Furthermore, we design a heuristic algorithm by checking the connected components when applying each causality. Finally, experiments are conducted on synthetic Erdős-Rényi networks, and we demonstrate the efficacy and efficiency of the heuristic algorithm relative to the mixed-integer linear programming model.
Understanding the relationship between various nodes of a network is critical for building a robust and resilient network. Studying and understanding the causes of network failures is vital to prevent electric grid blackouts, mitigate supply chain failures, and keep transportation systems functional, among others. Failure of one or more nodes may cause other nodes in the network to fail as well, that is, failures are causal. In general, these failure relationships extend beyond the immediate neighborhood of failed nodes. When any of the causal failures are applied (the nodes of the causal failures are removed), the network could be disconnected. One can add edges to the original network (augmentation problem) in such a way that the network remains connected after applying each of the causal failures, or the largest connected component in the disconnected network is at least a given specified size <inline-formula> <tex-math notation="LaTeX">\alpha \times n </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-giant component), where n is the number of nodes in the original network. By choosing this size, we guarantee that the network is active for a large population of entities represented by the nodes in the giant component. More formally, we consider the network augmentation problem when faced with causal failures as follows. Given a network <inline-formula> <tex-math notation="LaTeX">G=(V, E) </tex-math></inline-formula>, its complement <inline-formula> <tex-math notation="LaTeX">\bar {G}=(V, \bar {E}) </tex-math></inline-formula> with a cost function <inline-formula> <tex-math notation="LaTeX">c: \bar {E} \rightarrow R^{+} </tex-math></inline-formula> and the causality set <inline-formula> <tex-math notation="LaTeX">\mathcal {C} </tex-math></inline-formula>, find a subset of <inline-formula> <tex-math notation="LaTeX">\bar {E} </tex-math></inline-formula> with a minimum total cost such that the network maintains at least one <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-giant component when each causal failure in <inline-formula> <tex-math notation="LaTeX">\mathcal {C} </tex-math></inline-formula> is applied to the augmented graph. We prove the NP-hardness of this problem and present a mixed integer linear programming model to provide the exact solution to the problem. Furthermore, we design a heuristic algorithm by checking the connected components when applying each causality. Finally, experiments are conducted on synthetic Erdős-Rényi networks, and we demonstrate the efficacy and efficiency of the heuristic algorithm relative to the mixed-integer linear programming model.
Understanding the relationship between various nodes of a network is critical for building a robust and resilient network. Studying and understanding the causes of network failures is vital to prevent electric grid blackouts, mitigate supply chain failures, and keep transportation systems functional, among others. Failure of one or more nodes may cause other nodes in the network to fail as well, that is, failures are causal. In general, these failure relationships extend beyond the immediate neighborhood of failed nodes. When any of the causal failures are applied (the nodes of the causal failures are removed), the network could be disconnected. One can add edges to the original network (augmentation problem) in such a way that the network remains connected after applying each of the causal failures, or the largest connected component in the disconnected network is at least a given specified size [Formula Omitted] ([Formula Omitted]-giant component), where n is the number of nodes in the original network. By choosing this size, we guarantee that the network is active for a large population of entities represented by the nodes in the giant component. More formally, we consider the network augmentation problem when faced with causal failures as follows. Given a network [Formula Omitted], its complement [Formula Omitted] with a cost function [Formula Omitted] and the causality set [Formula Omitted], find a subset of [Formula Omitted] with a minimum total cost such that the network maintains at least one [Formula Omitted]-giant component when each causal failure in [Formula Omitted] is applied to the augmented graph. We prove the NP-hardness of this problem and present a mixed integer linear programming model to provide the exact solution to the problem. Furthermore, we design a heuristic algorithm by checking the connected components when applying each causality. Finally, experiments are conducted on synthetic Erdős-Rényi networks, and we demonstrate the efficacy and efficiency of the heuristic algorithm relative to the mixed-integer linear programming model.
Author Radhakrishnan, Sridhar
Gonzalez, Andres D.
Zhang, Zuyuan
Barker, Kash
Author_xml – sequence: 1
  givenname: Zuyuan
  orcidid: 0000-0001-5795-9771
  surname: Zhang
  fullname: Zhang, Zuyuan
  organization: School of Computer Science, University of Oklahoma, Norman, OK, USA
– sequence: 2
  givenname: Sridhar
  orcidid: 0000-0002-0327-8134
  surname: Radhakrishnan
  fullname: Radhakrishnan, Sridhar
  email: sridhar@ou.edu
  organization: School of Computer Science, University of Oklahoma, Norman, OK, USA
– sequence: 3
  givenname: Kash
  orcidid: 0000-0002-0142-1558
  surname: Barker
  fullname: Barker, Kash
  organization: School of Industrial and Systems Engineering, University of Oklahoma, Norman, OK, USA
– sequence: 4
  givenname: Andres D.
  surname: Gonzalez
  fullname: Gonzalez, Andres D.
  organization: School of Industrial and Systems Engineering, University of Oklahoma, Norman, OK, USA
BookMark eNpNUcFq3DAQFSWFpmm-oD0Iet6NRrJl67iYTRpI20NachSSPPZqu2ttJTmlf18lDiWCQW-G994MvPfkbAoTEvIR2BqAqatN123v79ec8WotKsnbGt6Qcw5SrUQt5Nkr_I5cprRn5bVlVDfnxHw1fsql_DTSvEN6482UaReOp7KlID_Rb5j_hPgr0Qefd3Tbj0gf0I-7jD3dzOOx0Ez2YSraR5xoZ-ZkDvTa-MMcMX0gbwdzSHj58l-Qn9fbH92X1d33m9tuc7dyolZ5xXtwvBecAwBacII7VjUDU6pR6BTwQVpmjWIVM7Y1bd06iQyltdA465y4ILeLbx_MXp-iP5r4Vwfj9fMgxFGbmL07oLYcrHRNrzhTlQE06IQouLGlH1pZvD4vXqcYfs-Yst6HOU7lfC0AOOetUqKwxMJyMaQUcfi_FZh-ikYv0einaPRLNEX1aVF5RHylkC1UJaN_R_2Lyg
CODEN IAECCG
Cites_doi 10.1016/j.physa.2009.02.007
10.1007/s00453-011-9538-x
10.1109/TNSE.2021.3102188
10.1109/TR.2016.2606125
10.1109/INFOCOM42981.2021.9488879
10.23919/ACC45564.2020.9147656
10.25080/tcwv9851
10.1002/3527602755.ch2
10.1137/0205044
10.1145/3357713.3384301
10.1038/nature08932
10.1016/j.physa.2016.04.007
10.1145/3406325.3451086
10.1109/ICMLC.2013.6890450
10.1007/s41109-018-0089-9
10.1007/3-540-56279-6_55
10.1109/INFCOMW.2014.6849338
10.1109/CVPR42600.2020.01097
10.1137/0210019
10.1016/j.adapen.2021.100056
10.1006/jagm.1999.1040
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3462851
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 136598
ExternalDocumentID oai_doaj_org_article_b21b6c7d92094a1eaec332097b094f86
10_1109_ACCESS_2024_3462851
10681435
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-2d1c2d322111eb1c32c047f09979ec912f6b0ba9040ab8a858c6e0e6bb17cbcc3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001327296500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:40 EDT 2025
Mon Jun 30 15:32:37 EDT 2025
Sat Nov 29 04:27:05 EST 2025
Wed Aug 27 02:18:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-2d1c2d322111eb1c32c047f09979ec912f6b0ba9040ab8a858c6e0e6bb17cbcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0327-8134
0000-0002-0142-1558
0000-0001-5795-9771
OpenAccessLink https://ieeexplore.ieee.org/document/10681435
PQID 3112228993
PQPubID 4845423
PageCount 11
ParticipantIDs proquest_journals_3112228993
ieee_primary_10681435
doaj_primary_oai_doaj_org_article_b21b6c7d92094a1eaec332097b094f86
crossref_primary_10_1109_ACCESS_2024_3462851
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
Dinitz (ref19) 1976
ref2
ref1
ref17
ref16
ref18
ref24
ref20
Gurobi (ref23) 2020
ref22
ref21
Cai (ref15) 2022
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Zhang (ref25) 2014
References_xml – ident: ref1
  doi: 10.1016/j.physa.2009.02.007
– ident: ref11
  doi: 10.1007/s00453-011-9538-x
– ident: ref8
  doi: 10.1109/TNSE.2021.3102188
– ident: ref6
  doi: 10.1109/TR.2016.2606125
– ident: ref12
  doi: 10.1109/INFOCOM42981.2021.9488879
– ident: ref14
  doi: 10.23919/ACC45564.2020.9147656
– year: 2022
  ident: ref15
  article-title: Network augmentation for tiny deep learning
  publication-title: arXiv:2110.08890
– ident: ref24
  doi: 10.25080/tcwv9851
– ident: ref22
  doi: 10.1002/3527602755.ch2
– ident: ref17
  doi: 10.1137/0205044
– ident: ref20
  doi: 10.1145/3357713.3384301
– ident: ref5
  doi: 10.1038/nature08932
– ident: ref2
  doi: 10.1016/j.physa.2016.04.007
– volume-title: Gurobi Optimizer Reference Manual
  year: 2020
  ident: ref23
– year: 2014
  ident: ref25
  article-title: Causal failures and cost-effective edge augmentation in networks
– ident: ref21
  doi: 10.1145/3406325.3451086
– ident: ref4
  doi: 10.1109/ICMLC.2013.6890450
– ident: ref13
  doi: 10.1007/s41109-018-0089-9
– ident: ref9
  doi: 10.1007/3-540-56279-6_55
– start-page: 290
  year: 1976
  ident: ref19
  article-title: On the structure of the system of minimum edge cuts of a graph
  publication-title: Studies in Discrete Optimization
– ident: ref7
  doi: 10.1109/INFCOMW.2014.6849338
– ident: ref16
  doi: 10.1109/CVPR42600.2020.01097
– ident: ref18
  doi: 10.1137/0210019
– ident: ref3
  doi: 10.1016/j.adapen.2021.100056
– ident: ref10
  doi: 10.1006/jagm.1999.1040
SSID ssj0000816957
Score 2.3069139
Snippet Understanding the relationship between various nodes of a network is critical for building a robust and resilient network. Studying and understanding the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 136588
SubjectTerms Algorithms
Approximation algorithms
Causal failure
Cause effect analysis
connectivity augmentation
Cost function
Costs
Exact solutions
Failure
Heuristic algorithms
Heuristic methods
Integer programming
Linear programming
Measurement
Mixed integer
Mixed integer linear programming
Nodes
NP-hardness
Robustness
Supply chains
Transportation networks
Transportation systems
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQYoABcRQRKMgDI6F2LttjqVoYoGIAtZsVHykZCKhJ-f08OykqYmBhS6LEx_vyLsv-HkJXhqYqF4aFgpgiTDhRoVAkDQuIrpVIDFHKVy15YNMpn8_F00apL7cnrKUHbgU3UBFVmWZGRJCI5NTmVscxXDMF9wX3ZNuEiY1kyttgTjORso5miBIxGI5GMCNICKPkJnYHMlP6wxV5xv6uxMovu-ydzeQA7XdRIh62oztEW7Y6Qnsb3IHHKH-EnL5p6ztgiOLwHQDdYKff7xV4ElxWeNru8a7xrGxe8dgsLJ75pVBr8HC1eOvOHVXwLdg8PMpXNfQ6yUu3V73uoZfJ-Hl0H3b1EkIdp6IJI0N1ZEBDwX6BCdZxpEnCCnc2VlgtaFRkigAyoLe54jlPuc4ssZlSlGmldXyCtisY4inCiSmKNLOMQDNJQhS3VqeFAG8uLDSRBOh6LTr50dJiSJ9OECFbSUsnadlJOkC3TrzfrzpOa_8AkJYd0vIvpAPUc-Bs9JdxF-0FqL9GS3YKWMsY4sjIJZPx2X_0fY523XzatZc-2m6WK3uBdvRnU9bLS__vfQGy6tue
  priority: 102
  providerName: Directory of Open Access Journals
Title Maintaining the Giant Component in Networks With Edge Weighted Augmentation Given Causal Failures
URI https://ieeexplore.ieee.org/document/10681435
https://www.proquest.com/docview/3112228993
https://doaj.org/article/b21b6c7d92094a1eaec332097b094f86
Volume 12
WOSCitedRecordID wos001327296500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T-wwEB4BongU3IjlkgtKwnNOx-Wy2oUCVhQg6KzYnvC2ICCSpeS3M3YMAj1R0EROFB_x57kczwzAsY1zXUkrIsltHWUl15HUPI9q0q61zCzX2mctuRTTaXl_L6-Ds7r3hUFEf_gMT13R_8u3T2butsqIwovSyfdFWBSi6J21PjdUXAYJmYsQWSjm8u9wNKKPIBswyU5T54OZx9-kjw_SH7Kq_MeKvXyZrP1yZOuwGhRJNuyR34AFbDZh5Ut4wS2orsjs7_oUEIwUPXZOa6FjjgU8NdQemzVs2h8Db9ndrPvHxvYB2Z3fLUXLhvOHx-Ca1FBdYotsVM1b6nVSzdxx9nYbbifjm9FFFFIqRCbNZRclNjaJJSImFkdc2qSJ4ZmonfusRCPjpC40J_CItCtdVmVemgI5FlrHwmhj0h1YamiIu8AyW9d5gYJTM1nGdYlo8lqSwJdITWQDOPmYavXcR85Q3uLgUvXIKIeMCsgM4MzB8fmqC3vtH9A8q0BFSiexLoywMiGrtIqxQpOmVBaa7uuyGMC2w-ZLfz0sAzj4QFcFGm1VSqpm4uzNdO-Havvwxw2x33E5gKXuZY6HsGxeu1n7cuTNd7pevY2P_FJ8B3fs268
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NU9QwFH-D4Ix6EFQcVgFz8GgxTZO2Oa47rDAuOxxw4JZpklfcg4WhXf9-X9LA4DgevLWd5qP55X027z2Ajz5XttG-yjT3bSZrbjNtucpa0q6tlp5bG6uWLKrlsr660ucpWD3GwiBiPHyGR-Ey_sv3N24dXGVE4WUd5PsT2FJSCj6Gaz24VEINCa2qlFso5_rzdDajzyArUMijIkRhqvwP-RPT9Ke6Kn8x4yhh5tv_ObcdeJlUSTYdsX8FG9i9hhePEgy-geaMDP9hLALBSNVjX2k3DCwwgZuO-mOrji3Hg-A9u1wNP9ixv0Z2Gf2l6Nl0ff0zBSd11JYYI5s1655GnTercKC934Xv8-OL2UmWiipkrlB6yITPnfBExsTkiE-7QjguqzYE0Gp0OhdtaTnBR8Td2LqpVe1K5Fham1fOOle8hc2OprgHTPq2VSVWnLqRktsa0alWk8jXSF3ICXy6X2pzO-bOMNHm4NqMyJiAjEnITOBLgOPh1ZD4Oj6gdTaJjowVuS1d5bUgu7TJsUFXFHRdWbpv63ICuwGbR-ONsExg_x5dk6i0NwUpmyJYnMW7fzT7AM9OLs4WZnG6_PYenofpjv6Xfdgc7tZ4AE_dr2HV3x3Grfgbr2Xc0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maintaining+the+Giant+Component+in+Networks+With+Edge+Weighted+Augmentation+Given+Causal+Failures&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Zuyuan&rft.au=Radhakrishnan%2C+Sridhar&rft.au=Barker%2C+Kash&rft.au=Gonz%C3%A1lez%2C+Andr%C3%A9s+D.&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=136588&rft.epage=136598&rft_id=info:doi/10.1109%2FACCESS.2024.3462851&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3462851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon