Distributed Beamforming Techniques for Cell-Free Wireless Networks Using Deep Reinforcement Learning
In a cell-free network, a large number of mobile devices are served simultaneously by several base stations (BSs)/access points(APs) using the same time/frequency resources. However, this creates high signal processing demands (e.g., for beamforming) at the transmitters and receivers. In this work,...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on cognitive communications and networking Jg. 8; H. 2; S. 1186 - 1201 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2332-7731, 2332-7731 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In a cell-free network, a large number of mobile devices are served simultaneously by several base stations (BSs)/access points(APs) using the same time/frequency resources. However, this creates high signal processing demands (e.g., for beamforming) at the transmitters and receivers. In this work, we develop centralized and distributed deep reinforcement learning (DRL)-based methods to optimize beamforming at the uplink of a cell-free network. First, we propose a fully centralized uplink beamforming method (i.e., centralized learning) that uses the Deep Deterministic Policy Gradient algorithm (DDPG) for an offline-trained DRL model. We then enhance this method, in terms of convergence and performance, by using distributed experiences collected from different APs based on the Distributed Distributional Deterministic Policy Gradients algorithm (D4PG) in which the APs represent the distributed agents of the DRL model. To reduce the complexity of signal processing at the central processing unit (CPU), we propose a fully distributed DRL-based uplink beamforming scheme. This scheme divides the beamforming computations among distributed APs. The proposed schemes are then benchmarked against two common linear beamforming schemes, namely, minimum mean square estimation (MMSE) and the simplified conjugate symmetric schemes. The results show that the D4PG scheme with distributed experience achieves the best performance irrespective of the network size. Furthermore, although the proposed distributed beamforming technique reduces the complexity of centralized learning in the DDPG algorithm, it performs better than the DDPG algorithm only for small-scale networks. The performance superiority of the fully centralized DDPG model becomes more evident as the number of APs and/or UEs increases. The codes for all of our DRL implementations are available at https://github.com/RayRedd/Distributed_beamforming_rl . |
|---|---|
| AbstractList | In a cell-free network, a large number of mobile devices are served simultaneously by several base stations (BSs)/access points(APs) using the same time/frequency resources. However, this creates high signal processing demands (e.g., for beamforming) at the transmitters and receivers. In this work, we develop centralized and distributed deep reinforcement learning (DRL)-based methods to optimize beamforming at the uplink of a cell-free network. First, we propose a fully centralized uplink beamforming method (i.e., centralized learning) that uses the Deep Deterministic Policy Gradient algorithm (DDPG) for an offline-trained DRL model. We then enhance this method, in terms of convergence and performance, by using distributed experiences collected from different APs based on the Distributed Distributional Deterministic Policy Gradients algorithm (D4PG) in which the APs represent the distributed agents of the DRL model. To reduce the complexity of signal processing at the central processing unit (CPU), we propose a fully distributed DRL-based uplink beamforming scheme. This scheme divides the beamforming computations among distributed APs. The proposed schemes are then benchmarked against two common linear beamforming schemes, namely, minimum mean square estimation (MMSE) and the simplified conjugate symmetric schemes. The results show that the D4PG scheme with distributed experience achieves the best performance irrespective of the network size. Furthermore, although the proposed distributed beamforming technique reduces the complexity of centralized learning in the DDPG algorithm, it performs better than the DDPG algorithm only for small-scale networks. The performance superiority of the fully centralized DDPG model becomes more evident as the number of APs and/or UEs increases. The codes for all of our DRL implementations are available at https://github.com/RayRedd/Distributed_beamforming_rl . |
| Author | Al-Eryani, Yasser Akrout, Mohamed Hossain, Ekram Fredj, Firas Maghsudi, Setareh |
| Author_xml | – sequence: 1 givenname: Firas orcidid: 0000-0002-0303-2660 surname: Fredj fullname: Fredj, Firas email: fredjf1@myumanitoba.ca organization: Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada – sequence: 2 givenname: Yasser orcidid: 0000-0003-3724-3703 surname: Al-Eryani fullname: Al-Eryani, Yasser email: aleryany@myumanitoba.ca organization: Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada – sequence: 3 givenname: Setareh surname: Maghsudi fullname: Maghsudi, Setareh email: setareh.maghsudi@uni-tuebingen.de organization: Department of Computer Science, University of Tübingen, Tübingen, Germany – sequence: 4 givenname: Mohamed orcidid: 0000-0001-8031-1543 surname: Akrout fullname: Akrout, Mohamed email: akroutm@myumanitoba.ca organization: Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada – sequence: 5 givenname: Ekram orcidid: 0000-0002-5932-6887 surname: Hossain fullname: Hossain, Ekram email: ekram.hossain@umanitoba.ca organization: Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada |
| BookMark | eNp9kF1LwzAUhoNMcM79APEm4HVnkrZJc6mdU2FMkA0vS5qeamabziRD_Pe2TES88Oocznmf8_GeopHtLCB0TsmMUiKv1nm-mjHC2CymPM0oOUJjFscsEiKmo1_5CZp6vyWEUM44z5IxqubGB2fKfYAK34Bq6861xr7gNehXa9734HFfwjk0TbRwAPjZOGjAe7yC8NG5N483fgDmADv8BMb2cg0t2ICXoJzte2fouFaNh-l3nKDN4nad30fLx7uH_HoZ6TiVIaK6qjNOS9CM1UIyKUTCEsaSEkSpai0lKMG4GDJFdaoZJVAzLTPaP1_V8QRdHubuXDdcHoptt3e2X1n0WEJEyhPZq8RBpV3nvYO60CaoYDobnDJNQUkxuFoMrhaDq8W3qz1J_5A7Z1rlPv9lLg6MAYAfvRQpFTyNvwC1VYU2 |
| CODEN | ITCCG7 |
| CitedBy_id | crossref_primary_10_1007_s10586_025_05197_0 crossref_primary_10_1049_cmu2_12691 crossref_primary_10_1016_j_icte_2025_02_001 crossref_primary_10_1109_TGCN_2022_3196013 crossref_primary_10_1109_TWC_2023_3325772 crossref_primary_10_1109_JIOT_2025_3573222 crossref_primary_10_1109_JSAC_2023_3336154 crossref_primary_10_1016_j_compeleceng_2024_109239 crossref_primary_10_1109_TWC_2023_3258143 crossref_primary_10_1109_TCOMM_2023_3306889 crossref_primary_10_1109_TCOMM_2024_3405331 crossref_primary_10_1109_TCCN_2024_3382973 crossref_primary_10_1109_TCCN_2023_3266379 crossref_primary_10_1109_TVT_2024_3369748 crossref_primary_10_1016_j_phycom_2024_102350 crossref_primary_10_1109_JSYST_2023_3301490 crossref_primary_10_1109_JIOT_2023_3296111 crossref_primary_10_3390_electronics12102294 crossref_primary_10_1145_3617997 crossref_primary_10_1109_TWC_2024_3371703 crossref_primary_10_1109_TC_2025_3585630 crossref_primary_10_3390_s25020388 crossref_primary_10_1109_ACCESS_2023_3337355 crossref_primary_10_1109_COMST_2023_3326399 crossref_primary_10_1109_TGCN_2023_3273909 crossref_primary_10_1109_TWC_2025_3535741 crossref_primary_10_1109_COMST_2023_3345796 crossref_primary_10_3390_electronics11111739 crossref_primary_10_1016_j_comnet_2025_111522 crossref_primary_10_1109_TCCN_2024_3511956 |
| Cites_doi | 10.1109/SPAWC.2019.8815420 10.1109/VTCSpring.2018.8417645 10.1109/TCOMM.2020.2987311 10.1109/TVT.2019.2937543 10.1109/JSAC.2020.3000812 10.1109/ICC.2019.8761828 10.1109/LCOMM.2020.3000067 10.1109/JSAC.2020.3018825 10.1109/JCN.2019.000053 10.1109/LWC.2018.2890470 10.1109/IEEECONF44664.2019.9048903 10.1109/TSP.2016.2620962 10.1109/ACCESS.2019.2909490 10.1109/MVT.2019.2903655 10.1109/TWC.2017.2698449 10.1109/ISWCS.2018.8491054 10.1109/TWC.2020.2987027 10.1109/TWC.2019.2941478 10.1109/ACCESS.2018.2872781 10.1109/MCOM.2003.1186553 10.1109/TCOMM.2019.2931971 10.1109/TCOMM.2020.2969351 10.1109/CAMSAP45676.2019.9022520 10.1109/TSP.2010.2094610 10.1109/JSAC.2013.130214 10.1109/SPAWC.2015.7227028 10.1109/ACCESS.2019.2908688 10.1109/TCOMM.2019.2962158 10.1109/TWC.2019.2892463 10.1109/TCCN.2018.2881442 10.1186/s13638-019-1507-0 10.1109/PIMRC.2019.8904394 10.1109/TWC.2017.2655515 10.1109/TGCN.2019.2953575 10.1109/TGCN.2019.2908228 10.1109/MVT.2019.2919279 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCCN.2022.3165810 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2332-7731 |
| EndPage | 1201 |
| ExternalDocumentID | 10_1109_TCCN_2022_3165810 9751765 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) funderid: 10.13039/501100000038 – fundername: Grant 01IS20051 from the German Federal Ministry of Education and Research (BMBF) |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IES IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c359t-1cdf861bec22f792977424224be7bafc99ea7267fc99a1c5c210ef2c981202df3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808086800055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2332-7731 |
| IngestDate | Mon Jun 30 03:13:20 EDT 2025 Sat Nov 29 03:02:25 EST 2025 Tue Nov 18 21:46:37 EST 2025 Wed Aug 27 02:24:32 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c359t-1cdf861bec22f792977424224be7bafc99ea7267fc99a1c5c210ef2c981202df3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0303-2660 0000-0003-3724-3703 0000-0002-5932-6887 0000-0001-8031-1543 |
| PQID | 2674075649 |
| PQPubID | 4437218 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_TCCN_2022_3165810 crossref_primary_10_1109_TCCN_2022_3165810 proquest_journals_2674075649 ieee_primary_9751765 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on cognitive communications and networking |
| PublicationTitleAbbrev | TCCN |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 lillicrap (ref33) 2015 ref37 ref15 ref36 ref14 ref31 ref30 ref11 tassa (ref40) 2018 ref32 ref10 ref2 ref1 ref17 ref16 ref19 van hasselt (ref38) 2016 ref18 gray (ref43) 2010 silver (ref39) 2014; 32 ref24 ref23 ref26 ref25 ref20 ref22 ref44 ref21 barth-maron (ref34) 2018 ref28 ref27 ref29 ref8 ref7 ammar (ref42) 2021 ref9 ref4 ref3 ref6 ref5 bellemare (ref41) 2017 |
| References_xml | – ident: ref17 doi: 10.1109/SPAWC.2019.8815420 – ident: ref24 doi: 10.1109/VTCSpring.2018.8417645 – ident: ref9 doi: 10.1109/TCOMM.2020.2987311 – ident: ref11 doi: 10.1109/TVT.2019.2937543 – ident: ref32 doi: 10.1109/JSAC.2020.3000812 – year: 2015 ident: ref33 article-title: Continuous control with deep reinforcement learning publication-title: arXiv 1509 02971 – year: 2021 ident: ref42 article-title: Distributed resource allocation optimization for user-centric cell-free mimo networks publication-title: IEEE Trans Wireless Commun – year: 2017 ident: ref41 article-title: A distributional perspective on reinforcement learning publication-title: arXiv 1707 06887 – ident: ref30 doi: 10.1109/ICC.2019.8761828 – ident: ref22 doi: 10.1109/LCOMM.2020.3000067 – volume: 32 start-page: 387 year: 2014 ident: ref39 article-title: Deterministic policy gradient algorithms publication-title: Proc 31st Int Conf Mach Learn – ident: ref20 doi: 10.1109/JSAC.2020.3018825 – ident: ref25 doi: 10.1109/JCN.2019.000053 – ident: ref8 doi: 10.1109/LWC.2018.2890470 – ident: ref13 doi: 10.1109/IEEECONF44664.2019.9048903 – year: 2010 ident: ref43 publication-title: An Introduction to Statistical Signal Processing – ident: ref10 doi: 10.1109/TSP.2016.2620962 – ident: ref12 doi: 10.1109/ACCESS.2019.2909490 – ident: ref16 doi: 10.1109/MVT.2019.2903655 – year: 2018 ident: ref40 article-title: DeepMind control suite publication-title: arXiv 1801 00690 – ident: ref21 doi: 10.1109/TWC.2017.2698449 – ident: ref37 doi: 10.1109/ISWCS.2018.8491054 – ident: ref28 doi: 10.1109/TWC.2020.2987027 – ident: ref3 doi: 10.1109/TWC.2019.2941478 – ident: ref1 doi: 10.1109/ACCESS.2018.2872781 – ident: ref2 doi: 10.1109/MCOM.2003.1186553 – ident: ref19 doi: 10.1109/TCOMM.2019.2931971 – ident: ref23 doi: 10.1109/TCOMM.2020.2969351 – ident: ref31 doi: 10.1109/CAMSAP45676.2019.9022520 – ident: ref36 doi: 10.1109/TSP.2010.2094610 – year: 2018 ident: ref34 article-title: Distributed distributional deterministic policy gradients publication-title: arXiv 1804 08617 – ident: ref44 doi: 10.1109/JSAC.2013.130214 – ident: ref35 doi: 10.1109/SPAWC.2015.7227028 – ident: ref18 doi: 10.1109/ACCESS.2019.2908688 – ident: ref29 doi: 10.1109/TCOMM.2019.2962158 – start-page: 2094 year: 2016 ident: ref38 article-title: Deep reinforcement learning with double Q-learning publication-title: Proc 30th AAAI Conf Artif Intell – ident: ref4 doi: 10.1109/TWC.2019.2892463 – ident: ref15 doi: 10.1109/TCCN.2018.2881442 – ident: ref7 doi: 10.1186/s13638-019-1507-0 – ident: ref14 doi: 10.1109/PIMRC.2019.8904394 – ident: ref6 doi: 10.1109/TWC.2017.2655515 – ident: ref26 doi: 10.1109/TGCN.2019.2953575 – ident: ref27 doi: 10.1109/TGCN.2019.2908228 – ident: ref5 doi: 10.1109/MVT.2019.2919279 |
| SSID | ssj0001626684 |
| Score | 2.4137292 |
| Snippet | In a cell-free network, a large number of mobile devices are served simultaneously by several base stations (BSs)/access points(APs) using the same... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1186 |
| SubjectTerms | Algorithms Array signal processing Beamforming Cell-free network Central processing units Clustering algorithms Complexity Computer architecture CPUs deep deterministic policy gradient algorithm (DDPG) Deep learning deep reinforcement learning (DRL) distributed distributional deterministic policy gradients algorithm (D4PG) Electronic devices Machine learning Probability density function Radio equipment Signal processing Signal processing algorithms successive interference cancellation Transmitters Uplink Uplinking Wireless networks |
| Title | Distributed Beamforming Techniques for Cell-Free Wireless Networks Using Deep Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/9751765 https://www.proquest.com/docview/2674075649 |
| Volume | 8 |
| WOSCitedRecordID | wos000808086800055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2332-7731 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626684 issn: 2332-7731 databaseCode: RIE dateStart: 20150101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VigEGXgVRKMgDEyLUcR6ORyhUDKhCqKBuUWJfEFIoqA9-P2cnLZVASGxWYkdJvsR3n333HcCZifMsjILIy5Os8ELf116uNXo5lyIxhcmNK9_2fC8Hg2Q0Ug8NuFjmwiCiCz7DS9t0e_nmXc_tUllXyciXcbQGa1LKKlfrez2FPPM4CeuNS5-r7rDXGxABFIJ4KdlZmyO7YnpcLZUfE7CzKv3t_93PDmzV3iO7quDehQaO92BzRVOwBebGSuHaKlZo2DVmb9YrpTNsuFBrnTI6xHpYll5_gshsAGxJEx4bVCHhU-biCNgN4gd7RCetqt0qIqvVWF_24al_O-zdeXUpBU8HkZp5vjZFEvsEmBCFJJeIvD4yziLMUeZZoZXCTIpY2lbm60gTE8RCaEX2nwtTBAfQHL-P8RAYcm54Rm6ECSKbB6uMVhmGRPN0HnBTtIEv3nKqa51xW-6iTB3f4Cq1wKQWmLQGpg3nyyEflcjGX51bFollxxqENnQWUKb1bzhN6YmIsEZxqI5-H3UMG_baVexXB5qzyRxPYF1_zl6nk1P3hX0ByHDRLA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gXrwLa7PHDyJddO0aZujri6KaxFZxVtpk6kI6yq7q7_fSdpdBUXwFtqEPr42800y8w3AoYmKPJSB9IokL73Q97VXaI1ewWORmNIUxpVve-jEaZo8PqrbKTie5MIgogs-wxPbdHv55lW_26WypoqlH0dyGmZlGAq_ytb6WlEhbh4lYb116XPV7LZaKbmAQpBnSpbWZsl-Mz6umsqPKdjZlfby_-5oBZZq_shOK8BXYQr7a7D4TVVwHcy5FcO1dazQsDPMXywvpTOsO9ZrHTI6xFrY63ntASKzIbA9mvJYWgWFD5mLJGDniG_sDp24qnbriKzWY33agPv2Rbd16dXFFDwdSDXyfG3KJPIJMiHKmEgR8T4yzyIsMC7yUiuFeSyi2LZyX0tNviCWQitiAFyYMtiEmf5rH7eAIeeG50QkTCBtJqwyWuUYkqOni4CbsgF8_JYzXSuN24IXvcx5HFxlFpjMApPVwDTgaDLkrZLZ-KvzukVi0rEGoQG7Yyiz-kccZvRE5LLKKFTbv486gPnL7k0n61yl1zuwYK9TRYLtwsxo8I57MKc_Rs_Dwb772j4B0N3Ucw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Beamforming+Techniques+for+Cell-Free+Wireless+Networks+Using+Deep+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Fredj%2C+Firas&rft.au=Al-Eryani%2C+Yasser&rft.au=Maghsudi%2C+Setareh&rft.au=Akrout%2C+Mohamed&rft.date=2022-06-01&rft.issn=2332-7731&rft.eissn=2332-7731&rft.volume=8&rft.issue=2&rft.spage=1186&rft.epage=1201&rft_id=info:doi/10.1109%2FTCCN.2022.3165810&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCCN_2022_3165810 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon |