Multiple Reference Points-Based Decomposition for Multiobjective Feature Selection in Classification: Static and Dynamic Mechanisms
Feature selection is an important task in machine learning that has two main objectives: 1) reducing dimensionality and 2) improving learning performance. Feature selection can be considered a multiobjective problem. However, it has its problematic characteristics, such as a highly discontinuous Par...
Saved in:
| Published in: | IEEE transactions on evolutionary computation Vol. 24; no. 1; pp. 170 - 184 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Feature selection is an important task in machine learning that has two main objectives: 1) reducing dimensionality and 2) improving learning performance. Feature selection can be considered a multiobjective problem. However, it has its problematic characteristics, such as a highly discontinuous Pareto front, imbalance preferences, and partially conflicting objectives. These characteristics are not easy for existing evolutionary multiobjective optimization (EMO) algorithms. We propose a new decomposition approach with two mechanisms (static and dynamic) based on multiple reference points under the multiobjective evolutionary algorithm based on decomposition (MOEA/D) framework to address the above-mentioned difficulties of feature selection. The static mechanism alleviates the dependence of the decomposition on the Pareto front shape and the effect of the discontinuity. The dynamic one is able to detect regions in which the objectives are mostly conflicting, and allocates more computational resources to the detected regions. In comparison with other EMO algorithms on 12 different classification datasets, the proposed decomposition approach finds more diverse feature subsets with better performance in terms of hypervolume and inverted generational distance. The dynamic mechanism successfully identifies conflicting regions and further improves the approximation quality for the Pareto fronts. |
|---|---|
| AbstractList | Feature selection is an important task in machine learning that has two main objectives: 1) reducing dimensionality and 2) improving learning performance. Feature selection can be considered a multiobjective problem. However, it has its problematic characteristics, such as a highly discontinuous Pareto front, imbalance preferences, and partially conflicting objectives. These characteristics are not easy for existing evolutionary multiobjective optimization (EMO) algorithms. We propose a new decomposition approach with two mechanisms (static and dynamic) based on multiple reference points under the multiobjective evolutionary algorithm based on decomposition (MOEA/D) framework to address the above-mentioned difficulties of feature selection. The static mechanism alleviates the dependence of the decomposition on the Pareto front shape and the effect of the discontinuity. The dynamic one is able to detect regions in which the objectives are mostly conflicting, and allocates more computational resources to the detected regions. In comparison with other EMO algorithms on 12 different classification datasets, the proposed decomposition approach finds more diverse feature subsets with better performance in terms of hypervolume and inverted generational distance. The dynamic mechanism successfully identifies conflicting regions and further improves the approximation quality for the Pareto fronts. |
| Author | Xue, Bing Zhang, Mengjie Andreae, Peter Ishibuchi, Hisao Nguyen, Bach Hoai |
| Author_xml | – sequence: 1 givenname: Bach Hoai orcidid: 0000-0002-6930-6863 surname: Nguyen fullname: Nguyen, Bach Hoai email: hoai.bach.nguyen@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 2 givenname: Bing orcidid: 0000-0002-4865-8026 surname: Xue fullname: Xue, Bing email: bing.xue@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 3 givenname: Peter surname: Andreae fullname: Andreae, Peter email: peter.andreae@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 4 givenname: Hisao orcidid: 0000-0001-9186-6472 surname: Ishibuchi fullname: Ishibuchi, Hisao email: hisaoi@cs.osakafu-u.ac.jp organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 5 givenname: Mengjie orcidid: 0000-0003-4463-9538 surname: Zhang fullname: Zhang, Mengjie email: mengjie.zhang@ecs.vuw.ac.nz organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China |
| BookMark | eNp9kE9rGzEUxEVIIE7aDxByEfS8jp60a0m5tc6_QkJKk5beFln7lsisJVeSAz73i0drhx566EnDY34jZk7IoQ8eCTkDNgVg-uL5-ud8yhnoKdcglIADMgFdQ8UYnx0WzZSupFS_jslJSkvGoG5AT8ifh82Q3XpA-h17jOgt0m_B-ZyqLyZhR6_QhtU6JJdd8LQPke6IsFiize4V6Q2avIlIn3AYL8XkPJ0PJiXXO2vGyyV9ykVYanwJ3HqzKvoB7YvxLq3SB3LUmyHhx_f3lPy4uX6e31X3j7df55_vKysanSu-KCVkp9DOOsPqBRfAemFLFaU4StEp4AtsjOaadzXoXjZMq17KRtuuEUackk_73HUMvzeYcrsMm-jLly0XtYaSo2Vxyb3LxpBSxL61Lu9q5Gjc0AJrx8XbcfF2XLx9X7yQ8A-5jm5l4va_zPmecYj4168kE9BI8QZAio-5 |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1007_s12293_021_00328_7 crossref_primary_10_1016_j_ejor_2025_08_030 crossref_primary_10_1109_TEVC_2023_3284867 crossref_primary_10_1080_0305215X_2025_2464861 crossref_primary_10_1109_TEVC_2022_3215745 crossref_primary_10_1016_j_asoc_2023_110360 crossref_primary_10_1109_TEVC_2024_3431928 crossref_primary_10_1109_TEVC_2023_3292527 crossref_primary_10_1016_j_asoc_2021_107152 crossref_primary_10_1016_j_swevo_2025_101875 crossref_primary_10_1109_TEVC_2021_3076514 crossref_primary_10_3390_math12162572 crossref_primary_10_1109_TETCI_2024_3451709 crossref_primary_10_1016_j_eswa_2024_123296 crossref_primary_10_1145_3470971 crossref_primary_10_1007_s11432_023_3864_6 crossref_primary_10_1016_j_knosys_2021_107577 crossref_primary_10_1109_TEVC_2022_3197427 crossref_primary_10_3390_sym17050671 crossref_primary_10_1007_s12652_022_04444_1 crossref_primary_10_1109_TEVC_2023_3338740 crossref_primary_10_1016_j_asoc_2021_107956 crossref_primary_10_1016_j_chemolab_2023_104989 crossref_primary_10_1109_TEVC_2022_3159253 crossref_primary_10_1016_j_knosys_2022_108640 crossref_primary_10_1109_TNNLS_2023_3249767 crossref_primary_10_1109_TSMC_2022_3171549 crossref_primary_10_1016_j_ins_2023_119619 crossref_primary_10_1109_TETCI_2024_3451695 crossref_primary_10_1007_s10489_024_05387_0 crossref_primary_10_1016_j_ins_2024_121185 crossref_primary_10_3390_math12040554 crossref_primary_10_1109_TCYB_2022_3165374 crossref_primary_10_1007_s10489_022_04291_9 crossref_primary_10_1016_j_ins_2023_01_069 crossref_primary_10_1016_j_swevo_2024_101546 crossref_primary_10_1016_j_swevo_2023_101286 crossref_primary_10_1109_JIOT_2020_2996762 crossref_primary_10_1109_TEVC_2022_3222297 crossref_primary_10_1109_TKDE_2022_3222047 crossref_primary_10_1016_j_swevo_2022_101181 crossref_primary_10_1016_j_swevo_2025_102077 crossref_primary_10_1109_TEVC_2022_3175226 crossref_primary_10_1109_TEVC_2023_3334233 crossref_primary_10_3390_math12101431 crossref_primary_10_1016_j_cie_2022_108617 crossref_primary_10_1007_s40747_020_00215_7 crossref_primary_10_3390_math12081178 crossref_primary_10_1016_j_swevo_2024_101618 crossref_primary_10_1162_evco_a_00339 crossref_primary_10_3390_axioms13040276 crossref_primary_10_1109_ACCESS_2021_3110853 crossref_primary_10_1016_j_asoc_2021_108381 crossref_primary_10_1016_j_eswa_2023_122701 crossref_primary_10_1016_j_swevo_2021_100925 crossref_primary_10_1016_j_swevo_2021_100847 crossref_primary_10_1016_j_swevo_2021_101012 crossref_primary_10_1109_TEVC_2022_3168052 crossref_primary_10_1109_TCYB_2022_3185554 crossref_primary_10_1109_TEVC_2020_3016049 crossref_primary_10_1109_ACCESS_2024_3418809 crossref_primary_10_1007_s40747_025_01941_6 crossref_primary_10_1016_j_eswa_2023_120290 crossref_primary_10_1088_1742_6596_2031_1_012064 crossref_primary_10_1155_2022_4248778 crossref_primary_10_1016_j_swevo_2024_101770 crossref_primary_10_1109_TETCI_2024_3393388 crossref_primary_10_1007_s12293_022_00354_z crossref_primary_10_1109_TCYB_2022_3218345 crossref_primary_10_1016_j_asoc_2023_111081 crossref_primary_10_1109_TEVC_2022_3231387 crossref_primary_10_1007_s00607_024_01272_3 crossref_primary_10_1016_j_asoc_2024_111341 crossref_primary_10_1109_TETCI_2021_3074147 crossref_primary_10_1109_TEVC_2022_3160458 crossref_primary_10_1016_j_patcog_2021_107933 crossref_primary_10_1007_s10489_023_04696_0 crossref_primary_10_1007_s10115_025_02340_6 crossref_primary_10_1109_TCYB_2021_3128540 crossref_primary_10_1109_TEVC_2021_3139304 crossref_primary_10_1109_MCI_2024_3364429 crossref_primary_10_1109_ACCESS_2025_3541271 crossref_primary_10_1109_TCYB_2021_3053944 crossref_primary_10_1088_1742_6596_2890_1_012013 |
| Cites_doi | 10.1145/2330163.2330175 10.1007/978-3-642-37140-0_20 10.1093/nsr/nwt032 10.1145/1527125.1527138 10.1109/TPAMI.2005.159 10.1109/SMC.2013.110 10.1145/3067695.3075985 10.1109/CEC.2010.5586185 10.1145/2739482.2768462 10.1109/TSMCB.2012.2227469 10.1109/TEVC.2007.892759 10.1007/978-3-319-13563-2_44 10.1109/TEVC.2013.2293776 10.1109/4235.996017 10.1007/s00500-017-2609-4 10.1109/TEVC.2017.2683489 10.1145/2576768.2598342 10.1007/978-3-642-01020-0_35 10.1007/s00500-016-2128-8 10.1109/TSMCC.2012.2188285 10.1109/TNB.2013.2279131 10.1109/TEVC.2015.2420112 10.1109/TEVC.2013.2281533 10.1109/TEVC.2013.2281535 10.1109/TEVC.2014.2373386 10.1109/TEVC.2017.2695579 10.1109/TEVC.2015.2504420 10.1109/TEVC.2016.2519378 10.1162/EVCO_a_00109 10.1016/j.patrec.2015.07.007 10.1007/978-3-540-31880-4_35 10.1023/A:1025667309714 10.1016/j.patcog.2007.02.007 10.1109/TEVC.2015.2424251 10.1109/TEVC.2008.925798 10.1109/CEC.2009.4982949 10.1016/j.eswa.2013.03.032 10.1016/j.ejor.2003.06.015 10.1109/TEVC.2016.2587749 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2019.2913831 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 184 |
| ExternalDocumentID | 10_1109_TEVC_2019_2913831 8703157 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Victoria University of Wellington grantid: 216378/3764 funderid: 10.13039/501100001538 – fundername: Marsden Fund grantid: VUW1509; VUW1615 funderid: 10.13039/501100009193 – fundername: Huawei Industry grantid: E2880/3663 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c359t-2b1087d8ec6da04b2310f3c001882e73d812be5a9292d419f75098f7759cd53a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 95 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510708100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Nov 09 08:28:16 EST 2025 Sat Nov 29 03:13:48 EST 2025 Tue Nov 18 22:22:13 EST 2025 Wed Aug 27 06:30:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-2b1087d8ec6da04b2310f3c001882e73d812be5a9292d419f75098f7759cd53a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9186-6472 0000-0002-4865-8026 0000-0003-4463-9538 0000-0002-6930-6863 |
| PQID | 2349118897 |
| PQPubID | 85418 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2349118897 crossref_citationtrail_10_1109_TEVC_2019_2913831 crossref_primary_10_1109_TEVC_2019_2913831 ieee_primary_8703157 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref12 ref37 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 trivedi (ref21) 2017; 21 ref2 ref1 ref17 ref38 ref16 ref19 ref18 robi? (ref7) 2005 ref46 ref24 ref45 ref23 zitzler (ref5) 2001 ref26 ref47 ref25 ref20 ref42 knowles (ref43) 2006 hall (ref39) 1999 ref22 ref44 miettinen (ref36) 2012; 12 nie (ref40) 2010 ref28 ref27 ref29 li (ref13) 2014; 18 ref8 ref9 ref4 ref3 ref6 lichman (ref41) 2013 |
| References_xml | – ident: ref24 doi: 10.1145/2330163.2330175 – ident: ref32 doi: 10.1007/978-3-642-37140-0_20 – ident: ref1 doi: 10.1093/nsr/nwt032 – ident: ref42 doi: 10.1145/1527125.1527138 – ident: ref37 doi: 10.1109/TPAMI.2005.159 – ident: ref35 doi: 10.1109/SMC.2013.110 – start-page: 520 year: 2005 ident: ref7 article-title: Demo: Differential evolution for multiobjective optimization publication-title: Evolutionary Multi-Criterion Optimization – ident: ref18 doi: 10.1145/3067695.3075985 – volume: 12 year: 2012 ident: ref36 publication-title: Nonlinear Multiobjective Optimization – ident: ref34 doi: 10.1109/CEC.2010.5586185 – ident: ref44 doi: 10.1145/2739482.2768462 – start-page: 235 year: 1999 ident: ref39 article-title: Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper publication-title: Proc FLAIRS Conf – ident: ref9 doi: 10.1109/TSMCB.2012.2227469 – ident: ref20 doi: 10.1109/TEVC.2007.892759 – ident: ref26 doi: 10.1007/978-3-319-13563-2_44 – year: 2006 ident: ref43 article-title: A tutorial on the performance assessment of stochastic multiobjective optimizers – volume: 18 start-page: 909 year: 2014 ident: ref13 article-title: Stable matching-based selection in evolutionary multiobjective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2293776 – start-page: 1813 year: 2010 ident: ref40 article-title: Efficient and robust feature selection via joint $\ell2$ , 1-norms minimization publication-title: Proc Adv Neural Inf Process Syst – ident: ref4 doi: 10.1109/4235.996017 – ident: ref17 doi: 10.1007/s00500-017-2609-4 – ident: ref2 doi: 10.1109/TEVC.2017.2683489 – ident: ref33 doi: 10.1145/2576768.2598342 – ident: ref10 doi: 10.1007/978-3-642-01020-0_35 – ident: ref25 doi: 10.1007/s00500-016-2128-8 – ident: ref11 doi: 10.1109/TSMCC.2012.2188285 – ident: ref22 doi: 10.1109/TNB.2013.2279131 – ident: ref46 doi: 10.1109/TEVC.2015.2420112 – ident: ref19 doi: 10.1109/TEVC.2013.2281533 – ident: ref45 doi: 10.1109/TEVC.2013.2281535 – ident: ref12 doi: 10.1109/TEVC.2014.2373386 – ident: ref28 doi: 10.1109/TEVC.2017.2695579 – ident: ref3 doi: 10.1109/TEVC.2015.2504420 – ident: ref29 doi: 10.1109/TEVC.2016.2519378 – ident: ref16 doi: 10.1162/EVCO_a_00109 – ident: ref27 doi: 10.1016/j.patrec.2015.07.007 – ident: ref6 doi: 10.1007/978-3-540-31880-4_35 – start-page: 95 year: 2001 ident: ref5 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization publication-title: Proc Evol Methods Design Optim Control Appl Ind Problems – year: 2013 ident: ref41 publication-title: UCI Machine Learning Repository – ident: ref38 doi: 10.1023/A:1025667309714 – ident: ref47 doi: 10.1016/j.patcog.2007.02.007 – ident: ref31 doi: 10.1109/TEVC.2015.2424251 – ident: ref14 doi: 10.1109/TEVC.2008.925798 – ident: ref30 doi: 10.1109/CEC.2009.4982949 – ident: ref23 doi: 10.1016/j.eswa.2013.03.032 – ident: ref8 doi: 10.1016/j.ejor.2003.06.015 – ident: ref15 doi: 10.1109/TEVC.2016.2587749 – volume: 21 start-page: 440 year: 2017 ident: ref21 article-title: A survey of multiobjective evolutionary algorithms based on decomposition publication-title: IEEE Trans Evol Comput |
| SSID | ssj0014519 |
| Score | 2.5787256 |
| Snippet | Feature selection is an important task in machine learning that has two main objectives: 1) reducing dimensionality and 2) improving learning performance.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 170 |
| SubjectTerms | Algorithms Approximation algorithms Classification Decomposition Discontinuity Evolutionary algorithms Feature extraction feature selection Heuristic algorithms Machine learning multiobjective evolutionary algorithm based on decomposition (MOEA/D) multiobjective optimization Multiple objective analysis Optimization Pareto optimization partially conflicting Shape effects Sociology Statistics Task analysis |
| Title | Multiple Reference Points-Based Decomposition for Multiobjective Feature Selection in Classification: Static and Dynamic Mechanisms |
| URI | https://ieeexplore.ieee.org/document/8703157 https://www.proquest.com/docview/2349118897 |
| Volume | 24 |
| WOSCitedRecordID | wos000510708100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6gEOQBdQl0LlQ0-IQBLba5sbpaAeCkLiQ3uLEtuRFpUs2g-knvvHO-N4IyoQUm9WZCdRnu15jp_fAHwdOCmd8DzBaK0Soaoah1SZJVLUpuSpLp0N7vo_1dWVHg7N9RIcdmdhvPdBfOaPqBj28t3YzulX2bEms3WplmFZqUF7VqvbMSCblFZMb5Ax6mHcwcxSc3x7fn9GIi5zlJsMV2TZPzEoJFV5NROH8HKx8X8vtgnrkUay0xb3j7Dkmx5sLFI0sDhie7D2wm-wB6tELVtn5i34cxm1hKwzm2XX41EzmybfMLQ59t2T3jyKuhiSWxZajKuHdpJkRB_nE89uQi4dqjRqWMiySfqjAPkJC4-0rGzwhr-b8hHLl56OG4-mj9NtuLs4vz37kcSUDInl0sySvMIPrJz2duDKVFTEDmtuKbWfzr3iDvlC5WWJpCt3IjM1ERJdKyWNdZKXfAdWmnHjPwEb4NKpwtnDWm6Et5XRVgkhsYsovFbzPqQLkAob_copbcavIqxbUlMQrgXhWkRc-3DQNXlqzTreq7xFQHYVI4Z92Fv0hCIO52mRc4FBQWujdt9u9RlWc1qIBzn3HqzMJnO_Dx_sM4I6-RJ66l8zDucE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH4aA4ntsEE3tLIBPnBCZEtiu7a5wdg0RFtNoqDeosR2pE5bivoDiTP_OO85bgQCIXGzIjuJ8tl-n-PP7wN4OXBSOuF5gtFaJUJVNQ6pMkukqE3JU106G7LrD9V4rKdTc70Fr7uzMN77ID7zp1QMe_lubtf0q-xMU7J1qe7BfXLOiqe1uj0DSpTSyukNckY9jXuYWWrOJhdfzknGZU5zk-GaLPstCgVblT_m4hBgLvf_79UewV4kkuxti_xj2PJND_Y3Jg0sjtke7P6ScbAHO0Qu29zMB_BjFNWErEs3y67ns2a1TN5hcHPsvSfFeZR1MaS3LLSYVzftNMmIQK4Xnn0KbjpUadaw4LNJCqQA-hsWHmlZ2eANvzflHZZHng4cz5Z3y0P4fHkxOb9KoilDYrk0qySv8AMrp70duDIVFfHDmlsy99O5V9whY6i8LJF25U5kpiZKomulpLFO8pI_ge1m3vgjYANcPFU4f1jLjfC2MtoqISR2EoXXat6HdANSYWPGcjLOuC3CyiU1BeFaEK5FxLUPr7omX9t0Hf-qfEBAdhUjhn042fSEIg7oZZFzgWFBa6Oe_r3VC3h4NRkNi-GH8cdj2MlpWR7E3SewvVqs_TN4YL8hwIvnodf-BF9d6k0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Reference+Points-Based+Decomposition+for+Multiobjective+Feature+Selection+in+Classification%3A+Static+and+Dynamic+Mechanisms&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Nguyen%2C+Bach+Hoai&rft.au=Xue%2C+Bing&rft.au=Andreae%2C+Peter&rft.au=Ishibuchi%2C+Hisao&rft.date=2020-02-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=24&rft.issue=1&rft.spage=170&rft.epage=184&rft_id=info:doi/10.1109%2FTEVC.2019.2913831&rft.externalDocID=8703157 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |