Multiple Reference Points-Based Decomposition for Multiobjective Feature Selection in Classification: Static and Dynamic Mechanisms

Feature selection is an important task in machine learning that has two main objectives: 1) reducing dimensionality and 2) improving learning performance. Feature selection can be considered a multiobjective problem. However, it has its problematic characteristics, such as a highly discontinuous Par...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 24; no. 1; pp. 170 - 184
Main Authors: Nguyen, Bach Hoai, Xue, Bing, Andreae, Peter, Ishibuchi, Hisao, Zhang, Mengjie
Format: Journal Article
Language:English
Published: New York IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Feature selection is an important task in machine learning that has two main objectives: 1) reducing dimensionality and 2) improving learning performance. Feature selection can be considered a multiobjective problem. However, it has its problematic characteristics, such as a highly discontinuous Pareto front, imbalance preferences, and partially conflicting objectives. These characteristics are not easy for existing evolutionary multiobjective optimization (EMO) algorithms. We propose a new decomposition approach with two mechanisms (static and dynamic) based on multiple reference points under the multiobjective evolutionary algorithm based on decomposition (MOEA/D) framework to address the above-mentioned difficulties of feature selection. The static mechanism alleviates the dependence of the decomposition on the Pareto front shape and the effect of the discontinuity. The dynamic one is able to detect regions in which the objectives are mostly conflicting, and allocates more computational resources to the detected regions. In comparison with other EMO algorithms on 12 different classification datasets, the proposed decomposition approach finds more diverse feature subsets with better performance in terms of hypervolume and inverted generational distance. The dynamic mechanism successfully identifies conflicting regions and further improves the approximation quality for the Pareto fronts.
AbstractList Feature selection is an important task in machine learning that has two main objectives: 1) reducing dimensionality and 2) improving learning performance. Feature selection can be considered a multiobjective problem. However, it has its problematic characteristics, such as a highly discontinuous Pareto front, imbalance preferences, and partially conflicting objectives. These characteristics are not easy for existing evolutionary multiobjective optimization (EMO) algorithms. We propose a new decomposition approach with two mechanisms (static and dynamic) based on multiple reference points under the multiobjective evolutionary algorithm based on decomposition (MOEA/D) framework to address the above-mentioned difficulties of feature selection. The static mechanism alleviates the dependence of the decomposition on the Pareto front shape and the effect of the discontinuity. The dynamic one is able to detect regions in which the objectives are mostly conflicting, and allocates more computational resources to the detected regions. In comparison with other EMO algorithms on 12 different classification datasets, the proposed decomposition approach finds more diverse feature subsets with better performance in terms of hypervolume and inverted generational distance. The dynamic mechanism successfully identifies conflicting regions and further improves the approximation quality for the Pareto fronts.
Author Xue, Bing
Zhang, Mengjie
Andreae, Peter
Ishibuchi, Hisao
Nguyen, Bach Hoai
Author_xml – sequence: 1
  givenname: Bach Hoai
  orcidid: 0000-0002-6930-6863
  surname: Nguyen
  fullname: Nguyen, Bach Hoai
  email: hoai.bach.nguyen@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 2
  givenname: Bing
  orcidid: 0000-0002-4865-8026
  surname: Xue
  fullname: Xue, Bing
  email: bing.xue@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 3
  givenname: Peter
  surname: Andreae
  fullname: Andreae, Peter
  email: peter.andreae@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 4
  givenname: Hisao
  orcidid: 0000-0001-9186-6472
  surname: Ishibuchi
  fullname: Ishibuchi, Hisao
  email: hisaoi@cs.osakafu-u.ac.jp
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 5
  givenname: Mengjie
  orcidid: 0000-0003-4463-9538
  surname: Zhang
  fullname: Zhang, Mengjie
  email: mengjie.zhang@ecs.vuw.ac.nz
  organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
BookMark eNp9kE9rGzEUxEVIIE7aDxByEfS8jp60a0m5tc6_QkJKk5beFln7lsisJVeSAz73i0drhx566EnDY34jZk7IoQ8eCTkDNgVg-uL5-ud8yhnoKdcglIADMgFdQ8UYnx0WzZSupFS_jslJSkvGoG5AT8ifh82Q3XpA-h17jOgt0m_B-ZyqLyZhR6_QhtU6JJdd8LQPke6IsFiize4V6Q2avIlIn3AYL8XkPJ0PJiXXO2vGyyV9ykVYanwJ3HqzKvoB7YvxLq3SB3LUmyHhx_f3lPy4uX6e31X3j7df55_vKysanSu-KCVkp9DOOsPqBRfAemFLFaU4StEp4AtsjOaadzXoXjZMq17KRtuuEUackk_73HUMvzeYcrsMm-jLly0XtYaSo2Vxyb3LxpBSxL61Lu9q5Gjc0AJrx8XbcfF2XLx9X7yQ8A-5jm5l4va_zPmecYj4168kE9BI8QZAio-5
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s12293_021_00328_7
crossref_primary_10_1016_j_ejor_2025_08_030
crossref_primary_10_1109_TEVC_2023_3284867
crossref_primary_10_1080_0305215X_2025_2464861
crossref_primary_10_1109_TEVC_2022_3215745
crossref_primary_10_1016_j_asoc_2023_110360
crossref_primary_10_1109_TEVC_2024_3431928
crossref_primary_10_1109_TEVC_2023_3292527
crossref_primary_10_1016_j_asoc_2021_107152
crossref_primary_10_1016_j_swevo_2025_101875
crossref_primary_10_1109_TEVC_2021_3076514
crossref_primary_10_3390_math12162572
crossref_primary_10_1109_TETCI_2024_3451709
crossref_primary_10_1016_j_eswa_2024_123296
crossref_primary_10_1145_3470971
crossref_primary_10_1007_s11432_023_3864_6
crossref_primary_10_1016_j_knosys_2021_107577
crossref_primary_10_1109_TEVC_2022_3197427
crossref_primary_10_3390_sym17050671
crossref_primary_10_1007_s12652_022_04444_1
crossref_primary_10_1109_TEVC_2023_3338740
crossref_primary_10_1016_j_asoc_2021_107956
crossref_primary_10_1016_j_chemolab_2023_104989
crossref_primary_10_1109_TEVC_2022_3159253
crossref_primary_10_1016_j_knosys_2022_108640
crossref_primary_10_1109_TNNLS_2023_3249767
crossref_primary_10_1109_TSMC_2022_3171549
crossref_primary_10_1016_j_ins_2023_119619
crossref_primary_10_1109_TETCI_2024_3451695
crossref_primary_10_1007_s10489_024_05387_0
crossref_primary_10_1016_j_ins_2024_121185
crossref_primary_10_3390_math12040554
crossref_primary_10_1109_TCYB_2022_3165374
crossref_primary_10_1007_s10489_022_04291_9
crossref_primary_10_1016_j_ins_2023_01_069
crossref_primary_10_1016_j_swevo_2024_101546
crossref_primary_10_1016_j_swevo_2023_101286
crossref_primary_10_1109_JIOT_2020_2996762
crossref_primary_10_1109_TEVC_2022_3222297
crossref_primary_10_1109_TKDE_2022_3222047
crossref_primary_10_1016_j_swevo_2022_101181
crossref_primary_10_1016_j_swevo_2025_102077
crossref_primary_10_1109_TEVC_2022_3175226
crossref_primary_10_1109_TEVC_2023_3334233
crossref_primary_10_3390_math12101431
crossref_primary_10_1016_j_cie_2022_108617
crossref_primary_10_1007_s40747_020_00215_7
crossref_primary_10_3390_math12081178
crossref_primary_10_1016_j_swevo_2024_101618
crossref_primary_10_1162_evco_a_00339
crossref_primary_10_3390_axioms13040276
crossref_primary_10_1109_ACCESS_2021_3110853
crossref_primary_10_1016_j_asoc_2021_108381
crossref_primary_10_1016_j_eswa_2023_122701
crossref_primary_10_1016_j_swevo_2021_100925
crossref_primary_10_1016_j_swevo_2021_100847
crossref_primary_10_1016_j_swevo_2021_101012
crossref_primary_10_1109_TEVC_2022_3168052
crossref_primary_10_1109_TCYB_2022_3185554
crossref_primary_10_1109_TEVC_2020_3016049
crossref_primary_10_1109_ACCESS_2024_3418809
crossref_primary_10_1007_s40747_025_01941_6
crossref_primary_10_1016_j_eswa_2023_120290
crossref_primary_10_1088_1742_6596_2031_1_012064
crossref_primary_10_1155_2022_4248778
crossref_primary_10_1016_j_swevo_2024_101770
crossref_primary_10_1109_TETCI_2024_3393388
crossref_primary_10_1007_s12293_022_00354_z
crossref_primary_10_1109_TCYB_2022_3218345
crossref_primary_10_1016_j_asoc_2023_111081
crossref_primary_10_1109_TEVC_2022_3231387
crossref_primary_10_1007_s00607_024_01272_3
crossref_primary_10_1016_j_asoc_2024_111341
crossref_primary_10_1109_TETCI_2021_3074147
crossref_primary_10_1109_TEVC_2022_3160458
crossref_primary_10_1016_j_patcog_2021_107933
crossref_primary_10_1007_s10489_023_04696_0
crossref_primary_10_1007_s10115_025_02340_6
crossref_primary_10_1109_TCYB_2021_3128540
crossref_primary_10_1109_TEVC_2021_3139304
crossref_primary_10_1109_MCI_2024_3364429
crossref_primary_10_1109_ACCESS_2025_3541271
crossref_primary_10_1109_TCYB_2021_3053944
crossref_primary_10_1088_1742_6596_2890_1_012013
Cites_doi 10.1145/2330163.2330175
10.1007/978-3-642-37140-0_20
10.1093/nsr/nwt032
10.1145/1527125.1527138
10.1109/TPAMI.2005.159
10.1109/SMC.2013.110
10.1145/3067695.3075985
10.1109/CEC.2010.5586185
10.1145/2739482.2768462
10.1109/TSMCB.2012.2227469
10.1109/TEVC.2007.892759
10.1007/978-3-319-13563-2_44
10.1109/TEVC.2013.2293776
10.1109/4235.996017
10.1007/s00500-017-2609-4
10.1109/TEVC.2017.2683489
10.1145/2576768.2598342
10.1007/978-3-642-01020-0_35
10.1007/s00500-016-2128-8
10.1109/TSMCC.2012.2188285
10.1109/TNB.2013.2279131
10.1109/TEVC.2015.2420112
10.1109/TEVC.2013.2281533
10.1109/TEVC.2013.2281535
10.1109/TEVC.2014.2373386
10.1109/TEVC.2017.2695579
10.1109/TEVC.2015.2504420
10.1109/TEVC.2016.2519378
10.1162/EVCO_a_00109
10.1016/j.patrec.2015.07.007
10.1007/978-3-540-31880-4_35
10.1023/A:1025667309714
10.1016/j.patcog.2007.02.007
10.1109/TEVC.2015.2424251
10.1109/TEVC.2008.925798
10.1109/CEC.2009.4982949
10.1016/j.eswa.2013.03.032
10.1016/j.ejor.2003.06.015
10.1109/TEVC.2016.2587749
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2019.2913831
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 184
ExternalDocumentID 10_1109_TEVC_2019_2913831
8703157
Genre orig-research
GrantInformation_xml – fundername: Victoria University of Wellington
  grantid: 216378/3764
  funderid: 10.13039/501100001538
– fundername: Marsden Fund
  grantid: VUW1509; VUW1615
  funderid: 10.13039/501100009193
– fundername: Huawei Industry
  grantid: E2880/3663
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-2b1087d8ec6da04b2310f3c001882e73d812be5a9292d419f75098f7759cd53a3
IEDL.DBID RIE
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510708100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 09 08:28:16 EST 2025
Sat Nov 29 03:13:48 EST 2025
Tue Nov 18 22:22:13 EST 2025
Wed Aug 27 06:30:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-2b1087d8ec6da04b2310f3c001882e73d812be5a9292d419f75098f7759cd53a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9186-6472
0000-0002-4865-8026
0000-0003-4463-9538
0000-0002-6930-6863
PQID 2349118897
PQPubID 85418
PageCount 15
ParticipantIDs proquest_journals_2349118897
crossref_citationtrail_10_1109_TEVC_2019_2913831
crossref_primary_10_1109_TEVC_2019_2913831
ieee_primary_8703157
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
trivedi (ref21) 2017; 21
ref2
ref1
ref17
ref38
ref16
ref19
ref18
robi? (ref7) 2005
ref46
ref24
ref45
ref23
zitzler (ref5) 2001
ref26
ref47
ref25
ref20
ref42
knowles (ref43) 2006
hall (ref39) 1999
ref22
ref44
miettinen (ref36) 2012; 12
nie (ref40) 2010
ref28
ref27
ref29
li (ref13) 2014; 18
ref8
ref9
ref4
ref3
ref6
lichman (ref41) 2013
References_xml – ident: ref24
  doi: 10.1145/2330163.2330175
– ident: ref32
  doi: 10.1007/978-3-642-37140-0_20
– ident: ref1
  doi: 10.1093/nsr/nwt032
– ident: ref42
  doi: 10.1145/1527125.1527138
– ident: ref37
  doi: 10.1109/TPAMI.2005.159
– ident: ref35
  doi: 10.1109/SMC.2013.110
– start-page: 520
  year: 2005
  ident: ref7
  article-title: Demo: Differential evolution for multiobjective optimization
  publication-title: Evolutionary Multi-Criterion Optimization
– ident: ref18
  doi: 10.1145/3067695.3075985
– volume: 12
  year: 2012
  ident: ref36
  publication-title: Nonlinear Multiobjective Optimization
– ident: ref34
  doi: 10.1109/CEC.2010.5586185
– ident: ref44
  doi: 10.1145/2739482.2768462
– start-page: 235
  year: 1999
  ident: ref39
  article-title: Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper
  publication-title: Proc FLAIRS Conf
– ident: ref9
  doi: 10.1109/TSMCB.2012.2227469
– ident: ref20
  doi: 10.1109/TEVC.2007.892759
– ident: ref26
  doi: 10.1007/978-3-319-13563-2_44
– year: 2006
  ident: ref43
  article-title: A tutorial on the performance assessment of stochastic multiobjective optimizers
– volume: 18
  start-page: 909
  year: 2014
  ident: ref13
  article-title: Stable matching-based selection in evolutionary multiobjective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2293776
– start-page: 1813
  year: 2010
  ident: ref40
  article-title: Efficient and robust feature selection via joint $\ell2$ , 1-norms minimization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref4
  doi: 10.1109/4235.996017
– ident: ref17
  doi: 10.1007/s00500-017-2609-4
– ident: ref2
  doi: 10.1109/TEVC.2017.2683489
– ident: ref33
  doi: 10.1145/2576768.2598342
– ident: ref10
  doi: 10.1007/978-3-642-01020-0_35
– ident: ref25
  doi: 10.1007/s00500-016-2128-8
– ident: ref11
  doi: 10.1109/TSMCC.2012.2188285
– ident: ref22
  doi: 10.1109/TNB.2013.2279131
– ident: ref46
  doi: 10.1109/TEVC.2015.2420112
– ident: ref19
  doi: 10.1109/TEVC.2013.2281533
– ident: ref45
  doi: 10.1109/TEVC.2013.2281535
– ident: ref12
  doi: 10.1109/TEVC.2014.2373386
– ident: ref28
  doi: 10.1109/TEVC.2017.2695579
– ident: ref3
  doi: 10.1109/TEVC.2015.2504420
– ident: ref29
  doi: 10.1109/TEVC.2016.2519378
– ident: ref16
  doi: 10.1162/EVCO_a_00109
– ident: ref27
  doi: 10.1016/j.patrec.2015.07.007
– ident: ref6
  doi: 10.1007/978-3-540-31880-4_35
– start-page: 95
  year: 2001
  ident: ref5
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization
  publication-title: Proc Evol Methods Design Optim Control Appl Ind Problems
– year: 2013
  ident: ref41
  publication-title: UCI Machine Learning Repository
– ident: ref38
  doi: 10.1023/A:1025667309714
– ident: ref47
  doi: 10.1016/j.patcog.2007.02.007
– ident: ref31
  doi: 10.1109/TEVC.2015.2424251
– ident: ref14
  doi: 10.1109/TEVC.2008.925798
– ident: ref30
  doi: 10.1109/CEC.2009.4982949
– ident: ref23
  doi: 10.1016/j.eswa.2013.03.032
– ident: ref8
  doi: 10.1016/j.ejor.2003.06.015
– ident: ref15
  doi: 10.1109/TEVC.2016.2587749
– volume: 21
  start-page: 440
  year: 2017
  ident: ref21
  article-title: A survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans Evol Comput
SSID ssj0014519
Score 2.5787256
Snippet Feature selection is an important task in machine learning that has two main objectives: 1) reducing dimensionality and 2) improving learning performance....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 170
SubjectTerms Algorithms
Approximation algorithms
Classification
Decomposition
Discontinuity
Evolutionary algorithms
Feature extraction
feature selection
Heuristic algorithms
Machine learning
multiobjective evolutionary algorithm based on decomposition (MOEA/D)
multiobjective optimization
Multiple objective analysis
Optimization
Pareto optimization
partially conflicting
Shape effects
Sociology
Statistics
Task analysis
Title Multiple Reference Points-Based Decomposition for Multiobjective Feature Selection in Classification: Static and Dynamic Mechanisms
URI https://ieeexplore.ieee.org/document/8703157
https://www.proquest.com/docview/2349118897
Volume 24
WOSCitedRecordID wos000510708100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6gEOQBdQl0LlQ0-IQBLba5sbpaAeCkLiQ3uLEtuRFpUs2g-knvvHO-N4IyoQUm9WZCdRnu15jp_fAHwdOCmd8DzBaK0Soaoah1SZJVLUpuSpLp0N7vo_1dWVHg7N9RIcdmdhvPdBfOaPqBj28t3YzulX2bEms3WplmFZqUF7VqvbMSCblFZMb5Ax6mHcwcxSc3x7fn9GIi5zlJsMV2TZPzEoJFV5NROH8HKx8X8vtgnrkUay0xb3j7Dkmx5sLFI0sDhie7D2wm-wB6tELVtn5i34cxm1hKwzm2XX41EzmybfMLQ59t2T3jyKuhiSWxZajKuHdpJkRB_nE89uQi4dqjRqWMiySfqjAPkJC4-0rGzwhr-b8hHLl56OG4-mj9NtuLs4vz37kcSUDInl0sySvMIPrJz2duDKVFTEDmtuKbWfzr3iDvlC5WWJpCt3IjM1ERJdKyWNdZKXfAdWmnHjPwEb4NKpwtnDWm6Et5XRVgkhsYsovFbzPqQLkAob_copbcavIqxbUlMQrgXhWkRc-3DQNXlqzTreq7xFQHYVI4Z92Fv0hCIO52mRc4FBQWujdt9u9RlWc1qIBzn3HqzMJnO_Dx_sM4I6-RJ66l8zDucE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH4aA4ntsEE3tLIBPnBCZEtiu7a5wdg0RFtNoqDeosR2pE5bivoDiTP_OO85bgQCIXGzIjuJ8tl-n-PP7wN4OXBSOuF5gtFaJUJVNQ6pMkukqE3JU106G7LrD9V4rKdTc70Fr7uzMN77ID7zp1QMe_lubtf0q-xMU7J1qe7BfXLOiqe1uj0DSpTSyukNckY9jXuYWWrOJhdfzknGZU5zk-GaLPstCgVblT_m4hBgLvf_79UewV4kkuxti_xj2PJND_Y3Jg0sjtke7P6ScbAHO0Qu29zMB_BjFNWErEs3y67ns2a1TN5hcHPsvSfFeZR1MaS3LLSYVzftNMmIQK4Xnn0KbjpUadaw4LNJCqQA-hsWHmlZ2eANvzflHZZHng4cz5Z3y0P4fHkxOb9KoilDYrk0qySv8AMrp70duDIVFfHDmlsy99O5V9whY6i8LJF25U5kpiZKomulpLFO8pI_ge1m3vgjYANcPFU4f1jLjfC2MtoqISR2EoXXat6HdANSYWPGcjLOuC3CyiU1BeFaEK5FxLUPr7omX9t0Hf-qfEBAdhUjhn042fSEIg7oZZFzgWFBa6Oe_r3VC3h4NRkNi-GH8cdj2MlpWR7E3SewvVqs_TN4YL8hwIvnodf-BF9d6k0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Reference+Points-Based+Decomposition+for+Multiobjective+Feature+Selection+in+Classification%3A+Static+and+Dynamic+Mechanisms&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Nguyen%2C+Bach+Hoai&rft.au=Xue%2C+Bing&rft.au=Andreae%2C+Peter&rft.au=Ishibuchi%2C+Hisao&rft.date=2020-02-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=24&rft.issue=1&rft.spage=170&rft.epage=184&rft_id=info:doi/10.1109%2FTEVC.2019.2913831&rft.externalDocID=8703157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon