Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation

We introduce dynamic nested sampling: a generalisation of the nested sampling algorithm in which the number of “live points” varies to allocate samples more efficiently. In empirical tests the new method significantly improves calculation accuracy compared to standard nested sampling with the same n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistics and computing Ročník 29; číslo 5; s. 891 - 913
Hlavní autoři: Higson, Edward, Handley, Will, Hobson, Michael, Lasenby, Anthony
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 11.09.2019
Springer Nature B.V
Témata:
ISSN:0960-3174, 1573-1375
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce dynamic nested sampling: a generalisation of the nested sampling algorithm in which the number of “live points” varies to allocate samples more efficiently. In empirical tests the new method significantly improves calculation accuracy compared to standard nested sampling with the same number of samples; this increase in accuracy is equivalent to speeding up the computation by factors of up to ∼ 72 for parameter estimation and ∼ 7 for evidence calculations. We also show that the accuracy of both parameter estimation and evidence calculations can be improved simultaneously. In addition, unlike in standard nested sampling, more accurate results can be obtained by continuing the calculation for longer. Popular standard nested sampling implementations can be easily adapted to perform dynamic nested sampling, and several dynamic nested sampling software packages are now publicly available.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0960-3174
1573-1375
DOI:10.1007/s11222-018-9844-0