Online Prediction and Correction of Static Voltage Stability Index Based on Extreme Gradient Boosting Algorithm

With the increasing integration of renewable energy sources into the power grid and the continuous expansion of grid infrastructure, real-time preventive control becomes crucial. This article proposes a real-time prediction and correction method based on the extreme gradient boosting (XGBoost) algor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) Jg. 17; H. 22; S. 5710
Hauptverfasser: Qin, Huiling, Li, Shuang, Zhang, Juncheng, Rao, Zhi, He, Chengyu, Chen, Zhijun, Li, Bo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.11.2024
Schlagworte:
ISSN:1996-1073, 1996-1073
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the increasing integration of renewable energy sources into the power grid and the continuous expansion of grid infrastructure, real-time preventive control becomes crucial. This article proposes a real-time prediction and correction method based on the extreme gradient boosting (XGBoost) algorithm. The XGBoost algorithm is utilized to evaluate the real-time stability of grid static voltage, with the voltage stability L-index as the prediction target. A correction model is established with the objective of minimizing correction costs while considering the operational constraints of the grid. When the L-index exceeds the warning value, the XGBoost algorithm can obtain the importance of each feature of the system and calculate the sensitivity approximation of highly important characteristics. The model corrects these characteristics to maintain the system’s operation within a reasonably secure range. The methodology is demonstrated using the IEEE-14 and IEEE-118 systems. The results show that the XGBoost algorithm has higher prediction accuracy and computational efficiency in assessing the static voltage stability of the power grid. It is also shown that the proposed approach has the potential to greatly improve the operational dependability of the power grid.
AbstractList With the increasing integration of renewable energy sources into the power grid and the continuous expansion of grid infrastructure, real-time preventive control becomes crucial. This article proposes a real-time prediction and correction method based on the extreme gradient boosting (XGBoost) algorithm. The XGBoost algorithm is utilized to evaluate the real-time stability of grid static voltage, with the voltage stability L-index as the prediction target. A correction model is established with the objective of minimizing correction costs while considering the operational constraints of the grid. When the L-index exceeds the warning value, the XGBoost algorithm can obtain the importance of each feature of the system and calculate the sensitivity approximation of highly important characteristics. The model corrects these characteristics to maintain the system’s operation within a reasonably secure range. The methodology is demonstrated using the IEEE-14 and IEEE-118 systems. The results show that the XGBoost algorithm has higher prediction accuracy and computational efficiency in assessing the static voltage stability of the power grid. It is also shown that the proposed approach has the potential to greatly improve the operational dependability of the power grid.
Audience Academic
Author Li, Bo
Qin, Huiling
Zhang, Juncheng
He, Chengyu
Rao, Zhi
Li, Shuang
Chen, Zhijun
Author_xml – sequence: 1
  givenname: Huiling
  surname: Qin
  fullname: Qin, Huiling
– sequence: 2
  givenname: Shuang
  surname: Li
  fullname: Li, Shuang
– sequence: 3
  givenname: Juncheng
  surname: Zhang
  fullname: Zhang, Juncheng
– sequence: 4
  givenname: Zhi
  surname: Rao
  fullname: Rao, Zhi
– sequence: 5
  givenname: Chengyu
  surname: He
  fullname: He, Chengyu
– sequence: 6
  givenname: Zhijun
  surname: Chen
  fullname: Chen, Zhijun
– sequence: 7
  givenname: Bo
  orcidid: 0000-0001-7320-7297
  surname: Li
  fullname: Li, Bo
BookMark eNpNUcFq3DAQFSWFpptc-gWC3gqbSB7Zko6bJU0XAimk6dWM5bGrxSulsgLJ31cbl6aag2aGN4838z6ykxADMfZJigsAKy4pSF1VtZbiHTuV1jZrKTSc_Jd_YOfzvBflAUgAOGXxLkw-EP-eqPcu-xg4hp5vY0q0lHHg9xmzd_xnnDKOdCw7P_n8wnehp2d-hTP1vECvn3OiA_GbhL2nkPlVjHP2YeSbaYzJ51-HM_Z-wGmm87__ij18vf6x_ba-vbvZbTe3awe1zWvZdXUHqlNoHQ0EjZbYDSCMLsKNUxqlIGc6XXXaWbLUGCOkcqYG5QgQVmy38PYR9-1j8gdML21E3742YhpbTGWpiVotKm0acBL1oDQJNIqErKU1lQVdTrVinxeuxxR_P9Gc2318SqHIb49XFFA3lSqoiwU1YiH1YYg5oSvR08G74tTgS39jpKlEZZUtA1-WAZfiPCca_smUoj0a2r4ZCn8AwNGSuw
Cites_doi 10.1109/TPWRS.2009.2038059
10.1109/TPWRS.2018.2872505
10.1109/TSG.2017.2693394
10.1016/j.egyr.2020.11.006
10.1109/AEEES51875.2021.9403146
10.1016/j.ijepes.2015.05.002
10.1016/j.epsr.2023.109562
10.1016/j.eswa.2022.117184
10.1016/j.ijepes.2011.06.008
10.3390/su16093621
10.1016/j.apenergy.2020.115733
10.1016/j.engappai.2024.109368
10.1109/SCEMS48876.2020.9352249
10.3390/en17091999
10.1109/TPWRS.2018.2849717
10.1016/j.eswa.2007.08.059
10.1016/j.egyr.2020.10.005
10.1109/TPWRS.2004.826018
10.1145/2939672.2939785
10.1016/j.epsr.2022.108915
10.1109/ICTFCEN.2016.8052703
10.1109/TPWRD.1986.4308013
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en17225710
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_7027863c1a7f47e0a84e015198293700
A818202949
10_3390_en17225710
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c359t-1bb5b34b4a9cefe3671abf30873318c47a10ec8b72b7c9e9e688014c8534ce3a3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001364364800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Mon Nov 10 04:29:49 EST 2025
Mon Jun 30 13:59:54 EDT 2025
Tue Nov 04 18:14:42 EST 2025
Sat Nov 29 07:12:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-1bb5b34b4a9cefe3671abf30873318c47a10ec8b72b7c9e9e688014c8534ce3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7320-7297
OpenAccessLink https://doaj.org/article/7027863c1a7f47e0a84e015198293700
PQID 3133035624
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_7027863c1a7f47e0a84e015198293700
proquest_journals_3133035624
gale_infotracacademiconefile_A818202949
crossref_primary_10_3390_en17225710
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Gao (ref_17) 2023; 214
ref_14
Yang (ref_22) 2022; 199
ref_23
Gupta (ref_10) 2019; 34
Su (ref_7) 2018; 33
Devaraj (ref_8) 2011; 33
ref_21
Anthony (ref_19) 2024; 138
ref_1
ref_3
Cao (ref_13) 2020; 6
ref_18
Zhou (ref_5) 2010; 25
Malbasa (ref_6) 2017; 8
ref_15
Shi (ref_2) 2020; 278
Moulin (ref_4) 2004; 19
Guo (ref_12) 2020; 6
Kessel (ref_20) 1986; 1
Shahriyari (ref_16) 2023; 223
Chakrabarti (ref_9) 2008; 35
Sajan (ref_11) 2015; 73
References_xml – volume: 25
  start-page: 1566
  year: 2010
  ident: ref_5
  article-title: Online Monitoring of Voltage Stability Margin Using an Artificial Neural Network
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2038059
– ident: ref_3
– volume: 34
  start-page: 864
  year: 2019
  ident: ref_10
  article-title: An Online Power System Stability Monitoring System Using Convolutional Neural Networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2872505
– volume: 8
  start-page: 3117
  year: 2017
  ident: ref_6
  article-title: Voltage Stability Prediction Using Active Machine Learning
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2693394
– volume: 6
  start-page: 1424
  year: 2020
  ident: ref_12
  article-title: Study on short-term photovoltaic power prediction model based on the Stacking ensemble learning
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.11.006
– ident: ref_15
  doi: 10.1109/AEEES51875.2021.9403146
– volume: 73
  start-page: 200
  year: 2015
  ident: ref_11
  article-title: Genetic algorithm based support vector machine for on-line voltage stability monitoring
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.05.002
– volume: 223
  start-page: 109562
  year: 2023
  ident: ref_16
  article-title: A short-term voltage stability online assessment based on multi-layer perceptron learning
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2023.109562
– volume: 199
  start-page: 117184
  year: 2022
  ident: ref_22
  article-title: Online prediction and correction control of static voltage stability index based on Broad Learning System
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117184
– volume: 33
  start-page: 1550
  year: 2011
  ident: ref_8
  article-title: On-line voltage stability assessment using radial basis function network model with reduced input features
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2011.06.008
– ident: ref_23
  doi: 10.3390/su16093621
– volume: 278
  start-page: 115733
  year: 2020
  ident: ref_2
  article-title: Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115733
– volume: 138
  start-page: 109368
  year: 2024
  ident: ref_19
  article-title: Application of cascaded neural network for prediction of voltage stability margin in a solar and wind integrated power system
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.109368
– ident: ref_14
  doi: 10.1109/SCEMS48876.2020.9352249
– ident: ref_18
  doi: 10.3390/en17091999
– volume: 33
  start-page: 6696
  year: 2018
  ident: ref_7
  article-title: Enhanced-Online-Random-Forest Model for Static Voltage Stability Assessment Using Wide Area Measurements
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2849717
– volume: 35
  start-page: 1802
  year: 2008
  ident: ref_9
  article-title: Voltage stability monitoring by artificial neural network using a regression-based feature selection method
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.08.059
– volume: 6
  start-page: 2751
  year: 2020
  ident: ref_13
  article-title: Electrical load prediction of healthcare buildings through single and ensemble learning
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.10.005
– volume: 19
  start-page: 818
  year: 2004
  ident: ref_4
  article-title: Support vector machines for transient stability analysis of large-scale power systems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2004.826018
– ident: ref_21
  doi: 10.1145/2939672.2939785
– volume: 214
  start-page: 108915
  year: 2023
  ident: ref_17
  article-title: Real-time long-term voltage stability assessment based on eGBDT for large-scale power system with high renewables penetration
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.108915
– ident: ref_1
  doi: 10.1109/ICTFCEN.2016.8052703
– volume: 1
  start-page: 346
  year: 1986
  ident: ref_20
  article-title: Estimating the Voltage Stability of a Power System
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.1986.4308013
SSID ssj0000331333
Score 2.3783772
Snippet With the increasing integration of renewable energy sources into the power grid and the continuous expansion of grid infrastructure, real-time preventive...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 5710
SubjectTerms Accuracy
Algorithms
Alternative energy sources
Analysis
Decision trees
Electricity distribution
Energy consumption
extreme gradient boosting (XGBoost) algorithm
Feature selection
Genetic algorithms
Infrastructure (Economics)
Machine learning
Methods
Neural networks
preventive control
real-time prediction
sensitivity approximation
static voltage stability
Support vector machines
Wind power
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB61Sw_tgb7FUqgstVJP0SY7JnZOaBfxOhTtoa3oybIdhyJBQrNpBf-emcQLXMqpxySOY-Wz52HPfAPw2aIsnWNPdWoxkaXME41eJZmvbFYxHZ50fbEJdXKiT0-LRUyPXsawypVM7AX1wPbMcdskhCdl43nHfILkWqVIulvuXv1OuIYUn7XGghpPYY2Jt9IRrC2Ovy5-3u25pMjv4cBSiuTtT0JNCpxmLSfQPtBLPX3_v4R0r3kOXv7fMb-C9WiBitkwZV7Dk1C_gRcPeAnfQjMQkIpFy8c4DJ2wdSn2uJLHcNlUgs3Ucy9-NBcdySS-7ONsb8QxEzCKOanHUlDT_euO9yDFYdtHl3Vi3jRLDrYWs4szGl_36_IdfD_Y_7Z3lMTKDInHnaJLMud2HEonbeFDFTBXmXUVkwvSH9ZeKpulwWunpk75IhQh18xS48k2kD6gxfcwqps6bIBwWiPZlBqzvJLkf2pVaGaVL6ceyRxzY_i0wsVcDQQchhwXRs_cozeGOUN214JJs_sbTXtm4ho0ik9Zc_SZVZVUIbVaBrKGMvogGWkpdfKFATe8tLvWehszFGigTJJlZprZ7qeFLMawtQLcxDW_NPf4bj7--AM8p27kkNG4BaOu_RO24Zn_250v249x0t4CRbn7wA
  priority: 102
  providerName: ProQuest
Title Online Prediction and Correction of Static Voltage Stability Index Based on Extreme Gradient Boosting Algorithm
URI https://www.proquest.com/docview/3133035624
https://doaj.org/article/7027863c1a7f47e0a84e015198293700
Volume 17
WOSCitedRecordID wos001364364800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2h0gMcKlpALC2VJZA4RU123Ng57lbbj0NXEQJUTpbtOLBSm6BsiuiF386Mk9K9IC5cIjmyFOuN7ZkXj98AvLMoK-eYqU4tJrKSeaLRqyTztc1qlsOTLhabUMulvroqyo1SX5wTNsgDD8AdKT4ay9FnVtVShdRqGciFEVcmR6XSyNZTVWyQqbgHIxL5wkGPFInXH4WGXDXNT74qu-GBolD_37bj6GNOn8HOGByK2TCoXXgUmj14uiEZ-BzaQRtUlB2fsDCqwjaVOOEiG0OzrQVHkCsvPrfXPW0X3IwpsHfigrURxZw8VyWo6-Jnz78HxVkXE796MW_bNedBi9n117Zb9d9uXsCn08XHk_NkLJqQeDwu-iRz7tihdNIWPtQBc5VZV7PuH0GivVQ2S4PXTk2d8kUoQq5ZQMaT25Y-oMWXsNW0TXgFwmmNFO5pzPJaEjXUikAnPlJNPVKk5Cbw9h5I833QxjDEKRhu8wD3BOaM8Z8erGcdX5CVzWhl8y8rT-A9W8jwqus76-14eYAGyvpVZqZZiH5ayGICB_dGNONyXBueDClSqCdf_4_R7MMT-pgcriQewFbf3YY3sO1_9Kt1dwiP54tl-eEwzkh6Xv5a0Lvy4rL88hsfsuM9
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NU9QwFH-DizPKwW-HVdTMqOOpQ9uEJj0wzi6C7AA7e0AHTyFJU2QGWuhWhX_Kv9H3-gFc9MbBY9pMmia_vI8k7_cA3hkuMmvJU40ND0QmkkBxJ4PI5SbKiQ5P2CbZhJxO1cFBOluA330sDF2r7GViI6iz0tEe-SpHZyrkqK3Fx7PzgLJG0elqn0KjhcWOv_yFLtt8ffIJ5_d9HG9t7m9sB11WgcDxtbQOImvXLBdWmNT53PNERsbmRIzHEd9OSBOF3ikrYytd6lOfKGJYcajXhPPccGz3DiwKBHs4gMXZZG_27WpXJ-TUT97yoHKehqu-QBMB1wWF6N7QfE2CgL-pgUa3bT3830blETzorGg2amH_GBZ88QSWbnArPoWyJVFls4qOogh-zBQZ26BsJG2xzBmZ2seOfS1PapSrVGzuCl-yCZFIsjGq-Ixh1c2LmvZR2eequSFXs3FZzunCOBudHOF41N9Pn8GXW_nj5zAoysIvA7NKcbSLFY-SXKAPrWSqiBk_ix1Hk9IO4W0_8_qsJRHR6HwRPvQ1PoYwJlBc1SDi7-ZBWR3pTo5oSSfFCXeRkbmQPjRKeLToIvwgGpohNvKBIKVJPNWVcaaLssCOEtGXHili7I9TkQ5hpYeU7uTWXF_j6cW_X7-Be9v7e7t6dzLdeQn3sUnRRmiuwKCufvhXcNf9rI_n1etuiTA4vG38_QHVKU2Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I1YKGAJEKdok4y7dg4I7ba7sCparRCg3lLbcUqlkpRsePSv8euYyaPtBW49cHRiOYnzeR72zDcALwzKzFr2VGODgczkONDoVBC53EQ50-FJ2xSbUMul3t9PVhvwu8-F4bDKXiY2gjorHe-Rj5CcqRBJW8tR3oVFrHbnb06-BVxBik9a-3IaLUT2_OlPct_Wrxe79K9fxvF89nHnXdBVGAgcbid1EFm7bVFaaRLnc49jFRmbM0keEtadVCYKvdNWxVa5xCd-rJltxZGOk86jQRr3CmwqJKdnAJvT2XL14WyHJ0R-Z2w5URGTcOQLMhdojXC67gUt2BQL-JtKaPTc_Nb_PEO34WZnXYtJuxzuwIYv7sKNC5yL96BsyVXFquIjKoalMEUmdrhKSdssc8Em-JETn8vjmuQtN5sY4lOxYHJJMSXVnwnqOvtV8_6qeFs1kXO1mJblmgPJxeT4kOaj_vL1Pny6lC9-AIOiLPxDEFZrJHtZYzTOJfnWWiWaGfOz2CGZmnYIz3sUpCctuUhKThljJT3HyhCmDJCzHkwI3lwoq8O0ky-p4hPkMbrIqFwqHxotPVl6ET2QDNCQBnnF8EpZbNWVcabLvqAXZQKwdKKZyT9OZDKErR5eaSfP1uk5th79-_YzuEagS98vlnuP4TqNKNvEzS0Y1NV3_wSuuh_10bp62q0WAQeXDb8_N7BWKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Prediction+and+Correction+of+Static+Voltage+Stability+Index+Based+on+Extreme+Gradient+Boosting+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Huiling+Qin&rft.au=Shuang+Li&rft.au=Juncheng+Zhang&rft.au=Zhi+Rao&rft.date=2024-11-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=17&rft.issue=22&rft.spage=5710&rft_id=info:doi/10.3390%2Fen17225710&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7027863c1a7f47e0a84e015198293700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon