Distributed Beamforming Techniques for Cell-Free Wireless Networks Using Deep Reinforcement Learning

In a cell-free network, a large number of mobile devices are served simultaneously by several base stations (BSs)/access points(APs) using the same time/frequency resources. However, this creates high signal processing demands (e.g., for beamforming) at the transmitters and receivers. In this work,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive communications and networking Jg. 8; H. 2; S. 1186 - 1201
Hauptverfasser: Fredj, Firas, Al-Eryani, Yasser, Maghsudi, Setareh, Akrout, Mohamed, Hossain, Ekram
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2332-7731, 2332-7731
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In a cell-free network, a large number of mobile devices are served simultaneously by several base stations (BSs)/access points(APs) using the same time/frequency resources. However, this creates high signal processing demands (e.g., for beamforming) at the transmitters and receivers. In this work, we develop centralized and distributed deep reinforcement learning (DRL)-based methods to optimize beamforming at the uplink of a cell-free network. First, we propose a fully centralized uplink beamforming method (i.e., centralized learning) that uses the Deep Deterministic Policy Gradient algorithm (DDPG) for an offline-trained DRL model. We then enhance this method, in terms of convergence and performance, by using distributed experiences collected from different APs based on the Distributed Distributional Deterministic Policy Gradients algorithm (D4PG) in which the APs represent the distributed agents of the DRL model. To reduce the complexity of signal processing at the central processing unit (CPU), we propose a fully distributed DRL-based uplink beamforming scheme. This scheme divides the beamforming computations among distributed APs. The proposed schemes are then benchmarked against two common linear beamforming schemes, namely, minimum mean square estimation (MMSE) and the simplified conjugate symmetric schemes. The results show that the D4PG scheme with distributed experience achieves the best performance irrespective of the network size. Furthermore, although the proposed distributed beamforming technique reduces the complexity of centralized learning in the DDPG algorithm, it performs better than the DDPG algorithm only for small-scale networks. The performance superiority of the fully centralized DDPG model becomes more evident as the number of APs and/or UEs increases. The codes for all of our DRL implementations are available at https://github.com/RayRedd/Distributed_beamforming_rl .
AbstractList In a cell-free network, a large number of mobile devices are served simultaneously by several base stations (BSs)/access points(APs) using the same time/frequency resources. However, this creates high signal processing demands (e.g., for beamforming) at the transmitters and receivers. In this work, we develop centralized and distributed deep reinforcement learning (DRL)-based methods to optimize beamforming at the uplink of a cell-free network. First, we propose a fully centralized uplink beamforming method (i.e., centralized learning) that uses the Deep Deterministic Policy Gradient algorithm (DDPG) for an offline-trained DRL model. We then enhance this method, in terms of convergence and performance, by using distributed experiences collected from different APs based on the Distributed Distributional Deterministic Policy Gradients algorithm (D4PG) in which the APs represent the distributed agents of the DRL model. To reduce the complexity of signal processing at the central processing unit (CPU), we propose a fully distributed DRL-based uplink beamforming scheme. This scheme divides the beamforming computations among distributed APs. The proposed schemes are then benchmarked against two common linear beamforming schemes, namely, minimum mean square estimation (MMSE) and the simplified conjugate symmetric schemes. The results show that the D4PG scheme with distributed experience achieves the best performance irrespective of the network size. Furthermore, although the proposed distributed beamforming technique reduces the complexity of centralized learning in the DDPG algorithm, it performs better than the DDPG algorithm only for small-scale networks. The performance superiority of the fully centralized DDPG model becomes more evident as the number of APs and/or UEs increases. The codes for all of our DRL implementations are available at https://github.com/RayRedd/Distributed_beamforming_rl .
Author Al-Eryani, Yasser
Akrout, Mohamed
Hossain, Ekram
Fredj, Firas
Maghsudi, Setareh
Author_xml – sequence: 1
  givenname: Firas
  orcidid: 0000-0002-0303-2660
  surname: Fredj
  fullname: Fredj, Firas
  email: fredjf1@myumanitoba.ca
  organization: Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
– sequence: 2
  givenname: Yasser
  orcidid: 0000-0003-3724-3703
  surname: Al-Eryani
  fullname: Al-Eryani, Yasser
  email: aleryany@myumanitoba.ca
  organization: Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
– sequence: 3
  givenname: Setareh
  surname: Maghsudi
  fullname: Maghsudi, Setareh
  email: setareh.maghsudi@uni-tuebingen.de
  organization: Department of Computer Science, University of Tübingen, Tübingen, Germany
– sequence: 4
  givenname: Mohamed
  orcidid: 0000-0001-8031-1543
  surname: Akrout
  fullname: Akrout, Mohamed
  email: akroutm@myumanitoba.ca
  organization: Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
– sequence: 5
  givenname: Ekram
  orcidid: 0000-0002-5932-6887
  surname: Hossain
  fullname: Hossain, Ekram
  email: ekram.hossain@umanitoba.ca
  organization: Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
BookMark eNp9kF1LwzAUhoNMcM79APEm4HVnkrZJc6mdU2FMkA0vS5qeamabziRD_Pe2TES88Oocznmf8_GeopHtLCB0TsmMUiKv1nm-mjHC2CymPM0oOUJjFscsEiKmo1_5CZp6vyWEUM44z5IxqubGB2fKfYAK34Bq6861xr7gNehXa9734HFfwjk0TbRwAPjZOGjAe7yC8NG5N483fgDmADv8BMb2cg0t2ICXoJzte2fouFaNh-l3nKDN4nad30fLx7uH_HoZ6TiVIaK6qjNOS9CM1UIyKUTCEsaSEkSpai0lKMG4GDJFdaoZJVAzLTPaP1_V8QRdHubuXDdcHoptt3e2X1n0WEJEyhPZq8RBpV3nvYO60CaoYDobnDJNQUkxuFoMrhaDq8W3qz1J_5A7Z1rlPv9lLg6MAYAfvRQpFTyNvwC1VYU2
CODEN ITCCG7
CitedBy_id crossref_primary_10_1007_s10586_025_05197_0
crossref_primary_10_1049_cmu2_12691
crossref_primary_10_1016_j_icte_2025_02_001
crossref_primary_10_1109_TGCN_2022_3196013
crossref_primary_10_1109_TWC_2023_3325772
crossref_primary_10_1109_JIOT_2025_3573222
crossref_primary_10_1109_JSAC_2023_3336154
crossref_primary_10_1016_j_compeleceng_2024_109239
crossref_primary_10_1109_TWC_2023_3258143
crossref_primary_10_1109_TCOMM_2023_3306889
crossref_primary_10_1109_TCOMM_2024_3405331
crossref_primary_10_1109_TCCN_2024_3382973
crossref_primary_10_1109_TCCN_2023_3266379
crossref_primary_10_1109_TVT_2024_3369748
crossref_primary_10_1016_j_phycom_2024_102350
crossref_primary_10_1109_JSYST_2023_3301490
crossref_primary_10_1109_JIOT_2023_3296111
crossref_primary_10_3390_electronics12102294
crossref_primary_10_1145_3617997
crossref_primary_10_1109_TWC_2024_3371703
crossref_primary_10_1109_TC_2025_3585630
crossref_primary_10_3390_s25020388
crossref_primary_10_1109_ACCESS_2023_3337355
crossref_primary_10_1109_COMST_2023_3326399
crossref_primary_10_1109_TGCN_2023_3273909
crossref_primary_10_1109_TWC_2025_3535741
crossref_primary_10_1109_COMST_2023_3345796
crossref_primary_10_3390_electronics11111739
crossref_primary_10_1016_j_comnet_2025_111522
crossref_primary_10_1109_TCCN_2024_3511956
Cites_doi 10.1109/SPAWC.2019.8815420
10.1109/VTCSpring.2018.8417645
10.1109/TCOMM.2020.2987311
10.1109/TVT.2019.2937543
10.1109/JSAC.2020.3000812
10.1109/ICC.2019.8761828
10.1109/LCOMM.2020.3000067
10.1109/JSAC.2020.3018825
10.1109/JCN.2019.000053
10.1109/LWC.2018.2890470
10.1109/IEEECONF44664.2019.9048903
10.1109/TSP.2016.2620962
10.1109/ACCESS.2019.2909490
10.1109/MVT.2019.2903655
10.1109/TWC.2017.2698449
10.1109/ISWCS.2018.8491054
10.1109/TWC.2020.2987027
10.1109/TWC.2019.2941478
10.1109/ACCESS.2018.2872781
10.1109/MCOM.2003.1186553
10.1109/TCOMM.2019.2931971
10.1109/TCOMM.2020.2969351
10.1109/CAMSAP45676.2019.9022520
10.1109/TSP.2010.2094610
10.1109/JSAC.2013.130214
10.1109/SPAWC.2015.7227028
10.1109/ACCESS.2019.2908688
10.1109/TCOMM.2019.2962158
10.1109/TWC.2019.2892463
10.1109/TCCN.2018.2881442
10.1186/s13638-019-1507-0
10.1109/PIMRC.2019.8904394
10.1109/TWC.2017.2655515
10.1109/TGCN.2019.2953575
10.1109/TGCN.2019.2908228
10.1109/MVT.2019.2919279
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCCN.2022.3165810
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2332-7731
EndPage 1201
ExternalDocumentID 10_1109_TCCN_2022_3165810
9751765
Genre orig-research
GrantInformation_xml – fundername: Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC)
  funderid: 10.13039/501100000038
– fundername: Grant 01IS20051 from the German Federal Ministry of Education and Research (BMBF)
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IES
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c359t-1cdf861bec22f792977424224be7bafc99ea7267fc99a1c5c210ef2c981202df3
IEDL.DBID RIE
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808086800055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2332-7731
IngestDate Mon Jun 30 03:13:20 EDT 2025
Sat Nov 29 03:02:25 EST 2025
Tue Nov 18 21:46:37 EST 2025
Wed Aug 27 02:24:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-1cdf861bec22f792977424224be7bafc99ea7267fc99a1c5c210ef2c981202df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0303-2660
0000-0003-3724-3703
0000-0002-5932-6887
0000-0001-8031-1543
PQID 2674075649
PQPubID 4437218
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TCCN_2022_3165810
crossref_primary_10_1109_TCCN_2022_3165810
proquest_journals_2674075649
ieee_primary_9751765
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive communications and networking
PublicationTitleAbbrev TCCN
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
lillicrap (ref33) 2015
ref37
ref15
ref36
ref14
ref31
ref30
ref11
tassa (ref40) 2018
ref32
ref10
ref2
ref1
ref17
ref16
ref19
van hasselt (ref38) 2016
ref18
gray (ref43) 2010
silver (ref39) 2014; 32
ref24
ref23
ref26
ref25
ref20
ref22
ref44
ref21
barth-maron (ref34) 2018
ref28
ref27
ref29
ref8
ref7
ammar (ref42) 2021
ref9
ref4
ref3
ref6
ref5
bellemare (ref41) 2017
References_xml – ident: ref17
  doi: 10.1109/SPAWC.2019.8815420
– ident: ref24
  doi: 10.1109/VTCSpring.2018.8417645
– ident: ref9
  doi: 10.1109/TCOMM.2020.2987311
– ident: ref11
  doi: 10.1109/TVT.2019.2937543
– ident: ref32
  doi: 10.1109/JSAC.2020.3000812
– year: 2015
  ident: ref33
  article-title: Continuous control with deep reinforcement learning
  publication-title: arXiv 1509 02971
– year: 2021
  ident: ref42
  article-title: Distributed resource allocation optimization for user-centric cell-free mimo networks
  publication-title: IEEE Trans Wireless Commun
– year: 2017
  ident: ref41
  article-title: A distributional perspective on reinforcement learning
  publication-title: arXiv 1707 06887
– ident: ref30
  doi: 10.1109/ICC.2019.8761828
– ident: ref22
  doi: 10.1109/LCOMM.2020.3000067
– volume: 32
  start-page: 387
  year: 2014
  ident: ref39
  article-title: Deterministic policy gradient algorithms
  publication-title: Proc 31st Int Conf Mach Learn
– ident: ref20
  doi: 10.1109/JSAC.2020.3018825
– ident: ref25
  doi: 10.1109/JCN.2019.000053
– ident: ref8
  doi: 10.1109/LWC.2018.2890470
– ident: ref13
  doi: 10.1109/IEEECONF44664.2019.9048903
– year: 2010
  ident: ref43
  publication-title: An Introduction to Statistical Signal Processing
– ident: ref10
  doi: 10.1109/TSP.2016.2620962
– ident: ref12
  doi: 10.1109/ACCESS.2019.2909490
– ident: ref16
  doi: 10.1109/MVT.2019.2903655
– year: 2018
  ident: ref40
  article-title: DeepMind control suite
  publication-title: arXiv 1801 00690
– ident: ref21
  doi: 10.1109/TWC.2017.2698449
– ident: ref37
  doi: 10.1109/ISWCS.2018.8491054
– ident: ref28
  doi: 10.1109/TWC.2020.2987027
– ident: ref3
  doi: 10.1109/TWC.2019.2941478
– ident: ref1
  doi: 10.1109/ACCESS.2018.2872781
– ident: ref2
  doi: 10.1109/MCOM.2003.1186553
– ident: ref19
  doi: 10.1109/TCOMM.2019.2931971
– ident: ref23
  doi: 10.1109/TCOMM.2020.2969351
– ident: ref31
  doi: 10.1109/CAMSAP45676.2019.9022520
– ident: ref36
  doi: 10.1109/TSP.2010.2094610
– year: 2018
  ident: ref34
  article-title: Distributed distributional deterministic policy gradients
  publication-title: arXiv 1804 08617
– ident: ref44
  doi: 10.1109/JSAC.2013.130214
– ident: ref35
  doi: 10.1109/SPAWC.2015.7227028
– ident: ref18
  doi: 10.1109/ACCESS.2019.2908688
– ident: ref29
  doi: 10.1109/TCOMM.2019.2962158
– start-page: 2094
  year: 2016
  ident: ref38
  article-title: Deep reinforcement learning with double Q-learning
  publication-title: Proc 30th AAAI Conf Artif Intell
– ident: ref4
  doi: 10.1109/TWC.2019.2892463
– ident: ref15
  doi: 10.1109/TCCN.2018.2881442
– ident: ref7
  doi: 10.1186/s13638-019-1507-0
– ident: ref14
  doi: 10.1109/PIMRC.2019.8904394
– ident: ref6
  doi: 10.1109/TWC.2017.2655515
– ident: ref26
  doi: 10.1109/TGCN.2019.2953575
– ident: ref27
  doi: 10.1109/TGCN.2019.2908228
– ident: ref5
  doi: 10.1109/MVT.2019.2919279
SSID ssj0001626684
Score 2.4137292
Snippet In a cell-free network, a large number of mobile devices are served simultaneously by several base stations (BSs)/access points(APs) using the same...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1186
SubjectTerms Algorithms
Array signal processing
Beamforming
Cell-free network
Central processing units
Clustering algorithms
Complexity
Computer architecture
CPUs
deep deterministic policy gradient algorithm (DDPG)
Deep learning
deep reinforcement learning (DRL)
distributed distributional deterministic policy gradients algorithm (D4PG)
Electronic devices
Machine learning
Probability density function
Radio equipment
Signal processing
Signal processing algorithms
successive interference cancellation
Transmitters
Uplink
Uplinking
Wireless networks
Title Distributed Beamforming Techniques for Cell-Free Wireless Networks Using Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/9751765
https://www.proquest.com/docview/2674075649
Volume 8
WOSCitedRecordID wos000808086800055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2332-7731
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626684
  issn: 2332-7731
  databaseCode: RIE
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VigEGXgVRKMgDEyLUcR6ORyhUDKhCqKBuUWJfEFIoqA9-P2cnLZVASGxWYkdJvsR3n333HcCZifMsjILIy5Os8ELf116uNXo5lyIxhcmNK9_2fC8Hg2Q0Ug8NuFjmwiCiCz7DS9t0e_nmXc_tUllXyciXcbQGa1LKKlfrez2FPPM4CeuNS5-r7rDXGxABFIJ4KdlZmyO7YnpcLZUfE7CzKv3t_93PDmzV3iO7quDehQaO92BzRVOwBebGSuHaKlZo2DVmb9YrpTNsuFBrnTI6xHpYll5_gshsAGxJEx4bVCHhU-biCNgN4gd7RCetqt0qIqvVWF_24al_O-zdeXUpBU8HkZp5vjZFEvsEmBCFJJeIvD4yziLMUeZZoZXCTIpY2lbm60gTE8RCaEX2nwtTBAfQHL-P8RAYcm54Rm6ECSKbB6uMVhmGRPN0HnBTtIEv3nKqa51xW-6iTB3f4Cq1wKQWmLQGpg3nyyEflcjGX51bFollxxqENnQWUKb1bzhN6YmIsEZxqI5-H3UMG_baVexXB5qzyRxPYF1_zl6nk1P3hX0ByHDRLA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gXrwLa7PHDyJddO0aZujri6KaxFZxVtpk6kI6yq7q7_fSdpdBUXwFtqEPr42800y8w3AoYmKPJSB9IokL73Q97VXaI1ewWORmNIUxpVve-jEaZo8PqrbKTie5MIgogs-wxPbdHv55lW_26WypoqlH0dyGmZlGAq_ytb6WlEhbh4lYb116XPV7LZaKbmAQpBnSpbWZsl-Mz6umsqPKdjZlfby_-5oBZZq_shOK8BXYQr7a7D4TVVwHcy5FcO1dazQsDPMXywvpTOsO9ZrHTI6xFrY63ntASKzIbA9mvJYWgWFD5mLJGDniG_sDp24qnbriKzWY33agPv2Rbd16dXFFDwdSDXyfG3KJPIJMiHKmEgR8T4yzyIsMC7yUiuFeSyi2LZyX0tNviCWQitiAFyYMtiEmf5rH7eAIeeG50QkTCBtJqwyWuUYkqOni4CbsgF8_JYzXSuN24IXvcx5HFxlFpjMApPVwDTgaDLkrZLZ-KvzukVi0rEGoQG7Yyiz-kccZvRE5LLKKFTbv486gPnL7k0n61yl1zuwYK9TRYLtwsxo8I57MKc_Rs_Dwb772j4B0N3Ucw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Beamforming+Techniques+for+Cell-Free+Wireless+Networks+Using+Deep+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Fredj%2C+Firas&rft.au=Al-Eryani%2C+Yasser&rft.au=Maghsudi%2C+Setareh&rft.au=Akrout%2C+Mohamed&rft.date=2022-06-01&rft.issn=2332-7731&rft.eissn=2332-7731&rft.volume=8&rft.issue=2&rft.spage=1186&rft.epage=1201&rft_id=info:doi/10.1109%2FTCCN.2022.3165810&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCCN_2022_3165810
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon