The Juno Magnetic Field Investigation
The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor sui...
Uložené v:
| Vydané v: | Space science reviews Ročník 213; číslo 1-4; s. 39 - 138 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.11.2017
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0038-6308, 1572-9672 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ∼20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of ’s three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno’s massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss =
1.6
×
10
6
nT
per axis) with a resolution of ∼0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno’s spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft. |
|---|---|
| AbstractList | The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ∼20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of ’s three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno’s massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 10 6 nT per axis) with a resolution of ∼0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno’s spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft. The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ∼20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of ’s three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno’s massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 10 6 nT per axis) with a resolution of ∼0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno’s spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft. |
| Author | Malinnikova, A. Odom, J. Benn, M. Oliversen, R. Connerney, J. E. P. Lawton, P. Smith, E. J. Sheppard, D. Jorgensen, J. L. Bjarno, J. B. Denver, T. Espley, J. Murphy, S. Merayo, J. M. Schnurr, R. Jorgensen, P. S. |
| Author_xml | – sequence: 1 givenname: J. E. P. orcidid: 0000-0001-7478-6462 surname: Connerney fullname: Connerney, J. E. P. email: jack.connerney@nasa.gov organization: Solar System Exploration Division, Planetary Magnetospheres Laboratory, NASA Goddard Space Flight Center, Space Research Corporation – sequence: 2 givenname: M. surname: Benn fullname: Benn, M. organization: Measurement & Instrumentation Systems, National Space Institute, Technical University of Denmark – sequence: 3 givenname: J. B. surname: Bjarno fullname: Bjarno, J. B. organization: Measurement & Instrumentation Systems, National Space Institute, Technical University of Denmark – sequence: 4 givenname: T. surname: Denver fullname: Denver, T. organization: Measurement & Instrumentation Systems, National Space Institute, Technical University of Denmark – sequence: 5 givenname: J. surname: Espley fullname: Espley, J. organization: Solar System Exploration Division, Planetary Magnetospheres Laboratory, NASA Goddard Space Flight Center – sequence: 6 givenname: J. L. surname: Jorgensen fullname: Jorgensen, J. L. organization: Measurement & Instrumentation Systems, National Space Institute, Technical University of Denmark – sequence: 7 givenname: P. S. surname: Jorgensen fullname: Jorgensen, P. S. organization: Measurement & Instrumentation Systems, National Space Institute, Technical University of Denmark – sequence: 8 givenname: P. surname: Lawton fullname: Lawton, P. organization: ADNET Systems Inc – sequence: 9 givenname: A. surname: Malinnikova fullname: Malinnikova, A. organization: Measurement & Instrumentation Systems, National Space Institute, Technical University of Denmark – sequence: 10 givenname: J. M. surname: Merayo fullname: Merayo, J. M. organization: Measurement & Instrumentation Systems, National Space Institute, Technical University of Denmark – sequence: 11 givenname: S. surname: Murphy fullname: Murphy, S. organization: Rocket Science Inc – sequence: 12 givenname: J. surname: Odom fullname: Odom, J. organization: Solar System Exploration Division, Planetary Magnetospheres Laboratory, NASA Goddard Space Flight Center – sequence: 13 givenname: R. surname: Oliversen fullname: Oliversen, R. organization: Solar System Exploration Division, Planetary Magnetospheres Laboratory, NASA Goddard Space Flight Center – sequence: 14 givenname: R. surname: Schnurr fullname: Schnurr, R. organization: Solar System Exploration Division, Planetary Magnetospheres Laboratory, NASA Goddard Space Flight Center – sequence: 15 givenname: D. surname: Sheppard fullname: Sheppard, D. organization: Solar System Exploration Division, Planetary Magnetospheres Laboratory, NASA Goddard Space Flight Center – sequence: 16 givenname: E. J. surname: Smith fullname: Smith, E. J. organization: Jet Propulsion Laboratory |
| BookMark | eNp9kEtLAzEUhYNUsK3-AHcD4jJ6M3nNLKVYrVTc1HVI86gpNVOTqWB_vVPHhQi6upvznXPuGaFBbKJD6JzAFQGQ15mQkjAMRGKglOH9ERoSLktcC1kO0BCAVlhQqE7QKOc1wIGSQ3S5eHHFwy42xaNeRdcGU0yD29hiFt9dbsNKt6GJp-jY6012Z993jJ6nt4vJPZ4_3c0mN3NsKK9bTKx3Za2X1ltueG2IgMpSW4ulkdJ7xqmVoJkxhla2rByRxjCprV1q6gU4OkYXve82NW-7Ll-tm12KXaQitSAcGGeiU8leZVKTc3JemdB-9WyTDhtFQB2-U_0mqttEHTZR-44kv8htCq86ffzLlD2TO21cufSj05_QJ__Pdb8 |
| CitedBy_id | crossref_primary_10_1029_2020JA028717 crossref_primary_10_1029_2020JA027868 crossref_primary_10_1007_s11214_017_0345_9 crossref_primary_10_1007_s11214_017_0349_5 crossref_primary_10_1016_j_asr_2020_11_032 crossref_primary_10_1016_j_icarus_2022_114937 crossref_primary_10_1029_2022GL098633 crossref_primary_10_1007_s11214_023_00961_3 crossref_primary_10_1029_2023GL103894 crossref_primary_10_1029_2020JA027904 crossref_primary_10_1029_2022JA030719 crossref_primary_10_3847_1538_4357_ad58dd crossref_primary_10_1029_2023JA031312 crossref_primary_10_1002_2017GL076901 crossref_primary_10_1016_j_pss_2021_105395 crossref_primary_10_1029_2022GL098591 crossref_primary_10_1029_2022GL099285 crossref_primary_10_1029_2023JA031396 crossref_primary_10_1038_nature23648 crossref_primary_10_1029_2018JE005752 crossref_primary_10_1029_2021GL093964 crossref_primary_10_1029_2022GL101688 crossref_primary_10_1029_2021JA029710 crossref_primary_10_1029_2021JA029679 crossref_primary_10_1029_2020GL090021 crossref_primary_10_1029_2020JA029085 crossref_primary_10_3390_s21165568 crossref_primary_10_1029_2019GL084201 crossref_primary_10_1007_s11214_023_00974_y crossref_primary_10_1038_s41586_024_07046_3 crossref_primary_10_1002_2017GL073073 crossref_primary_10_1029_2022JE007637 crossref_primary_10_1007_s10712_025_09896_6 crossref_primary_10_1029_2022GL099832 crossref_primary_10_1002_2017GL075545 crossref_primary_10_1002_2017GL076878 crossref_primary_10_1002_2017JA024860 crossref_primary_10_1029_2023GL105549 crossref_primary_10_1029_2018GL079118 crossref_primary_10_1029_2021GL095457 crossref_primary_10_1088_1361_6501_ac2e2e crossref_primary_10_11728_cjss2023_04_2022_0067 crossref_primary_10_1029_2022JA030334 crossref_primary_10_1134_S003809462002001X crossref_primary_10_1029_2020GL088198 crossref_primary_10_1063_5_0213897 crossref_primary_10_1002_2017GL072831 crossref_primary_10_1029_2021JA029446 crossref_primary_10_1029_2023JA031436 crossref_primary_10_1029_2019GL084799 crossref_primary_10_3847_1538_4357_acdc1c crossref_primary_10_1029_2020EA001338 crossref_primary_10_1007_s11214_022_00925_z crossref_primary_10_1029_2022JA030293 crossref_primary_10_1029_2020GL089721 crossref_primary_10_3847_PSJ_ac0e3b crossref_primary_10_3847_1538_4357_ad88ea crossref_primary_10_1029_2022GL099545 crossref_primary_10_1029_2023GL105775 crossref_primary_10_1051_0004_6361_202554759 crossref_primary_10_3847_1538_4357_adf335 crossref_primary_10_1007_s11214_017_0429_6 crossref_primary_10_1029_2022GL099141 crossref_primary_10_1029_2022JA030418 crossref_primary_10_1029_2021GL095006 crossref_primary_10_1029_2021JE007140 crossref_primary_10_1029_2022GL098053 crossref_primary_10_1029_2020GL090764 crossref_primary_10_3847_1538_4357_ac2ccb crossref_primary_10_1029_2020GL091579 crossref_primary_10_1029_2020JA028575 crossref_primary_10_1029_2022GL098572 crossref_primary_10_3847_2041_8213_ad99aa crossref_primary_10_1029_2020JA028697 crossref_primary_10_1029_2020JA028052 crossref_primary_10_1029_2022JA031237 crossref_primary_10_3847_1538_4357_ace328 crossref_primary_10_1029_2021JA029853 crossref_primary_10_1002_2017GL073137 crossref_primary_10_1029_2020JE006509 crossref_primary_10_3389_fspas_2023_1016345 crossref_primary_10_1029_2023JE008085 crossref_primary_10_1002_2017GL073133 crossref_primary_10_1029_2023EA003147 crossref_primary_10_1007_s11214_017_0396_y crossref_primary_10_1002_2016GL072187 crossref_primary_10_1029_2023GL106971 crossref_primary_10_1007_s11214_024_01120_y crossref_primary_10_1029_2022GL099775 crossref_primary_10_1029_2021JE007138 crossref_primary_10_1016_j_nima_2021_165244 crossref_primary_10_3847_1538_4357_acb7e0 crossref_primary_10_3847_2041_8213_ad5962 crossref_primary_10_1029_2023JA032037 crossref_primary_10_1109_LSENS_2025_3544963 crossref_primary_10_1029_2018JA026445 crossref_primary_10_1029_2020GL091627 crossref_primary_10_1016_j_actaastro_2020_01_030 crossref_primary_10_1029_2018JA026169 crossref_primary_10_1029_2022JA030675 crossref_primary_10_1029_2022JA030431 crossref_primary_10_1002_2017GL073029 crossref_primary_10_1038_s41586_018_0468_5 crossref_primary_10_3847_PSJ_ac8540 crossref_primary_10_1029_2021JA029469 crossref_primary_10_1002_2017GL072850 crossref_primary_10_1029_2020GL089267 crossref_primary_10_3389_fspas_2024_1478020 crossref_primary_10_1029_2022JE007625 crossref_primary_10_3847_1538_4357_ad833e crossref_primary_10_1029_2023GL103456 crossref_primary_10_1029_2021GL096994 crossref_primary_10_1029_2023GL102921 crossref_primary_10_1029_2020JE006415 crossref_primary_10_1029_2018GL078973 crossref_primary_10_1016_j_pss_2022_105597 crossref_primary_10_1029_2023JA031901 crossref_primary_10_1029_2018JA025639 crossref_primary_10_1029_2023JA031985 crossref_primary_10_1126_science_aal2108 crossref_primary_10_1007_s11214_020_00767_7 crossref_primary_10_1007_s11214_023_01032_3 crossref_primary_10_1103_PhysRevResearch_2_032065 crossref_primary_10_1029_2021JA030181 crossref_primary_10_1029_2022GL098839 crossref_primary_10_1038_s41467_025_62520_4 crossref_primary_10_1002_2016GL072286 crossref_primary_10_1029_2023GL104374 crossref_primary_10_1029_2020JA027813 crossref_primary_10_1029_2020JA027933 crossref_primary_10_1029_2019JA027696 crossref_primary_10_1029_2020JA028742 crossref_primary_10_1038_s41467_019_10708_w crossref_primary_10_3847_1538_4357_add72f crossref_primary_10_1029_2019EA001061 crossref_primary_10_1029_2018GL078864 crossref_primary_10_1016_j_icarus_2024_116006 crossref_primary_10_3847_1538_4357_ac731a crossref_primary_10_1029_2021JA029243 crossref_primary_10_1029_2018GL081227 crossref_primary_10_1029_2022JA030497 crossref_primary_10_1029_2021JA029886 crossref_primary_10_1029_2020GL088397 crossref_primary_10_1029_2020GL088432 crossref_primary_10_3847_PSJ_ada6aa crossref_primary_10_3847_1538_4357_ad54c3 crossref_primary_10_1038_s41467_025_63186_8 crossref_primary_10_1016_j_actaastro_2022_02_013 crossref_primary_10_1029_2023GL104123 crossref_primary_10_1007_s11207_020_01714_z crossref_primary_10_1016_j_asr_2020_08_030 crossref_primary_10_1029_2019JA027663 crossref_primary_10_1029_2019SW002262 crossref_primary_10_1126_science_aat0970 crossref_primary_10_1029_2020JA028138 crossref_primary_10_1029_2020JA027964 crossref_primary_10_1029_2019JA027382 crossref_primary_10_3847_PSJ_ad5841 crossref_primary_10_5194_gi_13_263_2024 crossref_primary_10_1002_2017GL072923 crossref_primary_10_3389_fspas_2023_1274760 crossref_primary_10_1029_2021GL094758 crossref_primary_10_1029_2021JA029894 crossref_primary_10_1038_s41550_018_0442_z crossref_primary_10_11728_cjss2023_05_2022_0067 crossref_primary_10_1029_2022JA031155 crossref_primary_10_2514_1_G004503 crossref_primary_10_1029_2019JE006367 crossref_primary_10_1029_2022JA030460 crossref_primary_10_1029_2020GL089732 crossref_primary_10_1109_TIM_2024_3396846 crossref_primary_10_1029_2020JA027957 crossref_primary_10_1038_s41467_024_50449_z crossref_primary_10_1002_2017GL073180 crossref_primary_10_1029_2023GL106810 crossref_primary_10_1038_s41550_019_0819_7 crossref_primary_10_1029_2023JA032113 crossref_primary_10_1029_2019JE006262 crossref_primary_10_1029_2021JA029263 crossref_primary_10_1029_2021JE007055 crossref_primary_10_1029_2021GL095833 crossref_primary_10_3847_1538_4357_ad9b28 crossref_primary_10_1029_2018GL081129 crossref_primary_10_1029_2023JA031656 crossref_primary_10_1007_JHEP06_2024_028 crossref_primary_10_1029_2021JA029426 crossref_primary_10_1029_2022JA031280 crossref_primary_10_1109_JSEN_2019_2940559 |
| Cites_doi | 10.1017/S1743921310007313 10.1006/icar.1996.0063 10.1098/rsta.2000.0661 10.1007/s11214-013-9990-9 10.1088/0034-4885/46/5/001 10.1029/GL009i004p00250 10.1088/0957-0233/19/5/055104 10.1007/s11214-014-0040-z 10.1029/97JA03726 10.1126/science.274.5286.404 10.1029/2009JE003492 10.1029/98JE01130 10.1007/s11214-014-0094-y 10.1029/JA076i016p03564 10.1063/1.1510570 10.1029/2010JA016262 10.1038/280042a0 10.1098/rspa.1981.0009 10.1086/181911 10.1126/science.262.5136.1035 10.1029/2009JA014289 10.1029/JB090iB03p02495 10.1007/s11214-009-9621-7 10.1007/BF00216848 10.1002/2015JE004951 10.1109/TMAG.1975.1058779 10.1029/98JE01128 10.1029/2008JA013185 10.1007/s11214-013-0025-3 10.1029/96JA02385 10.1126/science.188.4187.451 10.1029/2005GL025487 10.1029/91JA01165 10.1038/297313a0 10.1088/0957-0233/13/7/321 10.1007/s11214-014-0036-8 10.1088/0957-0233/17/6/038 10.1038/415997a 10.1017/CBO9780511564574.016 10.1038/415985a 10.1029/96JA02869 10.1126/science.206.4421.966 10.1007/s11214-014-0079-x 10.1111/j.1365-246X.1974.tb00622.x 10.1007/978-3-662-03138-4 10.1029/JA086iA10p08370 10.1029/JA087iA05p03623 10.1016/j.actaastro.2015.11.001 10.1006/icar.1996.0107 10.1029/jZ064i009p01219 10.1016/S0031-9201(96)03188-3 10.1029/JZ060i002p00213 10.1126/science.183.4122.305 10.1029/92GL02380 10.1029/GL005i003p00211 10.1029/2009JA014312 10.1126/science.204.4396.982 10.1007/BF00211541 10.1086/149947 10.1029/JA086iA09p07679 10.1029/JA086iA10p08513 10.1098/rsta.1994.0127 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2017 Space Science Reviews is a copyright of Springer, (2017). All Rights Reserved. |
| Copyright_xml | – notice: The Author(s) 2017 – notice: Space Science Reviews is a copyright of Springer, (2017). All Rights Reserved. |
| DBID | C6C AAYXX CITATION 3V. 7TG 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ H8D HCIFZ KL. L7M M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11214-017-0334-z |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Aerospace Database SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Astronomy & Astrophysics Physics |
| EISSN | 1572-9672 |
| EndPage | 138 |
| ExternalDocumentID | 10_1007_s11214_017_0334_z |
| GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW LAK LK5 LLZTM M2P M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OK1 OVD P19 P2P P62 P9T PF0 PKN PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNP ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SC5 SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z86 Z88 Z8M Z8N Z8S Z8T Z92 ZCG ZMTXR ZY4 ~02 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ABUFD ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7TG 7XB 8FD 8FK H8D KL. L7M PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c359t-1dfe29abdfd5c59c1608d3d96bc77ff453d70a4ccc38d28e17cc47addba3f60e3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 288 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414548500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0038-6308 |
| IngestDate | Tue Nov 04 22:01:33 EST 2025 Tue Nov 18 22:31:23 EST 2025 Sat Nov 29 05:31:38 EST 2025 Fri Feb 21 02:36:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-4 |
| Keywords | Juno spacecraft Spacecraft magnetic control Jupiter Spaceflight instrumentation Juno mission Magnetometer Magnetic field Magnetic cleanliness |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-1dfe29abdfd5c59c1608d3d96bc77ff453d70a4ccc38d28e17cc47addba3f60e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Literature Review-3 |
| ORCID | 0000-0001-7478-6462 |
| OpenAccessLink | https://link.springer.com/10.1007/s11214-017-0334-z |
| PQID | 1961504546 |
| PQPubID | 105668 |
| PageCount | 100 |
| ParticipantIDs | proquest_journals_1961504546 crossref_citationtrail_10_1007_s11214_017_0334_z crossref_primary_10_1007_s11214_017_0334_z springer_journals_10_1007_s11214_017_0334_z |
| PublicationCentury | 2000 |
| PublicationDate | 20171100 2017-11-00 20171101 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 20171100 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Space science reviews |
| PublicationTitleAbbrev | Space Sci Rev |
| PublicationYear | 2017 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | AcuñaM.H.Space-based magnetometersRev. Sci. Instrum.20027311371737362002RScI...73.3717A BaloghA.The solar-system: a review of results from Space MissionsPhilos. Trans.: Phys. Sci. Eng.199434916902272361994RSPTA.349..227B DesslerA.J.SandelB.System III variations of apparent distance of Io plasma torus from JupiterGeophys. Res. Lett.19921920209921021992GeoRL..19.2099D NessN.F.BehannonK.W.LeppingR.P.Use of two magnetometers for magnetic field measurements on a spacecraftJ. Geophys. Res.19717616356435731971JGR....76.3564N PedersenD.A.K.JorgensenA.H.BennM.DenverT.JorgensenP.S.BjarnoJ.B.MassaroA.JorgensenJ.L.MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imagingActa Astronaut.20161183083152016AcAau.118..308P ConnerneyJ.E.P.SatohT.BaronR.Interpretation of auroral ”light curves” with application to Jupiter’s H3+ auroraeIcarus199612224351996Icar..122...24C MaukB.H.HaggertyD.K.JaskulekS.E.SchlemmC.E.BrownL.E.The Jupiter Energetic Particle Detector Instrument (JEDI) investigation for the Juno MissionSpace Sci. Rev.2013 JohnsonT.V.YeatesC.M.YoungR.Space Science Reviews volume on Galileo Mission overviewSpace Sci. Rev.1992603211992SSRv...60....3J AcuñaM.H.NessN.F.GehrelsT.Results from the GSFC fluxgate magnetometer on Pioneer 11Jupiter1976TucsonUniversity of Arizona Press830847 ConnerneyJ.E.P.AcuñaM.H.Jovimagnetic secular variationNature19822973133151982Natur.297..313C ConnerneyJ.E.P.AcuñaM.H.NessN.F.Modeling the Jovian current sheet and inner magnetosphereJ. Geophys. Res.198186837083841981JGR....86.8370C GrodentD.BonfondB.RadiotiA.Auroral footprint of GanymedeJ. Geophys. Res.20091142009JGRA..114.7212G BehannonK.W.AcuñaM.H.BurlagaL.F.LeppingR.P.NessN.F.NeubauerF.M.Magnetic field experiment for Voyagers 1 and 2Space Sci. Rev.1977212352571977SSRv...21..235B GoldreichP.Lynden-BellD.Io a Jovian unipolar inductorAstrophys. J.19691561P159781969ApJ...156...59G BonfondB.GrodentD.GerardJ.-C.RadiotiA.The Io UV footprint: location, inter-spot distances and tail vertical extentJ. Geophys. Res.20091142009JGRA..114.7224B GoldT.Motions in the magnetosphere of the EarthJ. Geophys. Res.1959649121912241959JGR....64.1219G KovalevskyJ.Modern Astrometry1995Berlin, HeidelbergSpringer SmithE.J.DavisL.Jr.JonesD.E.Jupiter’s magnetic field, magnetosphere, and its interaction with the solar wind: Pioneer 11Science19751884514551975Sci...188..451S SmithE.J.ConnorB.V.FosterG.T.Jr.Measuring the magnetic fields of Jupiter and the outer solar systemIEEE Trans. Magn.1975MAG-119629801975ITM....11..962S M.H. Acuña, MAGSAT—vector magnetometer absolute sensor alignment determination. NASA technical memorandum, 79648 (1981) ConnerneyJ.E.P.BaronR.SatohT.OwenT.Images of excited H3+ at the foot of the Io flux tube in Jupiter’s atmosphereScience1993262103510381993Sci...262.1035C ConnerneyJ.E.P.AcuñaM.H.NessN.F.SatohT.New models of Jupiter’s magnetic field constrained by the Io flux tube footprintJ. Geophys. Res. Space Phys.1998103A611929119391998JGR...10311929C DesslerA.J.DesslerA.J.Coordinate systemsPhysics of the Jovian Magnetosphere1983New YorkCambridge University Press498504 AdrianiA.FilacchioneG.Di lorioT.TurriniD.NoscheseR.JIRAM, the Jovian infrared auroral mapperSpace Sci. Rev.2014 GurnettD.A.KurthW.S.HospodarskyG.B.PersoonA.M.ZarkaP.LecacheuxA.BoltonS.J.DeschM.D.FarrellW.M.KaiserM.L.LadreiterH.-P.RuckerH.O.GalopeauP.LouarnP.YoungD.T.PryorW.R.DoughertyM.K.Control of Jupiter’s radio emission and aurorae by the solar windNature20024159852002Natur.415..985G StevensonD.J.Planetary magnetic fieldsRep. Progr. Phys.1983465556201983RPPh...46..555S PrimdahlF.RisboT.MerayoJ.M.G.In-flight spacecraft magnetic field monitoring using scalar/vector gradiometryMeas. Sci. Technol.200617156315692006MeScT..17.1563P ConnerneyJ.E.P.SchubertG.SpohnT.Planetary magnetism,Volume 10: Planets and SatellitesTreatise in Geophysics2015OxfordElsevier195237 BoltonS.J.The Juno Science TeamThe Juno missionProc. Int. Astron. Union Symp.201026992100 ConnerneyJ.E.P.AcuñaM.H.NessN.F.Octupole model of Jupiter’s magnetic field from Ulysses observationsJ. Geophys. Res.199610127453274581996JGR...10127453C ConnerneyJ.E.P.SatohT.The H3+ ion: a remote diagnostic of the Jovian magnetospherePhilos. Trans. R. Soc. Lond.2000358247124832000RSPTA.358.2471C HideR.MalinS.R.C.The size of Jupiter’s electrically conducting fluid coreNature197928042431979Natur.280...42H BurkeB.F.FranklinK.L.Observations of a variable radio source associated with the planet JupiterJ. Geophys. Res.1955602132171955JGR....60..213B YuZ.J.LeinweberH.K.RussellC.T.Galileo constraints on the secular variation of the Jovian magnetic fieldJ. Geophys. Res.20091152010JGRE..115.3002Y ClarkeJ.T.AjelloJ.BallesterG.E.Ultraviolet emissions from the magnetic footprints of Io, Ganymede, and Europa on JupiterNature200241599710002002Natur.415..997C LeinweberH.K.RussellC.T.TorkarK.ZhangT.L.AngelopoulosV.An advanced approach to finding magnetometer zero levels in the interplanetary magnetic fieldMeas. Sci. Technol.2008192008MeScT..19e5104L SmithE.J.DavisL.Jr.JonesD.E.The magnetic field of Jupiter and its interaction with the solar windScience19741833053061974Sci...183..305S ClarkeJ.T.BallesterG.TraugerJ.Far-ultraviolet imaging of Jupiter’s aurora and the Io “footprint” with the Hubble Space Telescope Wide Field Planetary Camera 2Science19962744044091996Sci...274..404C PrangeR.RegoD.PallierL.ConnerneyJ.E.P.ZarkaP.QueinnecJ.Detailed study of FUV Jovian auroral features with the post-COSTAR HST faint object cameraJ. Geophys. Res.1998103E920195202151998JGR...10320195P ConnerneyJ.E.P.AcuñaM.H.NessN.F.Voyager 1 assessment of Jupiter’s planetary magnetic fieldJ. Geophys. Res.198287362336271982JGR....87.3623C RisboT.BrauerP.MerayoJ.M.G.NielsenO.PetersenJ.R.PrimdahlF.OlsenN.Ørsted calibration mission: the thin shell method and the spherical harmonic analysisGround and In-flight Space Magnetometer Calibration Techniques2002 HessS.L.G.BonfondB.ZarkaP.GrodentT.Model of the Jovian magnetic field topology constrained by the Io auroral emissionsJ. Geophys. Res.20111162011JGRA..116.5217H HideR.MalinS.R.C.On determination of the size of the Earth’s core from observations of the geomagnetic secular variationProc. R. Soc. Lond.198137415331981RSPSA.374...15H SmoluchowskiR.Jupiter’s molecular hydrogen layer and the magnetic fieldAstrophys. J. Lett.19752001191211975ApJ...200L.119S LangelR.A.EstesR.H.The near-Earth magnetic field at 1980 determined from MAGSAT dataJ. Geophys. Res.198590249525091985JGR....90.2495L LowesF.J.Spatial power spectrum of the main geomagnetic field and extrapolation to the coreGeophys. J. R. Astron. Soc.1974367177301974GeoJ...36..717L McComasD.J.AlexanderN.AllegriniF.BagenalF.BeebeR.The Jovian auroral distributions experiment (JADE) on the Juno Mission to JupiterSpace Sci. Rev.2013 V.A. Ridley, R. Holme, Modeling the Jovian magnetic field and its secular variation using all available magnetic field observations. J. Geophys. Res. Planets 121 (2016). doi:10.1002/2015JE004951 BaronR.OwenT.ConnerneyJ.E.P.SatohT.HarringtonJ.Solar wind control of Jupiter’s H3+ auroraeIcarus19961204374421996Icar..120..437B ClarkeJ.T.GrodentD.CowleyS.BagenalF.DowlingT.E.McKinnonW.B.Jupiter’s auroraeJupiter: The Planet, Satellites, and Magnetosphere2005CambridgeCambridge University Press639671 ClarkeJ.T.BallesterG.E.TraugerJ.AjelloJ.PryorW.TobiskaK.ConnerneyJ.E.P.GladstoneG.R.WaiteJ.H.Jr.JaffelL.B.GerardJ.-C.HST imaging of Jupiter’s UV aurora during the Galileo MissionJ. Geophys. Res.199810320217202361998JGR...10320217C ChapmanS.BartelsJ.Geomagnetism1940New YorkOxford University Press639668 DoughertyM.K.BaloghA.SouthwoodD.J.SmithE.J.Ulysses assessment of the Jovian planetary fieldJ. Geophys. Res. Space Phys.1996101A1124929249411996JGR...10124929D HansenC.J.CaplingerM.A.IngersollA.RavineM.A.JensenE.BoltonS.OrtonG.Junocam: Juno’s outreach cameraSpace Sci. Rev.2014 ConnerneyJ.E.P.AcuñaM.H.NessN.F.The magnetic field of NeptuneJ. Geophys. Res.19919619023190421991JGR....9619023C GrodentD.GerardJ.-C.GustinJ.Europa’s FUV auroral tail on JupiterGeophys. Res. Lett.2006332006GeoRL..33.6201G NessN.F.AcuñaM.H.LeppingR.P.Magnetic field studies at Jupiter by Voyager 1: preliminary resultsScience19792049829871979Sci...204..982N RussellC.T.DoughertyM.K.Magnetic fields of the outer planetsSpace Sci. Rev.20101522512692010SSRv..152..251R LanczosC.Linear Differential Operations1961PrincetonVan Nostrand0111.08305564 pp. GrodentD.BonfondB.GerardJ.-C.Auroral evidence of a localized magnetic anomaly in Jupiter’s northern hemisphereJ. Geophys. Res.20081132008JGRA..113.9201G LangelR.A.JacobsJ.A.The main fieldGeomagnetism1987New YorkAcademic249513 AcuñaM.H.NeubauerF.M.NessN.F.Standing Alfvén wave current system at Il: Voyager 1 observationsJ. Geophys. Res.198186A10851385211981JGR....86.8513A ConnerneyJ.E.P.The magnetic field of Jupiter: a generalized inverse approachJ. Geophys. Res.198186767976931981JGR....86.7679C AcuñaM.H.BehannonK.W.ConnerneyJ.E.P.DesslerA.J.Jupiter’s magnetic field and magnetospherePhysics of the Jovian Magnetosphere1983New YorkCambridge University Press150 BagenalF.AdrianiA.AllegriniF.BoltonS.J.BonfondB.Magnetospheric science objectives of the Juno missionSpace Sci. Rev.2014 ElphicR.C.RussellC.T.On the apparent source depth of planetary magnetic fieldsGeophys. Res. Lett.197852112141978GeoRL...5..211E GlatzmaierG.A.RobertsP.H.On the magnetic sounding of planetary interiorsPhys. Earth Planet. Inter.1996982072201996PEPI...98..207G AusterH.U.FornaconK.H.GeorgescuE.GlassmeierK.H.MotschmannU.Calibration of fluxgate magnetometers using relative motionMeas. Sci. Technol.200213112411312002MeScT..13.1124A GladstoneG.R.PersynS.C.EternoJ.S.WaltherB.C.SlaterD.C.The untraviolet spectrograph on NASA’s Juno missionSpace Sci. Rev.2014 LangelR.A.EstesR.H.A geomagnetic field spectrumGeophys. Res. Lett.198292502531982GeoRL...9..250L NessN.F.AcuñaM.H.LeppingR.P.Magnetic field studies at Jupiter by Voyager 2: preliminary resultsScience19792069669721979Sci...206..966N SmithE.J.DavisL.Jr.JonesD.E.GehrelsT.Jupiter’s magnetic field and magnetospher S.J. Bolton (334_CR12) 2010; 269 R. Smoluchowski (334_CR70) 1975; 200 A.J. Dessler (334_CR31) 1983 T.V. Johnson (334_CR47) 1992; 60 C.T. Russell (334_CR65) 2010; 152 R.C. Elphic (334_CR34) 1978; 5 J.E.P. Connerney (334_CR30) 1998; 103 M.K. Dougherty (334_CR33) 1996; 101 E.J. Smith (334_CR66) 1974; 183 J.T. Clarke (334_CR18) 2002; 415 S. Chapman (334_CR15) 1940 J. Kovalevsky (334_CR48) 1995 D.J. Stevenson (334_CR71) 1983; 46 J.E.P. Connerney (334_CR25) 1982; 87 D. Grodent (334_CR40) 2008; 113 J.E.P. Connerney (334_CR29) 1996; 122 R.A. Langel (334_CR50) 1982; 9 E.J. Smith (334_CR69) 1976 J.E.P. Connerney (334_CR26) 1991; 96 F. Bagenal (334_CR8) 2014 G.A. Glatzmaier (334_CR36) 1996; 98 J.E.P. Connerney (334_CR21) 2015 J.E.P. Connerney (334_CR28) 1996; 101 E.J. Smith (334_CR67) 1975; 188 334_CR63 M.H. Acuña (334_CR4) 1981; 86 Z.J. Yu (334_CR72) 2009; 115 C. Lanczos (334_CR49) 1961 H.U. Auster (334_CR7) 2002; 13 J.T. Clarke (334_CR17) 1998; 103 R. Hide (334_CR46) 1981; 374 J.T. Clarke (334_CR16) 1996; 274 J.E.P. Connerney (334_CR27) 1993; 262 D. Grodent (334_CR41) 2009; 114 R.A. Langel (334_CR51) 1985; 90 J.E.P. Connerney (334_CR22) 2000; 358 G.R. Gladstone (334_CR35) 2014 N.F. Ness (334_CR57) 1971; 76 D.J. McComas (334_CR56) 2013 H.K. Leinweber (334_CR53) 2008; 19 N.F. Ness (334_CR58) 1979; 204 D.A.K. Pedersen (334_CR60) 2016; 118 B. Bonfond (334_CR13) 2009; 114 A. Adriani (334_CR6) 2014 K.W. Behannon (334_CR11) 1977; 21 J.E.P. Connerney (334_CR24) 1982; 297 B.H. Mauk (334_CR55) 2013 A.J. Dessler (334_CR32) 1992; 19 T. Gold (334_CR37) 1959; 64 D.A. Gurnett (334_CR42) 2002; 415 334_CR1 B.F. Burke (334_CR14) 1955; 60 T. Risbo (334_CR64) 2002 J.T. Clarke (334_CR19) 2005 F.J. Lowes (334_CR54) 1974; 36 M.H. Acuña (334_CR5) 1983 C.J. Hansen (334_CR43) 2014 R. Prange (334_CR61) 1998; 103 D. Grodent (334_CR39) 2006; 33 M.H. Acuña (334_CR2) 2002; 73 N.F. Ness (334_CR59) 1979; 206 R.A. Langel (334_CR52) 1987 E.J. Smith (334_CR68) 1975; MAG-11 R. Baron (334_CR10) 1996; 120 S.L.G. Hess (334_CR44) 2011; 116 R. Hide (334_CR45) 1979; 280 J.E.P. Connerney (334_CR20) 1981; 86 F. Primdahl (334_CR62) 2006; 17 M.H. Acuña (334_CR3) 1976 J.E.P. Connerney (334_CR23) 1981; 86 A. Balogh (334_CR9) 1994; 349 P. Goldreich (334_CR38) 1969; 156 |
| References_xml | – reference: ConnerneyJ.E.P.AcuñaM.H.NessN.F.Voyager 1 assessment of Jupiter’s planetary magnetic fieldJ. Geophys. Res.198287362336271982JGR....87.3623C – reference: BurkeB.F.FranklinK.L.Observations of a variable radio source associated with the planet JupiterJ. Geophys. Res.1955602132171955JGR....60..213B – reference: RisboT.BrauerP.MerayoJ.M.G.NielsenO.PetersenJ.R.PrimdahlF.OlsenN.Ørsted calibration mission: the thin shell method and the spherical harmonic analysisGround and In-flight Space Magnetometer Calibration Techniques2002 – reference: LangelR.A.EstesR.H.The near-Earth magnetic field at 1980 determined from MAGSAT dataJ. Geophys. Res.198590249525091985JGR....90.2495L – reference: McComasD.J.AlexanderN.AllegriniF.BagenalF.BeebeR.The Jovian auroral distributions experiment (JADE) on the Juno Mission to JupiterSpace Sci. Rev.2013 – reference: ConnerneyJ.E.P.AcuñaM.H.NessN.F.SatohT.New models of Jupiter’s magnetic field constrained by the Io flux tube footprintJ. Geophys. Res. Space Phys.1998103A611929119391998JGR...10311929C – reference: SmithE.J.DavisL.Jr.JonesD.E.Jupiter’s magnetic field, magnetosphere, and its interaction with the solar wind: Pioneer 11Science19751884514551975Sci...188..451S – reference: GrodentD.BonfondB.GerardJ.-C.Auroral evidence of a localized magnetic anomaly in Jupiter’s northern hemisphereJ. Geophys. Res.20081132008JGRA..113.9201G – reference: YuZ.J.LeinweberH.K.RussellC.T.Galileo constraints on the secular variation of the Jovian magnetic fieldJ. Geophys. Res.20091152010JGRE..115.3002Y – reference: BaronR.OwenT.ConnerneyJ.E.P.SatohT.HarringtonJ.Solar wind control of Jupiter’s H3+ auroraeIcarus19961204374421996Icar..120..437B – reference: GlatzmaierG.A.RobertsP.H.On the magnetic sounding of planetary interiorsPhys. Earth Planet. Inter.1996982072201996PEPI...98..207G – reference: KovalevskyJ.Modern Astrometry1995Berlin, HeidelbergSpringer – reference: ConnerneyJ.E.P.The magnetic field of Jupiter: a generalized inverse approachJ. Geophys. Res.198186767976931981JGR....86.7679C – reference: GoldreichP.Lynden-BellD.Io a Jovian unipolar inductorAstrophys. J.19691561P159781969ApJ...156...59G – reference: BagenalF.AdrianiA.AllegriniF.BoltonS.J.BonfondB.Magnetospheric science objectives of the Juno missionSpace Sci. Rev.2014 – reference: ElphicR.C.RussellC.T.On the apparent source depth of planetary magnetic fieldsGeophys. Res. Lett.197852112141978GeoRL...5..211E – reference: ConnerneyJ.E.P.SatohT.The H3+ ion: a remote diagnostic of the Jovian magnetospherePhilos. Trans. R. Soc. Lond.2000358247124832000RSPTA.358.2471C – reference: ConnerneyJ.E.P.AcuñaM.H.NessN.F.Octupole model of Jupiter’s magnetic field from Ulysses observationsJ. Geophys. Res.199610127453274581996JGR...10127453C – reference: ChapmanS.BartelsJ.Geomagnetism1940New YorkOxford University Press639668 – reference: HideR.MalinS.R.C.On determination of the size of the Earth’s core from observations of the geomagnetic secular variationProc. R. Soc. Lond.198137415331981RSPSA.374...15H – reference: ClarkeJ.T.AjelloJ.BallesterG.E.Ultraviolet emissions from the magnetic footprints of Io, Ganymede, and Europa on JupiterNature200241599710002002Natur.415..997C – reference: SmoluchowskiR.Jupiter’s molecular hydrogen layer and the magnetic fieldAstrophys. J. Lett.19752001191211975ApJ...200L.119S – reference: V.A. Ridley, R. Holme, Modeling the Jovian magnetic field and its secular variation using all available magnetic field observations. J. Geophys. Res. Planets 121 (2016). doi:10.1002/2015JE004951 – reference: DesslerA.J.SandelB.System III variations of apparent distance of Io plasma torus from JupiterGeophys. Res. Lett.19921920209921021992GeoRL..19.2099D – reference: AdrianiA.FilacchioneG.Di lorioT.TurriniD.NoscheseR.JIRAM, the Jovian infrared auroral mapperSpace Sci. Rev.2014 – reference: ClarkeJ.T.BallesterG.E.TraugerJ.AjelloJ.PryorW.TobiskaK.ConnerneyJ.E.P.GladstoneG.R.WaiteJ.H.Jr.JaffelL.B.GerardJ.-C.HST imaging of Jupiter’s UV aurora during the Galileo MissionJ. Geophys. Res.199810320217202361998JGR...10320217C – reference: DesslerA.J.DesslerA.J.Coordinate systemsPhysics of the Jovian Magnetosphere1983New YorkCambridge University Press498504 – reference: ClarkeJ.T.GrodentD.CowleyS.BagenalF.DowlingT.E.McKinnonW.B.Jupiter’s auroraeJupiter: The Planet, Satellites, and Magnetosphere2005CambridgeCambridge University Press639671 – reference: RussellC.T.DoughertyM.K.Magnetic fields of the outer planetsSpace Sci. Rev.20101522512692010SSRv..152..251R – reference: AcuñaM.H.NessN.F.GehrelsT.Results from the GSFC fluxgate magnetometer on Pioneer 11Jupiter1976TucsonUniversity of Arizona Press830847 – reference: GrodentD.GerardJ.-C.GustinJ.Europa’s FUV auroral tail on JupiterGeophys. Res. Lett.2006332006GeoRL..33.6201G – reference: JohnsonT.V.YeatesC.M.YoungR.Space Science Reviews volume on Galileo Mission overviewSpace Sci. Rev.1992603211992SSRv...60....3J – reference: NessN.F.AcuñaM.H.LeppingR.P.Magnetic field studies at Jupiter by Voyager 1: preliminary resultsScience19792049829871979Sci...204..982N – reference: GladstoneG.R.PersynS.C.EternoJ.S.WaltherB.C.SlaterD.C.The untraviolet spectrograph on NASA’s Juno missionSpace Sci. Rev.2014 – reference: HessS.L.G.BonfondB.ZarkaP.GrodentT.Model of the Jovian magnetic field topology constrained by the Io auroral emissionsJ. Geophys. Res.20111162011JGRA..116.5217H – reference: PrangeR.RegoD.PallierL.ConnerneyJ.E.P.ZarkaP.QueinnecJ.Detailed study of FUV Jovian auroral features with the post-COSTAR HST faint object cameraJ. Geophys. Res.1998103E920195202151998JGR...10320195P – reference: SmithE.J.DavisL.Jr.JonesD.E.The magnetic field of Jupiter and its interaction with the solar windScience19741833053061974Sci...183..305S – reference: MaukB.H.HaggertyD.K.JaskulekS.E.SchlemmC.E.BrownL.E.The Jupiter Energetic Particle Detector Instrument (JEDI) investigation for the Juno MissionSpace Sci. Rev.2013 – reference: NessN.F.AcuñaM.H.LeppingR.P.Magnetic field studies at Jupiter by Voyager 2: preliminary resultsScience19792069669721979Sci...206..966N – reference: LanczosC.Linear Differential Operations1961PrincetonVan Nostrand0111.08305564 pp. – reference: ConnerneyJ.E.P.SatohT.BaronR.Interpretation of auroral ”light curves” with application to Jupiter’s H3+ auroraeIcarus199612224351996Icar..122...24C – reference: BaloghA.The solar-system: a review of results from Space MissionsPhilos. Trans.: Phys. Sci. Eng.199434916902272361994RSPTA.349..227B – reference: DoughertyM.K.BaloghA.SouthwoodD.J.SmithE.J.Ulysses assessment of the Jovian planetary fieldJ. Geophys. Res. Space Phys.1996101A1124929249411996JGR...10124929D – reference: LeinweberH.K.RussellC.T.TorkarK.ZhangT.L.AngelopoulosV.An advanced approach to finding magnetometer zero levels in the interplanetary magnetic fieldMeas. Sci. Technol.2008192008MeScT..19e5104L – reference: NessN.F.BehannonK.W.LeppingR.P.Use of two magnetometers for magnetic field measurements on a spacecraftJ. Geophys. Res.19717616356435731971JGR....76.3564N – reference: AcuñaM.H.BehannonK.W.ConnerneyJ.E.P.DesslerA.J.Jupiter’s magnetic field and magnetospherePhysics of the Jovian Magnetosphere1983New YorkCambridge University Press150 – reference: M.H. Acuña, MAGSAT—vector magnetometer absolute sensor alignment determination. NASA technical memorandum, 79648 (1981) – reference: BoltonS.J.The Juno Science TeamThe Juno missionProc. Int. Astron. Union Symp.201026992100 – reference: GoldT.Motions in the magnetosphere of the EarthJ. Geophys. Res.1959649121912241959JGR....64.1219G – reference: ClarkeJ.T.BallesterG.TraugerJ.Far-ultraviolet imaging of Jupiter’s aurora and the Io “footprint” with the Hubble Space Telescope Wide Field Planetary Camera 2Science19962744044091996Sci...274..404C – reference: HideR.MalinS.R.C.The size of Jupiter’s electrically conducting fluid coreNature197928042431979Natur.280...42H – reference: PedersenD.A.K.JorgensenA.H.BennM.DenverT.JorgensenP.S.BjarnoJ.B.MassaroA.JorgensenJ.L.MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imagingActa Astronaut.20161183083152016AcAau.118..308P – reference: LangelR.A.EstesR.H.A geomagnetic field spectrumGeophys. Res. Lett.198292502531982GeoRL...9..250L – reference: BehannonK.W.AcuñaM.H.BurlagaL.F.LeppingR.P.NessN.F.NeubauerF.M.Magnetic field experiment for Voyagers 1 and 2Space Sci. Rev.1977212352571977SSRv...21..235B – reference: HansenC.J.CaplingerM.A.IngersollA.RavineM.A.JensenE.BoltonS.OrtonG.Junocam: Juno’s outreach cameraSpace Sci. Rev.2014 – reference: StevensonD.J.Planetary magnetic fieldsRep. Progr. Phys.1983465556201983RPPh...46..555S – reference: GurnettD.A.KurthW.S.HospodarskyG.B.PersoonA.M.ZarkaP.LecacheuxA.BoltonS.J.DeschM.D.FarrellW.M.KaiserM.L.LadreiterH.-P.RuckerH.O.GalopeauP.LouarnP.YoungD.T.PryorW.R.DoughertyM.K.Control of Jupiter’s radio emission and aurorae by the solar windNature20024159852002Natur.415..985G – reference: LangelR.A.JacobsJ.A.The main fieldGeomagnetism1987New YorkAcademic249513 – reference: BonfondB.GrodentD.GerardJ.-C.RadiotiA.The Io UV footprint: location, inter-spot distances and tail vertical extentJ. Geophys. Res.20091142009JGRA..114.7224B – reference: SmithE.J.DavisL.Jr.JonesD.E.GehrelsT.Jupiter’s magnetic field and magnetosphereJupiter1976TucsonUniversity of Arizona Press788829 – reference: ConnerneyJ.E.P.SchubertG.SpohnT.Planetary magnetism,Volume 10: Planets and SatellitesTreatise in Geophysics2015OxfordElsevier195237 – reference: AcuñaM.H.NeubauerF.M.NessN.F.Standing Alfvén wave current system at Il: Voyager 1 observationsJ. Geophys. Res.198186A10851385211981JGR....86.8513A – reference: ConnerneyJ.E.P.BaronR.SatohT.OwenT.Images of excited H3+ at the foot of the Io flux tube in Jupiter’s atmosphereScience1993262103510381993Sci...262.1035C – reference: ConnerneyJ.E.P.AcuñaM.H.NessN.F.The magnetic field of NeptuneJ. Geophys. Res.19919619023190421991JGR....9619023C – reference: LowesF.J.Spatial power spectrum of the main geomagnetic field and extrapolation to the coreGeophys. J. R. Astron. Soc.1974367177301974GeoJ...36..717L – reference: AusterH.U.FornaconK.H.GeorgescuE.GlassmeierK.H.MotschmannU.Calibration of fluxgate magnetometers using relative motionMeas. Sci. Technol.200213112411312002MeScT..13.1124A – reference: PrimdahlF.RisboT.MerayoJ.M.G.In-flight spacecraft magnetic field monitoring using scalar/vector gradiometryMeas. Sci. Technol.200617156315692006MeScT..17.1563P – reference: SmithE.J.ConnorB.V.FosterG.T.Jr.Measuring the magnetic fields of Jupiter and the outer solar systemIEEE Trans. Magn.1975MAG-119629801975ITM....11..962S – reference: ConnerneyJ.E.P.AcuñaM.H.Jovimagnetic secular variationNature19822973133151982Natur.297..313C – reference: GrodentD.BonfondB.RadiotiA.Auroral footprint of GanymedeJ. Geophys. Res.20091142009JGRA..114.7212G – reference: ConnerneyJ.E.P.AcuñaM.H.NessN.F.Modeling the Jovian current sheet and inner magnetosphereJ. Geophys. Res.198186837083841981JGR....86.8370C – reference: AcuñaM.H.Space-based magnetometersRev. Sci. Instrum.20027311371737362002RScI...73.3717A – volume: 269 start-page: 92 year: 2010 ident: 334_CR12 publication-title: Proc. Int. Astron. Union Symp. doi: 10.1017/S1743921310007313 – volume: 120 start-page: 437 year: 1996 ident: 334_CR10 publication-title: Icarus doi: 10.1006/icar.1996.0063 – volume: 358 start-page: 2471 year: 2000 ident: 334_CR22 publication-title: Philos. Trans. R. Soc. Lond. doi: 10.1098/rsta.2000.0661 – year: 2013 ident: 334_CR56 publication-title: Space Sci. Rev. doi: 10.1007/s11214-013-9990-9 – volume: 46 start-page: 555 year: 1983 ident: 334_CR71 publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/46/5/001 – volume: 9 start-page: 250 year: 1982 ident: 334_CR50 publication-title: Geophys. Res. Lett. doi: 10.1029/GL009i004p00250 – volume: 19 year: 2008 ident: 334_CR53 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/19/5/055104 – year: 2014 ident: 334_CR35 publication-title: Space Sci. Rev. doi: 10.1007/s11214-014-0040-z – volume: 103 start-page: 11929 issue: A6 year: 1998 ident: 334_CR30 publication-title: J. Geophys. Res. Space Phys. doi: 10.1029/97JA03726 – volume: 274 start-page: 404 year: 1996 ident: 334_CR16 publication-title: Science doi: 10.1126/science.274.5286.404 – volume: 115 year: 2009 ident: 334_CR72 publication-title: J. Geophys. Res. doi: 10.1029/2009JE003492 – ident: 334_CR1 – volume-title: Ground and In-flight Space Magnetometer Calibration Techniques year: 2002 ident: 334_CR64 – volume: 103 start-page: 20217 year: 1998 ident: 334_CR17 publication-title: J. Geophys. Res. doi: 10.1029/98JE01130 – year: 2014 ident: 334_CR6 publication-title: Space Sci. Rev. doi: 10.1007/s11214-014-0094-y – volume: 76 start-page: 3564 issue: 16 year: 1971 ident: 334_CR57 publication-title: J. Geophys. Res. doi: 10.1029/JA076i016p03564 – volume: 73 start-page: 3717 issue: 11 year: 2002 ident: 334_CR2 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1510570 – start-page: 639 volume-title: Jupiter: The Planet, Satellites, and Magnetosphere year: 2005 ident: 334_CR19 – volume: 116 year: 2011 ident: 334_CR44 publication-title: J. Geophys. Res. doi: 10.1029/2010JA016262 – volume: 280 start-page: 42 year: 1979 ident: 334_CR45 publication-title: Nature doi: 10.1038/280042a0 – volume: 374 start-page: 15 year: 1981 ident: 334_CR46 publication-title: Proc. R. Soc. Lond. doi: 10.1098/rspa.1981.0009 – volume: 200 start-page: 119 year: 1975 ident: 334_CR70 publication-title: Astrophys. J. Lett. doi: 10.1086/181911 – volume: 262 start-page: 1035 year: 1993 ident: 334_CR27 publication-title: Science doi: 10.1126/science.262.5136.1035 – volume: 114 year: 2009 ident: 334_CR41 publication-title: J. Geophys. Res. doi: 10.1029/2009JA014289 – volume: 90 start-page: 2495 year: 1985 ident: 334_CR51 publication-title: J. Geophys. Res. doi: 10.1029/JB090iB03p02495 – volume: 152 start-page: 251 year: 2010 ident: 334_CR65 publication-title: Space Sci. Rev. doi: 10.1007/s11214-009-9621-7 – volume: 60 start-page: 3 year: 1992 ident: 334_CR47 publication-title: Space Sci. Rev. doi: 10.1007/BF00216848 – ident: 334_CR63 doi: 10.1002/2015JE004951 – volume: MAG-11 start-page: 962 year: 1975 ident: 334_CR68 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.1975.1058779 – volume: 103 start-page: 20195 issue: E9 year: 1998 ident: 334_CR61 publication-title: J. Geophys. Res. doi: 10.1029/98JE01128 – volume: 113 year: 2008 ident: 334_CR40 publication-title: J. Geophys. Res. doi: 10.1029/2008JA013185 – year: 2013 ident: 334_CR55 publication-title: Space Sci. Rev. doi: 10.1007/s11214-013-0025-3 – volume: 101 start-page: 24929 issue: A11 year: 1996 ident: 334_CR33 publication-title: J. Geophys. Res. Space Phys. doi: 10.1029/96JA02385 – volume: 188 start-page: 451 year: 1975 ident: 334_CR67 publication-title: Science doi: 10.1126/science.188.4187.451 – volume: 33 year: 2006 ident: 334_CR39 publication-title: Geophys. Res. Lett. doi: 10.1029/2005GL025487 – volume: 96 start-page: 19023 year: 1991 ident: 334_CR26 publication-title: J. Geophys. Res. doi: 10.1029/91JA01165 – volume: 297 start-page: 313 year: 1982 ident: 334_CR24 publication-title: Nature doi: 10.1038/297313a0 – start-page: 195 volume-title: Treatise in Geophysics year: 2015 ident: 334_CR21 – start-page: 639 volume-title: Geomagnetism year: 1940 ident: 334_CR15 – volume: 13 start-page: 1124 year: 2002 ident: 334_CR7 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/13/7/321 – year: 2014 ident: 334_CR8 publication-title: Space Sci. Rev. doi: 10.1007/s11214-014-0036-8 – volume: 17 start-page: 1563 year: 2006 ident: 334_CR62 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/17/6/038 – volume: 415 start-page: 997 year: 2002 ident: 334_CR18 publication-title: Nature doi: 10.1038/415997a – start-page: 498 volume-title: Physics of the Jovian Magnetosphere year: 1983 ident: 334_CR31 doi: 10.1017/CBO9780511564574.016 – volume: 415 start-page: 985 year: 2002 ident: 334_CR42 publication-title: Nature doi: 10.1038/415985a – volume: 101 start-page: 27453 year: 1996 ident: 334_CR28 publication-title: J. Geophys. Res. doi: 10.1029/96JA02869 – volume: 206 start-page: 966 year: 1979 ident: 334_CR59 publication-title: Science doi: 10.1126/science.206.4421.966 – start-page: 788 volume-title: Jupiter year: 1976 ident: 334_CR69 – year: 2014 ident: 334_CR43 publication-title: Space Sci. Rev. doi: 10.1007/s11214-014-0079-x – start-page: 830 volume-title: Jupiter year: 1976 ident: 334_CR3 – volume: 36 start-page: 717 year: 1974 ident: 334_CR54 publication-title: Geophys. J. R. Astron. Soc. doi: 10.1111/j.1365-246X.1974.tb00622.x – volume-title: Modern Astrometry year: 1995 ident: 334_CR48 doi: 10.1007/978-3-662-03138-4 – start-page: 249 volume-title: Geomagnetism year: 1987 ident: 334_CR52 – volume: 86 start-page: 8370 year: 1981 ident: 334_CR23 publication-title: J. Geophys. Res. doi: 10.1029/JA086iA10p08370 – volume: 87 start-page: 3623 year: 1982 ident: 334_CR25 publication-title: J. Geophys. Res. doi: 10.1029/JA087iA05p03623 – start-page: 1 volume-title: Physics of the Jovian Magnetosphere year: 1983 ident: 334_CR5 – volume: 118 start-page: 308 year: 2016 ident: 334_CR60 publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2015.11.001 – volume: 122 start-page: 24 year: 1996 ident: 334_CR29 publication-title: Icarus doi: 10.1006/icar.1996.0107 – volume: 64 start-page: 1219 issue: 9 year: 1959 ident: 334_CR37 publication-title: J. Geophys. Res. doi: 10.1029/jZ064i009p01219 – volume: 98 start-page: 207 year: 1996 ident: 334_CR36 publication-title: Phys. Earth Planet. Inter. doi: 10.1016/S0031-9201(96)03188-3 – volume: 60 start-page: 213 year: 1955 ident: 334_CR14 publication-title: J. Geophys. Res. doi: 10.1029/JZ060i002p00213 – volume: 183 start-page: 305 year: 1974 ident: 334_CR66 publication-title: Science doi: 10.1126/science.183.4122.305 – volume: 19 start-page: 2099 issue: 20 year: 1992 ident: 334_CR32 publication-title: Geophys. Res. Lett. doi: 10.1029/92GL02380 – volume: 5 start-page: 211 year: 1978 ident: 334_CR34 publication-title: Geophys. Res. Lett. doi: 10.1029/GL005i003p00211 – volume: 114 year: 2009 ident: 334_CR13 publication-title: J. Geophys. Res. doi: 10.1029/2009JA014312 – volume: 204 start-page: 982 year: 1979 ident: 334_CR58 publication-title: Science doi: 10.1126/science.204.4396.982 – volume: 21 start-page: 235 year: 1977 ident: 334_CR11 publication-title: Space Sci. Rev. doi: 10.1007/BF00211541 – volume: 156 start-page: 59 issue: 1P1 year: 1969 ident: 334_CR38 publication-title: Astrophys. J. doi: 10.1086/149947 – volume: 86 start-page: 7679 year: 1981 ident: 334_CR20 publication-title: J. Geophys. Res. doi: 10.1029/JA086iA09p07679 – volume: 86 start-page: 8513 issue: A10 year: 1981 ident: 334_CR4 publication-title: J. Geophys. Res. doi: 10.1029/JA086iA10p08513 – volume: 349 start-page: 227 issue: 1690 year: 1994 ident: 334_CR9 publication-title: Philos. Trans.: Phys. Sci. Eng. doi: 10.1098/rsta.1994.0127 – volume-title: Linear Differential Operations year: 1961 ident: 334_CR49 |
| SSID | ssj0010077 |
| Score | 2.6386776 |
| SecondaryResourceType | review_article |
| Snippet | The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 39 |
| SubjectTerms | Aerospace Technology and Astronautics Astronomical catalogs Astrophysics and Astroparticles Dynamic range Field of view Fluxgate magnetometers Image acquisition In-flight monitoring Instrumentation Jupiter magnetic field Jupiter probes Magnetic control Magnetic fields Magnetometers Magnetosphere Magnetospheres Physics Physics and Astronomy Planetary magnetic fields Planetology Quaternions Radiation effects Sensors Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Spacecraft |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary (1997 - Present) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90KuiDH1PZdEof1Acl0DZJkz4OcYjoGH6MvZU2SUXQVtZNcH-9ST-2KSroW2nTEO4ud5f7-AXgSLn6IIsdhSimCpGQCaStnINi7lFfav-hCGX3r1m3ywcDv1f2cWdVtXuVksw19azZzXEdUzHBkI0xQZNFWNLWjpvdeHvXn6YODEBNgcXIkYdtXqUyv5viszGaeZhfkqK5rels_GuVm7BeupZWu5CFLVhQSR0a7cwEu9OXd-vEyp-LWEZWh7U5LMI6rPSK99twrEXHuhonqXUTPiamydHqmDo3aw6TI0124KFzcX9-icrbFJDA1B8hR8aaMWEkY0kF9YXj2Vxi6XuRYCyOCcWS2SERQmAuXa4cJgRhWv1FIY49W-FdqCVpohpgac1EQsVpFBtsHim4axq9JcF2xLRGEE2wK7IGooQaNzdePAczkGRDpkCTKTBkCiZNOJ3-8lrgbPw2uFXxKii3XBZoVaKdW0KJ14Szijdzn3-abO9Po_dh1TXMzbsRW1AbDcfqAJbF2-gpGx7mkvgBRqvWbA priority: 102 providerName: Springer Nature |
| Title | The Juno Magnetic Field Investigation |
| URI | https://link.springer.com/article/10.1007/s11214-017-0334-z https://www.proquest.com/docview/1961504546 |
| Volume | 213 |
| WOSCitedRecordID | wos000414548500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1572-9672 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0010077 issn: 0038-6308 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9672 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0010077 issn: 0038-6308 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1572-9672 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0010077 issn: 0038-6308 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9672 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010077 issn: 0038-6308 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5s9aAHH1WxPkoO6kFZTLK72c1JVFpEtJSqpXgJye5GBE3UVEF_vbt52CrYi5clkM0SZiYzk3l8A7CrXP0jix2FKKYKkZAJpK2cg2LuUV9q_6EIZQ8uWbfLh0O_VwbcsrKsstKJuaKWqTAx8iMtKdp3IZR4x88vyEyNMtnVcoRGDWYNUhmpw-xpu9vrf-cRDFpNAczIkYdtXuU18-Y5x3VMBQZDNsYEff60TGN381eGNDc8naX_vvIyLJYup3VSyMgKzKikARsnmQmCp08f1r6VXxcxjqwBCxMYhauwpwXJunhLUusqvE9My6PVMVVv1gRCR5qswW2nfXN2jsrZCkhg6o-QI2PNpjCSsaSC-sLxbC6x9L1IMBbHhGLJ7JAIITCXLlcOE4IwrQyjEMeerfA61JM0URtgaT1FQsVpFBukHim4a9q-JcF2xLR-EE2wK7oGogQeN_MvHoMxZLJhRaBZERhWBJ9NOPh-5LlA3Zi2ebsif1B-gFkwpn0TDisGTtz-67DN6YdtwbxrJCZvRtyG-uj1Te3AnHgfPWSvrVL6WlC7cnt67dE7vfavB1_69eG0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gXrwLa7PHNSDEmybpEkPIqIuPnYXDyreapukImirdlX0R_kbTdqtuwp68-Ct0Da0-SaTyTy-AVjVnjnIEldjRpjGNOISm13OxYnwWaCM_VC6si8avNUSl5fBaR-8V7UwNq2y0omFolaZtD7yLSMpxnahjPo79w_Ydo2y0dWqhUYpFif69cUc2fLto32D75rn1Q_O9g5xp6sAloQFbeyqxHxgFKtEMckC6fqOUEQFfiw5TxLKiOJORKWURChPaJdLSblRA3FEEt_RxIzbD4PUnITsump6p59RC8uNU9JACuwTR1RR1KJUz_Vcm-_BsUMIxW9f98GucfstHltsc_Xx_zZBEzDWMajRbrkCJqFPp1Mwt5tbF39294rWUXFdenDyKRjtYWCchjWzTNDxU5qhZnSd2oJOVLc5faiHfyRLZ-D8T35hFgbSLNVzgIwWppEWLE4sD5GSwrNF7YoSJ-ZG-8kaOBWOoezQqtvuHrdhlxDaQh8a6EMLffhWg43PV-5LTpHfHl6s4A476iUPu1jXYLMSmJ7bPw02__tgKzB8eNZshI2j1skCjHhWWouyy0UYaD8-6SUYks_tm_xxuZB7BFd_LUcfDVA-mA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB680QePVdn17IP6oIRtm6RJH0UtnsuCB76VNklF0K5sdwX315v0cFdRQXwrbRrKzHRmMsc3ADvK1QdZ7ChEMVWIREwgbeUclHCP-lL7D0Uo--6StVr8_t5vl3NOs6ravUpJFj0NBqUp7TVfZNIcNr45rmOqJxiyMSZoMA6TxMwMMsf167uPNIIBqylwGTnysM2rtOZ3W3w2TENv80uCNLc7wcK_v3gR5kuX0zosZGQJxlRag_phZoLgnec3a8_Kr4sYR1aDuRGMwhpMt4v7y7CrRco676cd6yp6SE3zoxWY-jdrBKujk67AbXByc3SKyikLSGDq95AjE82wKJaJpIL6wvFsLrH0vVgwliSEYsnsiAghMJcuVw4TgjCtFuMIJ56t8CpMpJ1U1cHSGotEitM4MZg9UnDXNIBLgu2YaU0hGmBXJA5FCUFuJmE8hUPwZEOmUJMpNGQKBw3Y_3jlpcDf-G3xRsW3sPwVs1CrGO30Ekq8BhxUfBp5_NNma39avQ0z7eMgvDxrXazDrGv4nDcsbsBEr9tXmzAlXnuPWXcrF9B3HA7iNA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Juno+Magnetic+Field+Investigation&rft.jtitle=Space+science+reviews&rft.au=Connerney%2C+J+E+P&rft.au=Benn%2C+M&rft.au=Bjarno%2C+J+B&rft.au=Denver%2C+T&rft.date=2017-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0038-6308&rft.eissn=1572-9672&rft.volume=213&rft.issue=1-4&rft.spage=39&rft.epage=138&rft_id=info:doi/10.1007%2Fs11214-017-0334-z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-6308&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-6308&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-6308&client=summon |