The Juno Magnetic Field Investigation

The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor sui...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Space science reviews Ročník 213; číslo 1-4; s. 39 - 138
Hlavní autori: Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., Jorgensen, P. S., Lawton, P., Malinnikova, A., Merayo, J. M., Murphy, S., Odom, J., Oliversen, R., Schnurr, R., Sheppard, D., Smith, E. J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.11.2017
Springer Nature B.V
Predmet:
ISSN:0038-6308, 1572-9672
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ∼20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of ’s three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno’s massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 10 6  nT per axis) with a resolution of ∼0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno’s spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.
AbstractList The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ∼20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of ’s three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno’s massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 10 6 nT per axis) with a resolution of ∼0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno’s spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.
The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ∼20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of ’s three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno’s massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 10 6  nT per axis) with a resolution of ∼0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno’s spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.
Author Malinnikova, A.
Odom, J.
Benn, M.
Oliversen, R.
Connerney, J. E. P.
Lawton, P.
Smith, E. J.
Sheppard, D.
Jorgensen, J. L.
Bjarno, J. B.
Denver, T.
Espley, J.
Murphy, S.
Merayo, J. M.
Schnurr, R.
Jorgensen, P. S.
Author_xml – sequence: 1
  givenname: J. E. P.
  orcidid: 0000-0001-7478-6462
  surname: Connerney
  fullname: Connerney, J. E. P.
  email: jack.connerney@nasa.gov
  organization: Solar System Exploration Division, Planetary Magnetospheres Laboratory, NASA Goddard Space Flight Center, Space Research Corporation
– sequence: 2
  givenname: M.
  surname: Benn
  fullname: Benn, M.
  organization: Measurement & Instrumentation Systems, National Space Institute, Technical University of Denmark
– sequence: 3
  givenname: J. B.
  surname: Bjarno
  fullname: Bjarno, J. B.
  organization: Measurement & Instrumentation Systems, National Space Institute, Technical University of Denmark
– sequence: 4
  givenname: T.
  surname: Denver
  fullname: Denver, T.
  organization: Measurement & Instrumentation Systems, National Space Institute, Technical University of Denmark
– sequence: 5
  givenname: J.
  surname: Espley
  fullname: Espley, J.
  organization: Solar System Exploration Division, Planetary Magnetospheres Laboratory, NASA Goddard Space Flight Center
– sequence: 6
  givenname: J. L.
  surname: Jorgensen
  fullname: Jorgensen, J. L.
  organization: Measurement & Instrumentation Systems, National Space Institute, Technical University of Denmark
– sequence: 7
  givenname: P. S.
  surname: Jorgensen
  fullname: Jorgensen, P. S.
  organization: Measurement & Instrumentation Systems, National Space Institute, Technical University of Denmark
– sequence: 8
  givenname: P.
  surname: Lawton
  fullname: Lawton, P.
  organization: ADNET Systems Inc
– sequence: 9
  givenname: A.
  surname: Malinnikova
  fullname: Malinnikova, A.
  organization: Measurement & Instrumentation Systems, National Space Institute, Technical University of Denmark
– sequence: 10
  givenname: J. M.
  surname: Merayo
  fullname: Merayo, J. M.
  organization: Measurement & Instrumentation Systems, National Space Institute, Technical University of Denmark
– sequence: 11
  givenname: S.
  surname: Murphy
  fullname: Murphy, S.
  organization: Rocket Science Inc
– sequence: 12
  givenname: J.
  surname: Odom
  fullname: Odom, J.
  organization: Solar System Exploration Division, Planetary Magnetospheres Laboratory, NASA Goddard Space Flight Center
– sequence: 13
  givenname: R.
  surname: Oliversen
  fullname: Oliversen, R.
  organization: Solar System Exploration Division, Planetary Magnetospheres Laboratory, NASA Goddard Space Flight Center
– sequence: 14
  givenname: R.
  surname: Schnurr
  fullname: Schnurr, R.
  organization: Solar System Exploration Division, Planetary Magnetospheres Laboratory, NASA Goddard Space Flight Center
– sequence: 15
  givenname: D.
  surname: Sheppard
  fullname: Sheppard, D.
  organization: Solar System Exploration Division, Planetary Magnetospheres Laboratory, NASA Goddard Space Flight Center
– sequence: 16
  givenname: E. J.
  surname: Smith
  fullname: Smith, E. J.
  organization: Jet Propulsion Laboratory
BookMark eNp9kEtLAzEUhYNUsK3-AHcD4jJ6M3nNLKVYrVTc1HVI86gpNVOTqWB_vVPHhQi6upvznXPuGaFBbKJD6JzAFQGQ15mQkjAMRGKglOH9ERoSLktcC1kO0BCAVlhQqE7QKOc1wIGSQ3S5eHHFwy42xaNeRdcGU0yD29hiFt9dbsNKt6GJp-jY6012Z993jJ6nt4vJPZ4_3c0mN3NsKK9bTKx3Za2X1ltueG2IgMpSW4ulkdJ7xqmVoJkxhla2rByRxjCprV1q6gU4OkYXve82NW-7Ll-tm12KXaQitSAcGGeiU8leZVKTc3JemdB-9WyTDhtFQB2-U_0mqttEHTZR-44kv8htCq86ffzLlD2TO21cufSj05_QJ__Pdb8
CitedBy_id crossref_primary_10_1029_2020JA028717
crossref_primary_10_1029_2020JA027868
crossref_primary_10_1007_s11214_017_0345_9
crossref_primary_10_1007_s11214_017_0349_5
crossref_primary_10_1016_j_asr_2020_11_032
crossref_primary_10_1016_j_icarus_2022_114937
crossref_primary_10_1029_2022GL098633
crossref_primary_10_1007_s11214_023_00961_3
crossref_primary_10_1029_2023GL103894
crossref_primary_10_1029_2020JA027904
crossref_primary_10_1029_2022JA030719
crossref_primary_10_3847_1538_4357_ad58dd
crossref_primary_10_1029_2023JA031312
crossref_primary_10_1002_2017GL076901
crossref_primary_10_1016_j_pss_2021_105395
crossref_primary_10_1029_2022GL098591
crossref_primary_10_1029_2022GL099285
crossref_primary_10_1029_2023JA031396
crossref_primary_10_1038_nature23648
crossref_primary_10_1029_2018JE005752
crossref_primary_10_1029_2021GL093964
crossref_primary_10_1029_2022GL101688
crossref_primary_10_1029_2021JA029710
crossref_primary_10_1029_2021JA029679
crossref_primary_10_1029_2020GL090021
crossref_primary_10_1029_2020JA029085
crossref_primary_10_3390_s21165568
crossref_primary_10_1029_2019GL084201
crossref_primary_10_1007_s11214_023_00974_y
crossref_primary_10_1038_s41586_024_07046_3
crossref_primary_10_1002_2017GL073073
crossref_primary_10_1029_2022JE007637
crossref_primary_10_1007_s10712_025_09896_6
crossref_primary_10_1029_2022GL099832
crossref_primary_10_1002_2017GL075545
crossref_primary_10_1002_2017GL076878
crossref_primary_10_1002_2017JA024860
crossref_primary_10_1029_2023GL105549
crossref_primary_10_1029_2018GL079118
crossref_primary_10_1029_2021GL095457
crossref_primary_10_1088_1361_6501_ac2e2e
crossref_primary_10_11728_cjss2023_04_2022_0067
crossref_primary_10_1029_2022JA030334
crossref_primary_10_1134_S003809462002001X
crossref_primary_10_1029_2020GL088198
crossref_primary_10_1063_5_0213897
crossref_primary_10_1002_2017GL072831
crossref_primary_10_1029_2021JA029446
crossref_primary_10_1029_2023JA031436
crossref_primary_10_1029_2019GL084799
crossref_primary_10_3847_1538_4357_acdc1c
crossref_primary_10_1029_2020EA001338
crossref_primary_10_1007_s11214_022_00925_z
crossref_primary_10_1029_2022JA030293
crossref_primary_10_1029_2020GL089721
crossref_primary_10_3847_PSJ_ac0e3b
crossref_primary_10_3847_1538_4357_ad88ea
crossref_primary_10_1029_2022GL099545
crossref_primary_10_1029_2023GL105775
crossref_primary_10_1051_0004_6361_202554759
crossref_primary_10_3847_1538_4357_adf335
crossref_primary_10_1007_s11214_017_0429_6
crossref_primary_10_1029_2022GL099141
crossref_primary_10_1029_2022JA030418
crossref_primary_10_1029_2021GL095006
crossref_primary_10_1029_2021JE007140
crossref_primary_10_1029_2022GL098053
crossref_primary_10_1029_2020GL090764
crossref_primary_10_3847_1538_4357_ac2ccb
crossref_primary_10_1029_2020GL091579
crossref_primary_10_1029_2020JA028575
crossref_primary_10_1029_2022GL098572
crossref_primary_10_3847_2041_8213_ad99aa
crossref_primary_10_1029_2020JA028697
crossref_primary_10_1029_2020JA028052
crossref_primary_10_1029_2022JA031237
crossref_primary_10_3847_1538_4357_ace328
crossref_primary_10_1029_2021JA029853
crossref_primary_10_1002_2017GL073137
crossref_primary_10_1029_2020JE006509
crossref_primary_10_3389_fspas_2023_1016345
crossref_primary_10_1029_2023JE008085
crossref_primary_10_1002_2017GL073133
crossref_primary_10_1029_2023EA003147
crossref_primary_10_1007_s11214_017_0396_y
crossref_primary_10_1002_2016GL072187
crossref_primary_10_1029_2023GL106971
crossref_primary_10_1007_s11214_024_01120_y
crossref_primary_10_1029_2022GL099775
crossref_primary_10_1029_2021JE007138
crossref_primary_10_1016_j_nima_2021_165244
crossref_primary_10_3847_1538_4357_acb7e0
crossref_primary_10_3847_2041_8213_ad5962
crossref_primary_10_1029_2023JA032037
crossref_primary_10_1109_LSENS_2025_3544963
crossref_primary_10_1029_2018JA026445
crossref_primary_10_1029_2020GL091627
crossref_primary_10_1016_j_actaastro_2020_01_030
crossref_primary_10_1029_2018JA026169
crossref_primary_10_1029_2022JA030675
crossref_primary_10_1029_2022JA030431
crossref_primary_10_1002_2017GL073029
crossref_primary_10_1038_s41586_018_0468_5
crossref_primary_10_3847_PSJ_ac8540
crossref_primary_10_1029_2021JA029469
crossref_primary_10_1002_2017GL072850
crossref_primary_10_1029_2020GL089267
crossref_primary_10_3389_fspas_2024_1478020
crossref_primary_10_1029_2022JE007625
crossref_primary_10_3847_1538_4357_ad833e
crossref_primary_10_1029_2023GL103456
crossref_primary_10_1029_2021GL096994
crossref_primary_10_1029_2023GL102921
crossref_primary_10_1029_2020JE006415
crossref_primary_10_1029_2018GL078973
crossref_primary_10_1016_j_pss_2022_105597
crossref_primary_10_1029_2023JA031901
crossref_primary_10_1029_2018JA025639
crossref_primary_10_1029_2023JA031985
crossref_primary_10_1126_science_aal2108
crossref_primary_10_1007_s11214_020_00767_7
crossref_primary_10_1007_s11214_023_01032_3
crossref_primary_10_1103_PhysRevResearch_2_032065
crossref_primary_10_1029_2021JA030181
crossref_primary_10_1029_2022GL098839
crossref_primary_10_1038_s41467_025_62520_4
crossref_primary_10_1002_2016GL072286
crossref_primary_10_1029_2023GL104374
crossref_primary_10_1029_2020JA027813
crossref_primary_10_1029_2020JA027933
crossref_primary_10_1029_2019JA027696
crossref_primary_10_1029_2020JA028742
crossref_primary_10_1038_s41467_019_10708_w
crossref_primary_10_3847_1538_4357_add72f
crossref_primary_10_1029_2019EA001061
crossref_primary_10_1029_2018GL078864
crossref_primary_10_1016_j_icarus_2024_116006
crossref_primary_10_3847_1538_4357_ac731a
crossref_primary_10_1029_2021JA029243
crossref_primary_10_1029_2018GL081227
crossref_primary_10_1029_2022JA030497
crossref_primary_10_1029_2021JA029886
crossref_primary_10_1029_2020GL088397
crossref_primary_10_1029_2020GL088432
crossref_primary_10_3847_PSJ_ada6aa
crossref_primary_10_3847_1538_4357_ad54c3
crossref_primary_10_1038_s41467_025_63186_8
crossref_primary_10_1016_j_actaastro_2022_02_013
crossref_primary_10_1029_2023GL104123
crossref_primary_10_1007_s11207_020_01714_z
crossref_primary_10_1016_j_asr_2020_08_030
crossref_primary_10_1029_2019JA027663
crossref_primary_10_1029_2019SW002262
crossref_primary_10_1126_science_aat0970
crossref_primary_10_1029_2020JA028138
crossref_primary_10_1029_2020JA027964
crossref_primary_10_1029_2019JA027382
crossref_primary_10_3847_PSJ_ad5841
crossref_primary_10_5194_gi_13_263_2024
crossref_primary_10_1002_2017GL072923
crossref_primary_10_3389_fspas_2023_1274760
crossref_primary_10_1029_2021GL094758
crossref_primary_10_1029_2021JA029894
crossref_primary_10_1038_s41550_018_0442_z
crossref_primary_10_11728_cjss2023_05_2022_0067
crossref_primary_10_1029_2022JA031155
crossref_primary_10_2514_1_G004503
crossref_primary_10_1029_2019JE006367
crossref_primary_10_1029_2022JA030460
crossref_primary_10_1029_2020GL089732
crossref_primary_10_1109_TIM_2024_3396846
crossref_primary_10_1029_2020JA027957
crossref_primary_10_1038_s41467_024_50449_z
crossref_primary_10_1002_2017GL073180
crossref_primary_10_1029_2023GL106810
crossref_primary_10_1038_s41550_019_0819_7
crossref_primary_10_1029_2023JA032113
crossref_primary_10_1029_2019JE006262
crossref_primary_10_1029_2021JA029263
crossref_primary_10_1029_2021JE007055
crossref_primary_10_1029_2021GL095833
crossref_primary_10_3847_1538_4357_ad9b28
crossref_primary_10_1029_2018GL081129
crossref_primary_10_1029_2023JA031656
crossref_primary_10_1007_JHEP06_2024_028
crossref_primary_10_1029_2021JA029426
crossref_primary_10_1029_2022JA031280
crossref_primary_10_1109_JSEN_2019_2940559
Cites_doi 10.1017/S1743921310007313
10.1006/icar.1996.0063
10.1098/rsta.2000.0661
10.1007/s11214-013-9990-9
10.1088/0034-4885/46/5/001
10.1029/GL009i004p00250
10.1088/0957-0233/19/5/055104
10.1007/s11214-014-0040-z
10.1029/97JA03726
10.1126/science.274.5286.404
10.1029/2009JE003492
10.1029/98JE01130
10.1007/s11214-014-0094-y
10.1029/JA076i016p03564
10.1063/1.1510570
10.1029/2010JA016262
10.1038/280042a0
10.1098/rspa.1981.0009
10.1086/181911
10.1126/science.262.5136.1035
10.1029/2009JA014289
10.1029/JB090iB03p02495
10.1007/s11214-009-9621-7
10.1007/BF00216848
10.1002/2015JE004951
10.1109/TMAG.1975.1058779
10.1029/98JE01128
10.1029/2008JA013185
10.1007/s11214-013-0025-3
10.1029/96JA02385
10.1126/science.188.4187.451
10.1029/2005GL025487
10.1029/91JA01165
10.1038/297313a0
10.1088/0957-0233/13/7/321
10.1007/s11214-014-0036-8
10.1088/0957-0233/17/6/038
10.1038/415997a
10.1017/CBO9780511564574.016
10.1038/415985a
10.1029/96JA02869
10.1126/science.206.4421.966
10.1007/s11214-014-0079-x
10.1111/j.1365-246X.1974.tb00622.x
10.1007/978-3-662-03138-4
10.1029/JA086iA10p08370
10.1029/JA087iA05p03623
10.1016/j.actaastro.2015.11.001
10.1006/icar.1996.0107
10.1029/jZ064i009p01219
10.1016/S0031-9201(96)03188-3
10.1029/JZ060i002p00213
10.1126/science.183.4122.305
10.1029/92GL02380
10.1029/GL005i003p00211
10.1029/2009JA014312
10.1126/science.204.4396.982
10.1007/BF00211541
10.1086/149947
10.1029/JA086iA09p07679
10.1029/JA086iA10p08513
10.1098/rsta.1994.0127
ContentType Journal Article
Copyright The Author(s) 2017
Space Science Reviews is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2017
– notice: Space Science Reviews is a copyright of Springer, (2017). All Rights Reserved.
DBID C6C
AAYXX
CITATION
3V.
7TG
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
H8D
HCIFZ
KL.
L7M
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11214-017-0334-z
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Astronomy & Astrophysics
Physics
EISSN 1572-9672
EndPage 138
ExternalDocumentID 10_1007_s11214_017_0334_z
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIDUJ
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
LAK
LK5
LLZTM
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
OK1
OVD
P19
P2P
P62
P9T
PF0
PKN
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNP
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SC5
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z86
Z88
Z8M
Z8N
Z8S
Z8T
Z92
ZCG
ZMTXR
ZY4
~02
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7TG
7XB
8FD
8FK
H8D
KL.
L7M
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c359t-1dfe29abdfd5c59c1608d3d96bc77ff453d70a4ccc38d28e17cc47addba3f60e3
IEDL.DBID BENPR
ISICitedReferencesCount 288
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414548500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-6308
IngestDate Tue Nov 04 22:01:33 EST 2025
Tue Nov 18 22:31:23 EST 2025
Sat Nov 29 05:31:38 EST 2025
Fri Feb 21 02:36:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-4
Keywords Juno spacecraft
Spacecraft magnetic control
Jupiter
Spaceflight instrumentation
Juno mission
Magnetometer
Magnetic field
Magnetic cleanliness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-1dfe29abdfd5c59c1608d3d96bc77ff453d70a4ccc38d28e17cc47addba3f60e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Literature Review-3
ORCID 0000-0001-7478-6462
OpenAccessLink https://link.springer.com/10.1007/s11214-017-0334-z
PQID 1961504546
PQPubID 105668
PageCount 100
ParticipantIDs proquest_journals_1961504546
crossref_citationtrail_10_1007_s11214_017_0334_z
crossref_primary_10_1007_s11214_017_0334_z
springer_journals_10_1007_s11214_017_0334_z
PublicationCentury 2000
PublicationDate 20171100
2017-11-00
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 20171100
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Space science reviews
PublicationTitleAbbrev Space Sci Rev
PublicationYear 2017
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References AcuñaM.H.Space-based magnetometersRev. Sci. Instrum.20027311371737362002RScI...73.3717A
BaloghA.The solar-system: a review of results from Space MissionsPhilos. Trans.: Phys. Sci. Eng.199434916902272361994RSPTA.349..227B
DesslerA.J.SandelB.System III variations of apparent distance of Io plasma torus from JupiterGeophys. Res. Lett.19921920209921021992GeoRL..19.2099D
NessN.F.BehannonK.W.LeppingR.P.Use of two magnetometers for magnetic field measurements on a spacecraftJ. Geophys. Res.19717616356435731971JGR....76.3564N
PedersenD.A.K.JorgensenA.H.BennM.DenverT.JorgensenP.S.BjarnoJ.B.MassaroA.JorgensenJ.L.MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imagingActa Astronaut.20161183083152016AcAau.118..308P
ConnerneyJ.E.P.SatohT.BaronR.Interpretation of auroral ”light curves” with application to Jupiter’s H3+ auroraeIcarus199612224351996Icar..122...24C
MaukB.H.HaggertyD.K.JaskulekS.E.SchlemmC.E.BrownL.E.The Jupiter Energetic Particle Detector Instrument (JEDI) investigation for the Juno MissionSpace Sci. Rev.2013
JohnsonT.V.YeatesC.M.YoungR.Space Science Reviews volume on Galileo Mission overviewSpace Sci. Rev.1992603211992SSRv...60....3J
AcuñaM.H.NessN.F.GehrelsT.Results from the GSFC fluxgate magnetometer on Pioneer 11Jupiter1976TucsonUniversity of Arizona Press830847
ConnerneyJ.E.P.AcuñaM.H.Jovimagnetic secular variationNature19822973133151982Natur.297..313C
ConnerneyJ.E.P.AcuñaM.H.NessN.F.Modeling the Jovian current sheet and inner magnetosphereJ. Geophys. Res.198186837083841981JGR....86.8370C
GrodentD.BonfondB.RadiotiA.Auroral footprint of GanymedeJ. Geophys. Res.20091142009JGRA..114.7212G
BehannonK.W.AcuñaM.H.BurlagaL.F.LeppingR.P.NessN.F.NeubauerF.M.Magnetic field experiment for Voyagers 1 and 2Space Sci. Rev.1977212352571977SSRv...21..235B
GoldreichP.Lynden-BellD.Io a Jovian unipolar inductorAstrophys. J.19691561P159781969ApJ...156...59G
BonfondB.GrodentD.GerardJ.-C.RadiotiA.The Io UV footprint: location, inter-spot distances and tail vertical extentJ. Geophys. Res.20091142009JGRA..114.7224B
GoldT.Motions in the magnetosphere of the EarthJ. Geophys. Res.1959649121912241959JGR....64.1219G
KovalevskyJ.Modern Astrometry1995Berlin, HeidelbergSpringer
SmithE.J.DavisL.Jr.JonesD.E.Jupiter’s magnetic field, magnetosphere, and its interaction with the solar wind: Pioneer 11Science19751884514551975Sci...188..451S
SmithE.J.ConnorB.V.FosterG.T.Jr.Measuring the magnetic fields of Jupiter and the outer solar systemIEEE Trans. Magn.1975MAG-119629801975ITM....11..962S
M.H. Acuña, MAGSAT—vector magnetometer absolute sensor alignment determination. NASA technical memorandum, 79648 (1981)
ConnerneyJ.E.P.BaronR.SatohT.OwenT.Images of excited H3+ at the foot of the Io flux tube in Jupiter’s atmosphereScience1993262103510381993Sci...262.1035C
ConnerneyJ.E.P.AcuñaM.H.NessN.F.SatohT.New models of Jupiter’s magnetic field constrained by the Io flux tube footprintJ. Geophys. Res. Space Phys.1998103A611929119391998JGR...10311929C
DesslerA.J.DesslerA.J.Coordinate systemsPhysics of the Jovian Magnetosphere1983New YorkCambridge University Press498504
AdrianiA.FilacchioneG.Di lorioT.TurriniD.NoscheseR.JIRAM, the Jovian infrared auroral mapperSpace Sci. Rev.2014
GurnettD.A.KurthW.S.HospodarskyG.B.PersoonA.M.ZarkaP.LecacheuxA.BoltonS.J.DeschM.D.FarrellW.M.KaiserM.L.LadreiterH.-P.RuckerH.O.GalopeauP.LouarnP.YoungD.T.PryorW.R.DoughertyM.K.Control of Jupiter’s radio emission and aurorae by the solar windNature20024159852002Natur.415..985G
StevensonD.J.Planetary magnetic fieldsRep. Progr. Phys.1983465556201983RPPh...46..555S
PrimdahlF.RisboT.MerayoJ.M.G.In-flight spacecraft magnetic field monitoring using scalar/vector gradiometryMeas. Sci. Technol.200617156315692006MeScT..17.1563P
ConnerneyJ.E.P.SchubertG.SpohnT.Planetary magnetism,Volume 10: Planets and SatellitesTreatise in Geophysics2015OxfordElsevier195237
BoltonS.J.The Juno Science TeamThe Juno missionProc. Int. Astron. Union Symp.201026992100
ConnerneyJ.E.P.AcuñaM.H.NessN.F.Octupole model of Jupiter’s magnetic field from Ulysses observationsJ. Geophys. Res.199610127453274581996JGR...10127453C
ConnerneyJ.E.P.SatohT.The H3+ ion: a remote diagnostic of the Jovian magnetospherePhilos. Trans. R. Soc. Lond.2000358247124832000RSPTA.358.2471C
HideR.MalinS.R.C.The size of Jupiter’s electrically conducting fluid coreNature197928042431979Natur.280...42H
BurkeB.F.FranklinK.L.Observations of a variable radio source associated with the planet JupiterJ. Geophys. Res.1955602132171955JGR....60..213B
YuZ.J.LeinweberH.K.RussellC.T.Galileo constraints on the secular variation of the Jovian magnetic fieldJ. Geophys. Res.20091152010JGRE..115.3002Y
ClarkeJ.T.AjelloJ.BallesterG.E.Ultraviolet emissions from the magnetic footprints of Io, Ganymede, and Europa on JupiterNature200241599710002002Natur.415..997C
LeinweberH.K.RussellC.T.TorkarK.ZhangT.L.AngelopoulosV.An advanced approach to finding magnetometer zero levels in the interplanetary magnetic fieldMeas. Sci. Technol.2008192008MeScT..19e5104L
SmithE.J.DavisL.Jr.JonesD.E.The magnetic field of Jupiter and its interaction with the solar windScience19741833053061974Sci...183..305S
ClarkeJ.T.BallesterG.TraugerJ.Far-ultraviolet imaging of Jupiter’s aurora and the Io “footprint” with the Hubble Space Telescope Wide Field Planetary Camera 2Science19962744044091996Sci...274..404C
PrangeR.RegoD.PallierL.ConnerneyJ.E.P.ZarkaP.QueinnecJ.Detailed study of FUV Jovian auroral features with the post-COSTAR HST faint object cameraJ. Geophys. Res.1998103E920195202151998JGR...10320195P
ConnerneyJ.E.P.AcuñaM.H.NessN.F.Voyager 1 assessment of Jupiter’s planetary magnetic fieldJ. Geophys. Res.198287362336271982JGR....87.3623C
RisboT.BrauerP.MerayoJ.M.G.NielsenO.PetersenJ.R.PrimdahlF.OlsenN.Ørsted calibration mission: the thin shell method and the spherical harmonic analysisGround and In-flight Space Magnetometer Calibration Techniques2002
HessS.L.G.BonfondB.ZarkaP.GrodentT.Model of the Jovian magnetic field topology constrained by the Io auroral emissionsJ. Geophys. Res.20111162011JGRA..116.5217H
HideR.MalinS.R.C.On determination of the size of the Earth’s core from observations of the geomagnetic secular variationProc. R. Soc. Lond.198137415331981RSPSA.374...15H
SmoluchowskiR.Jupiter’s molecular hydrogen layer and the magnetic fieldAstrophys. J. Lett.19752001191211975ApJ...200L.119S
LangelR.A.EstesR.H.The near-Earth magnetic field at 1980 determined from MAGSAT dataJ. Geophys. Res.198590249525091985JGR....90.2495L
LowesF.J.Spatial power spectrum of the main geomagnetic field and extrapolation to the coreGeophys. J. R. Astron. Soc.1974367177301974GeoJ...36..717L
McComasD.J.AlexanderN.AllegriniF.BagenalF.BeebeR.The Jovian auroral distributions experiment (JADE) on the Juno Mission to JupiterSpace Sci. Rev.2013
V.A. Ridley, R. Holme, Modeling the Jovian magnetic field and its secular variation using all available magnetic field observations. J. Geophys. Res. Planets 121 (2016). doi:10.1002/2015JE004951
BaronR.OwenT.ConnerneyJ.E.P.SatohT.HarringtonJ.Solar wind control of Jupiter’s H3+ auroraeIcarus19961204374421996Icar..120..437B
ClarkeJ.T.GrodentD.CowleyS.BagenalF.DowlingT.E.McKinnonW.B.Jupiter’s auroraeJupiter: The Planet, Satellites, and Magnetosphere2005CambridgeCambridge University Press639671
ClarkeJ.T.BallesterG.E.TraugerJ.AjelloJ.PryorW.TobiskaK.ConnerneyJ.E.P.GladstoneG.R.WaiteJ.H.Jr.JaffelL.B.GerardJ.-C.HST imaging of Jupiter’s UV aurora during the Galileo MissionJ. Geophys. Res.199810320217202361998JGR...10320217C
ChapmanS.BartelsJ.Geomagnetism1940New YorkOxford University Press639668
DoughertyM.K.BaloghA.SouthwoodD.J.SmithE.J.Ulysses assessment of the Jovian planetary fieldJ. Geophys. Res. Space Phys.1996101A1124929249411996JGR...10124929D
HansenC.J.CaplingerM.A.IngersollA.RavineM.A.JensenE.BoltonS.OrtonG.Junocam: Juno’s outreach cameraSpace Sci. Rev.2014
ConnerneyJ.E.P.AcuñaM.H.NessN.F.The magnetic field of NeptuneJ. Geophys. Res.19919619023190421991JGR....9619023C
GrodentD.GerardJ.-C.GustinJ.Europa’s FUV auroral tail on JupiterGeophys. Res. Lett.2006332006GeoRL..33.6201G
NessN.F.AcuñaM.H.LeppingR.P.Magnetic field studies at Jupiter by Voyager 1: preliminary resultsScience19792049829871979Sci...204..982N
RussellC.T.DoughertyM.K.Magnetic fields of the outer planetsSpace Sci. Rev.20101522512692010SSRv..152..251R
LanczosC.Linear Differential Operations1961PrincetonVan Nostrand0111.08305564 pp.
GrodentD.BonfondB.GerardJ.-C.Auroral evidence of a localized magnetic anomaly in Jupiter’s northern hemisphereJ. Geophys. Res.20081132008JGRA..113.9201G
LangelR.A.JacobsJ.A.The main fieldGeomagnetism1987New YorkAcademic249513
AcuñaM.H.NeubauerF.M.NessN.F.Standing Alfvén wave current system at Il: Voyager 1 observationsJ. Geophys. Res.198186A10851385211981JGR....86.8513A
ConnerneyJ.E.P.The magnetic field of Jupiter: a generalized inverse approachJ. Geophys. Res.198186767976931981JGR....86.7679C
AcuñaM.H.BehannonK.W.ConnerneyJ.E.P.DesslerA.J.Jupiter’s magnetic field and magnetospherePhysics of the Jovian Magnetosphere1983New YorkCambridge University Press150
BagenalF.AdrianiA.AllegriniF.BoltonS.J.BonfondB.Magnetospheric science objectives of the Juno missionSpace Sci. Rev.2014
ElphicR.C.RussellC.T.On the apparent source depth of planetary magnetic fieldsGeophys. Res. Lett.197852112141978GeoRL...5..211E
GlatzmaierG.A.RobertsP.H.On the magnetic sounding of planetary interiorsPhys. Earth Planet. Inter.1996982072201996PEPI...98..207G
AusterH.U.FornaconK.H.GeorgescuE.GlassmeierK.H.MotschmannU.Calibration of fluxgate magnetometers using relative motionMeas. Sci. Technol.200213112411312002MeScT..13.1124A
GladstoneG.R.PersynS.C.EternoJ.S.WaltherB.C.SlaterD.C.The untraviolet spectrograph on NASA’s Juno missionSpace Sci. Rev.2014
LangelR.A.EstesR.H.A geomagnetic field spectrumGeophys. Res. Lett.198292502531982GeoRL...9..250L
NessN.F.AcuñaM.H.LeppingR.P.Magnetic field studies at Jupiter by Voyager 2: preliminary resultsScience19792069669721979Sci...206..966N
SmithE.J.DavisL.Jr.JonesD.E.GehrelsT.Jupiter’s magnetic field and magnetospher
S.J. Bolton (334_CR12) 2010; 269
R. Smoluchowski (334_CR70) 1975; 200
A.J. Dessler (334_CR31) 1983
T.V. Johnson (334_CR47) 1992; 60
C.T. Russell (334_CR65) 2010; 152
R.C. Elphic (334_CR34) 1978; 5
J.E.P. Connerney (334_CR30) 1998; 103
M.K. Dougherty (334_CR33) 1996; 101
E.J. Smith (334_CR66) 1974; 183
J.T. Clarke (334_CR18) 2002; 415
S. Chapman (334_CR15) 1940
J. Kovalevsky (334_CR48) 1995
D.J. Stevenson (334_CR71) 1983; 46
J.E.P. Connerney (334_CR25) 1982; 87
D. Grodent (334_CR40) 2008; 113
J.E.P. Connerney (334_CR29) 1996; 122
R.A. Langel (334_CR50) 1982; 9
E.J. Smith (334_CR69) 1976
J.E.P. Connerney (334_CR26) 1991; 96
F. Bagenal (334_CR8) 2014
G.A. Glatzmaier (334_CR36) 1996; 98
J.E.P. Connerney (334_CR21) 2015
J.E.P. Connerney (334_CR28) 1996; 101
E.J. Smith (334_CR67) 1975; 188
334_CR63
M.H. Acuña (334_CR4) 1981; 86
Z.J. Yu (334_CR72) 2009; 115
C. Lanczos (334_CR49) 1961
H.U. Auster (334_CR7) 2002; 13
J.T. Clarke (334_CR17) 1998; 103
R. Hide (334_CR46) 1981; 374
J.T. Clarke (334_CR16) 1996; 274
J.E.P. Connerney (334_CR27) 1993; 262
D. Grodent (334_CR41) 2009; 114
R.A. Langel (334_CR51) 1985; 90
J.E.P. Connerney (334_CR22) 2000; 358
G.R. Gladstone (334_CR35) 2014
N.F. Ness (334_CR57) 1971; 76
D.J. McComas (334_CR56) 2013
H.K. Leinweber (334_CR53) 2008; 19
N.F. Ness (334_CR58) 1979; 204
D.A.K. Pedersen (334_CR60) 2016; 118
B. Bonfond (334_CR13) 2009; 114
A. Adriani (334_CR6) 2014
K.W. Behannon (334_CR11) 1977; 21
J.E.P. Connerney (334_CR24) 1982; 297
B.H. Mauk (334_CR55) 2013
A.J. Dessler (334_CR32) 1992; 19
T. Gold (334_CR37) 1959; 64
D.A. Gurnett (334_CR42) 2002; 415
334_CR1
B.F. Burke (334_CR14) 1955; 60
T. Risbo (334_CR64) 2002
J.T. Clarke (334_CR19) 2005
F.J. Lowes (334_CR54) 1974; 36
M.H. Acuña (334_CR5) 1983
C.J. Hansen (334_CR43) 2014
R. Prange (334_CR61) 1998; 103
D. Grodent (334_CR39) 2006; 33
M.H. Acuña (334_CR2) 2002; 73
N.F. Ness (334_CR59) 1979; 206
R.A. Langel (334_CR52) 1987
E.J. Smith (334_CR68) 1975; MAG-11
R. Baron (334_CR10) 1996; 120
S.L.G. Hess (334_CR44) 2011; 116
R. Hide (334_CR45) 1979; 280
J.E.P. Connerney (334_CR20) 1981; 86
F. Primdahl (334_CR62) 2006; 17
M.H. Acuña (334_CR3) 1976
J.E.P. Connerney (334_CR23) 1981; 86
A. Balogh (334_CR9) 1994; 349
P. Goldreich (334_CR38) 1969; 156
References_xml – reference: ConnerneyJ.E.P.AcuñaM.H.NessN.F.Voyager 1 assessment of Jupiter’s planetary magnetic fieldJ. Geophys. Res.198287362336271982JGR....87.3623C
– reference: BurkeB.F.FranklinK.L.Observations of a variable radio source associated with the planet JupiterJ. Geophys. Res.1955602132171955JGR....60..213B
– reference: RisboT.BrauerP.MerayoJ.M.G.NielsenO.PetersenJ.R.PrimdahlF.OlsenN.Ørsted calibration mission: the thin shell method and the spherical harmonic analysisGround and In-flight Space Magnetometer Calibration Techniques2002
– reference: LangelR.A.EstesR.H.The near-Earth magnetic field at 1980 determined from MAGSAT dataJ. Geophys. Res.198590249525091985JGR....90.2495L
– reference: McComasD.J.AlexanderN.AllegriniF.BagenalF.BeebeR.The Jovian auroral distributions experiment (JADE) on the Juno Mission to JupiterSpace Sci. Rev.2013
– reference: ConnerneyJ.E.P.AcuñaM.H.NessN.F.SatohT.New models of Jupiter’s magnetic field constrained by the Io flux tube footprintJ. Geophys. Res. Space Phys.1998103A611929119391998JGR...10311929C
– reference: SmithE.J.DavisL.Jr.JonesD.E.Jupiter’s magnetic field, magnetosphere, and its interaction with the solar wind: Pioneer 11Science19751884514551975Sci...188..451S
– reference: GrodentD.BonfondB.GerardJ.-C.Auroral evidence of a localized magnetic anomaly in Jupiter’s northern hemisphereJ. Geophys. Res.20081132008JGRA..113.9201G
– reference: YuZ.J.LeinweberH.K.RussellC.T.Galileo constraints on the secular variation of the Jovian magnetic fieldJ. Geophys. Res.20091152010JGRE..115.3002Y
– reference: BaronR.OwenT.ConnerneyJ.E.P.SatohT.HarringtonJ.Solar wind control of Jupiter’s H3+ auroraeIcarus19961204374421996Icar..120..437B
– reference: GlatzmaierG.A.RobertsP.H.On the magnetic sounding of planetary interiorsPhys. Earth Planet. Inter.1996982072201996PEPI...98..207G
– reference: KovalevskyJ.Modern Astrometry1995Berlin, HeidelbergSpringer
– reference: ConnerneyJ.E.P.The magnetic field of Jupiter: a generalized inverse approachJ. Geophys. Res.198186767976931981JGR....86.7679C
– reference: GoldreichP.Lynden-BellD.Io a Jovian unipolar inductorAstrophys. J.19691561P159781969ApJ...156...59G
– reference: BagenalF.AdrianiA.AllegriniF.BoltonS.J.BonfondB.Magnetospheric science objectives of the Juno missionSpace Sci. Rev.2014
– reference: ElphicR.C.RussellC.T.On the apparent source depth of planetary magnetic fieldsGeophys. Res. Lett.197852112141978GeoRL...5..211E
– reference: ConnerneyJ.E.P.SatohT.The H3+ ion: a remote diagnostic of the Jovian magnetospherePhilos. Trans. R. Soc. Lond.2000358247124832000RSPTA.358.2471C
– reference: ConnerneyJ.E.P.AcuñaM.H.NessN.F.Octupole model of Jupiter’s magnetic field from Ulysses observationsJ. Geophys. Res.199610127453274581996JGR...10127453C
– reference: ChapmanS.BartelsJ.Geomagnetism1940New YorkOxford University Press639668
– reference: HideR.MalinS.R.C.On determination of the size of the Earth’s core from observations of the geomagnetic secular variationProc. R. Soc. Lond.198137415331981RSPSA.374...15H
– reference: ClarkeJ.T.AjelloJ.BallesterG.E.Ultraviolet emissions from the magnetic footprints of Io, Ganymede, and Europa on JupiterNature200241599710002002Natur.415..997C
– reference: SmoluchowskiR.Jupiter’s molecular hydrogen layer and the magnetic fieldAstrophys. J. Lett.19752001191211975ApJ...200L.119S
– reference: V.A. Ridley, R. Holme, Modeling the Jovian magnetic field and its secular variation using all available magnetic field observations. J. Geophys. Res. Planets 121 (2016). doi:10.1002/2015JE004951
– reference: DesslerA.J.SandelB.System III variations of apparent distance of Io plasma torus from JupiterGeophys. Res. Lett.19921920209921021992GeoRL..19.2099D
– reference: AdrianiA.FilacchioneG.Di lorioT.TurriniD.NoscheseR.JIRAM, the Jovian infrared auroral mapperSpace Sci. Rev.2014
– reference: ClarkeJ.T.BallesterG.E.TraugerJ.AjelloJ.PryorW.TobiskaK.ConnerneyJ.E.P.GladstoneG.R.WaiteJ.H.Jr.JaffelL.B.GerardJ.-C.HST imaging of Jupiter’s UV aurora during the Galileo MissionJ. Geophys. Res.199810320217202361998JGR...10320217C
– reference: DesslerA.J.DesslerA.J.Coordinate systemsPhysics of the Jovian Magnetosphere1983New YorkCambridge University Press498504
– reference: ClarkeJ.T.GrodentD.CowleyS.BagenalF.DowlingT.E.McKinnonW.B.Jupiter’s auroraeJupiter: The Planet, Satellites, and Magnetosphere2005CambridgeCambridge University Press639671
– reference: RussellC.T.DoughertyM.K.Magnetic fields of the outer planetsSpace Sci. Rev.20101522512692010SSRv..152..251R
– reference: AcuñaM.H.NessN.F.GehrelsT.Results from the GSFC fluxgate magnetometer on Pioneer 11Jupiter1976TucsonUniversity of Arizona Press830847
– reference: GrodentD.GerardJ.-C.GustinJ.Europa’s FUV auroral tail on JupiterGeophys. Res. Lett.2006332006GeoRL..33.6201G
– reference: JohnsonT.V.YeatesC.M.YoungR.Space Science Reviews volume on Galileo Mission overviewSpace Sci. Rev.1992603211992SSRv...60....3J
– reference: NessN.F.AcuñaM.H.LeppingR.P.Magnetic field studies at Jupiter by Voyager 1: preliminary resultsScience19792049829871979Sci...204..982N
– reference: GladstoneG.R.PersynS.C.EternoJ.S.WaltherB.C.SlaterD.C.The untraviolet spectrograph on NASA’s Juno missionSpace Sci. Rev.2014
– reference: HessS.L.G.BonfondB.ZarkaP.GrodentT.Model of the Jovian magnetic field topology constrained by the Io auroral emissionsJ. Geophys. Res.20111162011JGRA..116.5217H
– reference: PrangeR.RegoD.PallierL.ConnerneyJ.E.P.ZarkaP.QueinnecJ.Detailed study of FUV Jovian auroral features with the post-COSTAR HST faint object cameraJ. Geophys. Res.1998103E920195202151998JGR...10320195P
– reference: SmithE.J.DavisL.Jr.JonesD.E.The magnetic field of Jupiter and its interaction with the solar windScience19741833053061974Sci...183..305S
– reference: MaukB.H.HaggertyD.K.JaskulekS.E.SchlemmC.E.BrownL.E.The Jupiter Energetic Particle Detector Instrument (JEDI) investigation for the Juno MissionSpace Sci. Rev.2013
– reference: NessN.F.AcuñaM.H.LeppingR.P.Magnetic field studies at Jupiter by Voyager 2: preliminary resultsScience19792069669721979Sci...206..966N
– reference: LanczosC.Linear Differential Operations1961PrincetonVan Nostrand0111.08305564 pp.
– reference: ConnerneyJ.E.P.SatohT.BaronR.Interpretation of auroral ”light curves” with application to Jupiter’s H3+ auroraeIcarus199612224351996Icar..122...24C
– reference: BaloghA.The solar-system: a review of results from Space MissionsPhilos. Trans.: Phys. Sci. Eng.199434916902272361994RSPTA.349..227B
– reference: DoughertyM.K.BaloghA.SouthwoodD.J.SmithE.J.Ulysses assessment of the Jovian planetary fieldJ. Geophys. Res. Space Phys.1996101A1124929249411996JGR...10124929D
– reference: LeinweberH.K.RussellC.T.TorkarK.ZhangT.L.AngelopoulosV.An advanced approach to finding magnetometer zero levels in the interplanetary magnetic fieldMeas. Sci. Technol.2008192008MeScT..19e5104L
– reference: NessN.F.BehannonK.W.LeppingR.P.Use of two magnetometers for magnetic field measurements on a spacecraftJ. Geophys. Res.19717616356435731971JGR....76.3564N
– reference: AcuñaM.H.BehannonK.W.ConnerneyJ.E.P.DesslerA.J.Jupiter’s magnetic field and magnetospherePhysics of the Jovian Magnetosphere1983New YorkCambridge University Press150
– reference: M.H. Acuña, MAGSAT—vector magnetometer absolute sensor alignment determination. NASA technical memorandum, 79648 (1981)
– reference: BoltonS.J.The Juno Science TeamThe Juno missionProc. Int. Astron. Union Symp.201026992100
– reference: GoldT.Motions in the magnetosphere of the EarthJ. Geophys. Res.1959649121912241959JGR....64.1219G
– reference: ClarkeJ.T.BallesterG.TraugerJ.Far-ultraviolet imaging of Jupiter’s aurora and the Io “footprint” with the Hubble Space Telescope Wide Field Planetary Camera 2Science19962744044091996Sci...274..404C
– reference: HideR.MalinS.R.C.The size of Jupiter’s electrically conducting fluid coreNature197928042431979Natur.280...42H
– reference: PedersenD.A.K.JorgensenA.H.BennM.DenverT.JorgensenP.S.BjarnoJ.B.MassaroA.JorgensenJ.L.MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imagingActa Astronaut.20161183083152016AcAau.118..308P
– reference: LangelR.A.EstesR.H.A geomagnetic field spectrumGeophys. Res. Lett.198292502531982GeoRL...9..250L
– reference: BehannonK.W.AcuñaM.H.BurlagaL.F.LeppingR.P.NessN.F.NeubauerF.M.Magnetic field experiment for Voyagers 1 and 2Space Sci. Rev.1977212352571977SSRv...21..235B
– reference: HansenC.J.CaplingerM.A.IngersollA.RavineM.A.JensenE.BoltonS.OrtonG.Junocam: Juno’s outreach cameraSpace Sci. Rev.2014
– reference: StevensonD.J.Planetary magnetic fieldsRep. Progr. Phys.1983465556201983RPPh...46..555S
– reference: GurnettD.A.KurthW.S.HospodarskyG.B.PersoonA.M.ZarkaP.LecacheuxA.BoltonS.J.DeschM.D.FarrellW.M.KaiserM.L.LadreiterH.-P.RuckerH.O.GalopeauP.LouarnP.YoungD.T.PryorW.R.DoughertyM.K.Control of Jupiter’s radio emission and aurorae by the solar windNature20024159852002Natur.415..985G
– reference: LangelR.A.JacobsJ.A.The main fieldGeomagnetism1987New YorkAcademic249513
– reference: BonfondB.GrodentD.GerardJ.-C.RadiotiA.The Io UV footprint: location, inter-spot distances and tail vertical extentJ. Geophys. Res.20091142009JGRA..114.7224B
– reference: SmithE.J.DavisL.Jr.JonesD.E.GehrelsT.Jupiter’s magnetic field and magnetosphereJupiter1976TucsonUniversity of Arizona Press788829
– reference: ConnerneyJ.E.P.SchubertG.SpohnT.Planetary magnetism,Volume 10: Planets and SatellitesTreatise in Geophysics2015OxfordElsevier195237
– reference: AcuñaM.H.NeubauerF.M.NessN.F.Standing Alfvén wave current system at Il: Voyager 1 observationsJ. Geophys. Res.198186A10851385211981JGR....86.8513A
– reference: ConnerneyJ.E.P.BaronR.SatohT.OwenT.Images of excited H3+ at the foot of the Io flux tube in Jupiter’s atmosphereScience1993262103510381993Sci...262.1035C
– reference: ConnerneyJ.E.P.AcuñaM.H.NessN.F.The magnetic field of NeptuneJ. Geophys. Res.19919619023190421991JGR....9619023C
– reference: LowesF.J.Spatial power spectrum of the main geomagnetic field and extrapolation to the coreGeophys. J. R. Astron. Soc.1974367177301974GeoJ...36..717L
– reference: AusterH.U.FornaconK.H.GeorgescuE.GlassmeierK.H.MotschmannU.Calibration of fluxgate magnetometers using relative motionMeas. Sci. Technol.200213112411312002MeScT..13.1124A
– reference: PrimdahlF.RisboT.MerayoJ.M.G.In-flight spacecraft magnetic field monitoring using scalar/vector gradiometryMeas. Sci. Technol.200617156315692006MeScT..17.1563P
– reference: SmithE.J.ConnorB.V.FosterG.T.Jr.Measuring the magnetic fields of Jupiter and the outer solar systemIEEE Trans. Magn.1975MAG-119629801975ITM....11..962S
– reference: ConnerneyJ.E.P.AcuñaM.H.Jovimagnetic secular variationNature19822973133151982Natur.297..313C
– reference: GrodentD.BonfondB.RadiotiA.Auroral footprint of GanymedeJ. Geophys. Res.20091142009JGRA..114.7212G
– reference: ConnerneyJ.E.P.AcuñaM.H.NessN.F.Modeling the Jovian current sheet and inner magnetosphereJ. Geophys. Res.198186837083841981JGR....86.8370C
– reference: AcuñaM.H.Space-based magnetometersRev. Sci. Instrum.20027311371737362002RScI...73.3717A
– volume: 269
  start-page: 92
  year: 2010
  ident: 334_CR12
  publication-title: Proc. Int. Astron. Union Symp.
  doi: 10.1017/S1743921310007313
– volume: 120
  start-page: 437
  year: 1996
  ident: 334_CR10
  publication-title: Icarus
  doi: 10.1006/icar.1996.0063
– volume: 358
  start-page: 2471
  year: 2000
  ident: 334_CR22
  publication-title: Philos. Trans. R. Soc. Lond.
  doi: 10.1098/rsta.2000.0661
– year: 2013
  ident: 334_CR56
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-013-9990-9
– volume: 46
  start-page: 555
  year: 1983
  ident: 334_CR71
  publication-title: Rep. Progr. Phys.
  doi: 10.1088/0034-4885/46/5/001
– volume: 9
  start-page: 250
  year: 1982
  ident: 334_CR50
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/GL009i004p00250
– volume: 19
  year: 2008
  ident: 334_CR53
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/19/5/055104
– year: 2014
  ident: 334_CR35
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-014-0040-z
– volume: 103
  start-page: 11929
  issue: A6
  year: 1998
  ident: 334_CR30
  publication-title: J. Geophys. Res. Space Phys.
  doi: 10.1029/97JA03726
– volume: 274
  start-page: 404
  year: 1996
  ident: 334_CR16
  publication-title: Science
  doi: 10.1126/science.274.5286.404
– volume: 115
  year: 2009
  ident: 334_CR72
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JE003492
– ident: 334_CR1
– volume-title: Ground and In-flight Space Magnetometer Calibration Techniques
  year: 2002
  ident: 334_CR64
– volume: 103
  start-page: 20217
  year: 1998
  ident: 334_CR17
  publication-title: J. Geophys. Res.
  doi: 10.1029/98JE01130
– year: 2014
  ident: 334_CR6
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-014-0094-y
– volume: 76
  start-page: 3564
  issue: 16
  year: 1971
  ident: 334_CR57
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA076i016p03564
– volume: 73
  start-page: 3717
  issue: 11
  year: 2002
  ident: 334_CR2
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1510570
– start-page: 639
  volume-title: Jupiter: The Planet, Satellites, and Magnetosphere
  year: 2005
  ident: 334_CR19
– volume: 116
  year: 2011
  ident: 334_CR44
  publication-title: J. Geophys. Res.
  doi: 10.1029/2010JA016262
– volume: 280
  start-page: 42
  year: 1979
  ident: 334_CR45
  publication-title: Nature
  doi: 10.1038/280042a0
– volume: 374
  start-page: 15
  year: 1981
  ident: 334_CR46
  publication-title: Proc. R. Soc. Lond.
  doi: 10.1098/rspa.1981.0009
– volume: 200
  start-page: 119
  year: 1975
  ident: 334_CR70
  publication-title: Astrophys. J. Lett.
  doi: 10.1086/181911
– volume: 262
  start-page: 1035
  year: 1993
  ident: 334_CR27
  publication-title: Science
  doi: 10.1126/science.262.5136.1035
– volume: 114
  year: 2009
  ident: 334_CR41
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JA014289
– volume: 90
  start-page: 2495
  year: 1985
  ident: 334_CR51
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB090iB03p02495
– volume: 152
  start-page: 251
  year: 2010
  ident: 334_CR65
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-009-9621-7
– volume: 60
  start-page: 3
  year: 1992
  ident: 334_CR47
  publication-title: Space Sci. Rev.
  doi: 10.1007/BF00216848
– ident: 334_CR63
  doi: 10.1002/2015JE004951
– volume: MAG-11
  start-page: 962
  year: 1975
  ident: 334_CR68
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.1975.1058779
– volume: 103
  start-page: 20195
  issue: E9
  year: 1998
  ident: 334_CR61
  publication-title: J. Geophys. Res.
  doi: 10.1029/98JE01128
– volume: 113
  year: 2008
  ident: 334_CR40
  publication-title: J. Geophys. Res.
  doi: 10.1029/2008JA013185
– year: 2013
  ident: 334_CR55
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-013-0025-3
– volume: 101
  start-page: 24929
  issue: A11
  year: 1996
  ident: 334_CR33
  publication-title: J. Geophys. Res. Space Phys.
  doi: 10.1029/96JA02385
– volume: 188
  start-page: 451
  year: 1975
  ident: 334_CR67
  publication-title: Science
  doi: 10.1126/science.188.4187.451
– volume: 33
  year: 2006
  ident: 334_CR39
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL025487
– volume: 96
  start-page: 19023
  year: 1991
  ident: 334_CR26
  publication-title: J. Geophys. Res.
  doi: 10.1029/91JA01165
– volume: 297
  start-page: 313
  year: 1982
  ident: 334_CR24
  publication-title: Nature
  doi: 10.1038/297313a0
– start-page: 195
  volume-title: Treatise in Geophysics
  year: 2015
  ident: 334_CR21
– start-page: 639
  volume-title: Geomagnetism
  year: 1940
  ident: 334_CR15
– volume: 13
  start-page: 1124
  year: 2002
  ident: 334_CR7
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/13/7/321
– year: 2014
  ident: 334_CR8
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-014-0036-8
– volume: 17
  start-page: 1563
  year: 2006
  ident: 334_CR62
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/17/6/038
– volume: 415
  start-page: 997
  year: 2002
  ident: 334_CR18
  publication-title: Nature
  doi: 10.1038/415997a
– start-page: 498
  volume-title: Physics of the Jovian Magnetosphere
  year: 1983
  ident: 334_CR31
  doi: 10.1017/CBO9780511564574.016
– volume: 415
  start-page: 985
  year: 2002
  ident: 334_CR42
  publication-title: Nature
  doi: 10.1038/415985a
– volume: 101
  start-page: 27453
  year: 1996
  ident: 334_CR28
  publication-title: J. Geophys. Res.
  doi: 10.1029/96JA02869
– volume: 206
  start-page: 966
  year: 1979
  ident: 334_CR59
  publication-title: Science
  doi: 10.1126/science.206.4421.966
– start-page: 788
  volume-title: Jupiter
  year: 1976
  ident: 334_CR69
– year: 2014
  ident: 334_CR43
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-014-0079-x
– start-page: 830
  volume-title: Jupiter
  year: 1976
  ident: 334_CR3
– volume: 36
  start-page: 717
  year: 1974
  ident: 334_CR54
  publication-title: Geophys. J. R. Astron. Soc.
  doi: 10.1111/j.1365-246X.1974.tb00622.x
– volume-title: Modern Astrometry
  year: 1995
  ident: 334_CR48
  doi: 10.1007/978-3-662-03138-4
– start-page: 249
  volume-title: Geomagnetism
  year: 1987
  ident: 334_CR52
– volume: 86
  start-page: 8370
  year: 1981
  ident: 334_CR23
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA086iA10p08370
– volume: 87
  start-page: 3623
  year: 1982
  ident: 334_CR25
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA087iA05p03623
– start-page: 1
  volume-title: Physics of the Jovian Magnetosphere
  year: 1983
  ident: 334_CR5
– volume: 118
  start-page: 308
  year: 2016
  ident: 334_CR60
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2015.11.001
– volume: 122
  start-page: 24
  year: 1996
  ident: 334_CR29
  publication-title: Icarus
  doi: 10.1006/icar.1996.0107
– volume: 64
  start-page: 1219
  issue: 9
  year: 1959
  ident: 334_CR37
  publication-title: J. Geophys. Res.
  doi: 10.1029/jZ064i009p01219
– volume: 98
  start-page: 207
  year: 1996
  ident: 334_CR36
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/S0031-9201(96)03188-3
– volume: 60
  start-page: 213
  year: 1955
  ident: 334_CR14
  publication-title: J. Geophys. Res.
  doi: 10.1029/JZ060i002p00213
– volume: 183
  start-page: 305
  year: 1974
  ident: 334_CR66
  publication-title: Science
  doi: 10.1126/science.183.4122.305
– volume: 19
  start-page: 2099
  issue: 20
  year: 1992
  ident: 334_CR32
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/92GL02380
– volume: 5
  start-page: 211
  year: 1978
  ident: 334_CR34
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/GL005i003p00211
– volume: 114
  year: 2009
  ident: 334_CR13
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JA014312
– volume: 204
  start-page: 982
  year: 1979
  ident: 334_CR58
  publication-title: Science
  doi: 10.1126/science.204.4396.982
– volume: 21
  start-page: 235
  year: 1977
  ident: 334_CR11
  publication-title: Space Sci. Rev.
  doi: 10.1007/BF00211541
– volume: 156
  start-page: 59
  issue: 1P1
  year: 1969
  ident: 334_CR38
  publication-title: Astrophys. J.
  doi: 10.1086/149947
– volume: 86
  start-page: 7679
  year: 1981
  ident: 334_CR20
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA086iA09p07679
– volume: 86
  start-page: 8513
  issue: A10
  year: 1981
  ident: 334_CR4
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA086iA10p08513
– volume: 349
  start-page: 227
  issue: 1690
  year: 1994
  ident: 334_CR9
  publication-title: Philos. Trans.: Phys. Sci. Eng.
  doi: 10.1098/rsta.1994.0127
– volume-title: Linear Differential Operations
  year: 1961
  ident: 334_CR49
SSID ssj0010077
Score 2.6386776
SecondaryResourceType review_article
Snippet The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 39
SubjectTerms Aerospace Technology and Astronautics
Astronomical catalogs
Astrophysics and Astroparticles
Dynamic range
Field of view
Fluxgate magnetometers
Image acquisition
In-flight monitoring
Instrumentation
Jupiter magnetic field
Jupiter probes
Magnetic control
Magnetic fields
Magnetometers
Magnetosphere
Magnetospheres
Physics
Physics and Astronomy
Planetary magnetic fields
Planetology
Quaternions
Radiation effects
Sensors
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Spacecraft
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90KuiDH1PZdEof1Acl0DZJkz4OcYjoGH6MvZU2SUXQVtZNcH-9ST-2KSroW2nTEO4ud5f7-AXgSLn6IIsdhSimCpGQCaStnINi7lFfav-hCGX3r1m3ywcDv1f2cWdVtXuVksw19azZzXEdUzHBkI0xQZNFWNLWjpvdeHvXn6YODEBNgcXIkYdtXqUyv5viszGaeZhfkqK5rels_GuVm7BeupZWu5CFLVhQSR0a7cwEu9OXd-vEyp-LWEZWh7U5LMI6rPSK99twrEXHuhonqXUTPiamydHqmDo3aw6TI0124KFzcX9-icrbFJDA1B8hR8aaMWEkY0kF9YXj2Vxi6XuRYCyOCcWS2SERQmAuXa4cJgRhWv1FIY49W-FdqCVpohpgac1EQsVpFBtsHim4axq9JcF2xLRGEE2wK7IGooQaNzdePAczkGRDpkCTKTBkCiZNOJ3-8lrgbPw2uFXxKii3XBZoVaKdW0KJ14Szijdzn3-abO9Po_dh1TXMzbsRW1AbDcfqAJbF2-gpGx7mkvgBRqvWbA
  priority: 102
  providerName: Springer Nature
Title The Juno Magnetic Field Investigation
URI https://link.springer.com/article/10.1007/s11214-017-0334-z
https://www.proquest.com/docview/1961504546
Volume 213
WOSCitedRecordID wos000414548500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1572-9672
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0010077
  issn: 0038-6308
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9672
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0010077
  issn: 0038-6308
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1572-9672
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0010077
  issn: 0038-6308
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9672
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010077
  issn: 0038-6308
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5s9aAHH1WxPkoO6kFZTLK72c1JVFpEtJSqpXgJye5GBE3UVEF_vbt52CrYi5clkM0SZiYzk3l8A7CrXP0jix2FKKYKkZAJpK2cg2LuUV9q_6EIZQ8uWbfLh0O_VwbcsrKsstKJuaKWqTAx8iMtKdp3IZR4x88vyEyNMtnVcoRGDWYNUhmpw-xpu9vrf-cRDFpNAczIkYdtXuU18-Y5x3VMBQZDNsYEff60TGN381eGNDc8naX_vvIyLJYup3VSyMgKzKikARsnmQmCp08f1r6VXxcxjqwBCxMYhauwpwXJunhLUusqvE9My6PVMVVv1gRCR5qswW2nfXN2jsrZCkhg6o-QI2PNpjCSsaSC-sLxbC6x9L1IMBbHhGLJ7JAIITCXLlcOE4IwrQyjEMeerfA61JM0URtgaT1FQsVpFBukHim4a9q-JcF2xLR-EE2wK7oGogQeN_MvHoMxZLJhRaBZERhWBJ9NOPh-5LlA3Zi2ebsif1B-gFkwpn0TDisGTtz-67DN6YdtwbxrJCZvRtyG-uj1Te3AnHgfPWSvrVL6WlC7cnt67dE7vfavB1_69eG0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gXrwLa7PHNSDEmybpEkPIqIuPnYXDyreapukImirdlX0R_kbTdqtuwp68-Ct0Da0-SaTyTy-AVjVnjnIEldjRpjGNOISm13OxYnwWaCM_VC6si8avNUSl5fBaR-8V7UwNq2y0omFolaZtD7yLSMpxnahjPo79w_Ydo2y0dWqhUYpFif69cUc2fLto32D75rn1Q_O9g5xp6sAloQFbeyqxHxgFKtEMckC6fqOUEQFfiw5TxLKiOJORKWURChPaJdLSblRA3FEEt_RxIzbD4PUnITsump6p59RC8uNU9JACuwTR1RR1KJUz_Vcm-_BsUMIxW9f98GucfstHltsc_Xx_zZBEzDWMajRbrkCJqFPp1Mwt5tbF39294rWUXFdenDyKRjtYWCchjWzTNDxU5qhZnSd2oJOVLc5faiHfyRLZ-D8T35hFgbSLNVzgIwWppEWLE4sD5GSwrNF7YoSJ-ZG-8kaOBWOoezQqtvuHrdhlxDaQh8a6EMLffhWg43PV-5LTpHfHl6s4A476iUPu1jXYLMSmJ7bPw02__tgKzB8eNZshI2j1skCjHhWWouyy0UYaD8-6SUYks_tm_xxuZB7BFd_LUcfDVA-mA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB680QePVdn17IP6oIRtm6RJH0UtnsuCB76VNklF0K5sdwX315v0cFdRQXwrbRrKzHRmMsc3ADvK1QdZ7ChEMVWIREwgbeUclHCP-lL7D0Uo--6StVr8_t5vl3NOs6ravUpJFj0NBqUp7TVfZNIcNr45rmOqJxiyMSZoMA6TxMwMMsf167uPNIIBqylwGTnysM2rtOZ3W3w2TENv80uCNLc7wcK_v3gR5kuX0zosZGQJxlRag_phZoLgnec3a8_Kr4sYR1aDuRGMwhpMt4v7y7CrRco676cd6yp6SE3zoxWY-jdrBKujk67AbXByc3SKyikLSGDq95AjE82wKJaJpIL6wvFsLrH0vVgwliSEYsnsiAghMJcuVw4TgjCtFuMIJ56t8CpMpJ1U1cHSGotEitM4MZg9UnDXNIBLgu2YaU0hGmBXJA5FCUFuJmE8hUPwZEOmUJMpNGQKBw3Y_3jlpcDf-G3xRsW3sPwVs1CrGO30Ekq8BhxUfBp5_NNma39avQ0z7eMgvDxrXazDrGv4nDcsbsBEr9tXmzAlXnuPWXcrF9B3HA7iNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Juno+Magnetic+Field+Investigation&rft.jtitle=Space+science+reviews&rft.au=Connerney%2C+J+E+P&rft.au=Benn%2C+M&rft.au=Bjarno%2C+J+B&rft.au=Denver%2C+T&rft.date=2017-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0038-6308&rft.eissn=1572-9672&rft.volume=213&rft.issue=1-4&rft.spage=39&rft.epage=138&rft_id=info:doi/10.1007%2Fs11214-017-0334-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-6308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-6308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-6308&client=summon