A proximal difference-of-convex algorithm with extrapolation

We consider a class of difference-of-convex (DC) optimization problems whose objective is level-bounded and is the sum of a smooth convex function with Lipschitz gradient, a proper closed convex function and a continuous concave function. While this kind of problems can be solved by the classical di...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational optimization and applications Ročník 69; číslo 2; s. 297 - 324
Hlavní autori: Wen, Bo, Chen, Xiaojun, Pong, Ting Kei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.03.2018
Springer Nature B.V
Predmet:
ISSN:0926-6003, 1573-2894
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We consider a class of difference-of-convex (DC) optimization problems whose objective is level-bounded and is the sum of a smooth convex function with Lipschitz gradient, a proper closed convex function and a continuous concave function. While this kind of problems can be solved by the classical difference-of-convex algorithm (DCA) (Pham et al. Acta Math Vietnam 22:289–355, 1997 ), the difficulty of the subproblems of this algorithm depends heavily on the choice of DC decomposition. Simpler subproblems can be obtained by using a specific DC decomposition described in Pham et al. (SIAM J Optim 8:476–505, 1998 ). This decomposition has been proposed in numerous work such as Gotoh et al. (DC formulations and algorithms for sparse optimization problems, 2017 ), and we refer to the resulting DCA as the proximal DCA. Although the subproblems are simpler, the proximal DCA is the same as the proximal gradient algorithm when the concave part of the objective is void, and hence is potentially slow in practice. In this paper, motivated by the extrapolation techniques for accelerating the proximal gradient algorithm in the convex settings, we consider a proximal difference-of-convex algorithm with extrapolation to possibly accelerate the proximal DCA. We show that any cluster point of the sequence generated by our algorithm is a stationary point of the DC optimization problem for a fairly general choice of extrapolation parameters: in particular, the parameters can be chosen as in FISTA with fixed restart (O’Donoghue and Candès in Found Comput Math 15, 715–732, 2015 ). In addition, by assuming the Kurdyka-Łojasiewicz property of the objective and the differentiability of the concave part, we establish global convergence of the sequence generated by our algorithm and analyze its convergence rate. Our numerical experiments on two difference-of-convex regularized least squares models show that our algorithm usually outperforms the proximal DCA and the general iterative shrinkage and thresholding algorithm proposed in Gong et al. (A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems, 2013 ).
AbstractList We consider a class of difference-of-convex (DC) optimization problems whose objective is level-bounded and is the sum of a smooth convex function with Lipschitz gradient, a proper closed convex function and a continuous concave function. While this kind of problems can be solved by the classical difference-of-convex algorithm (DCA) (Pham et al. Acta Math Vietnam 22:289–355, 1997 ), the difficulty of the subproblems of this algorithm depends heavily on the choice of DC decomposition. Simpler subproblems can be obtained by using a specific DC decomposition described in Pham et al. (SIAM J Optim 8:476–505, 1998 ). This decomposition has been proposed in numerous work such as Gotoh et al. (DC formulations and algorithms for sparse optimization problems, 2017 ), and we refer to the resulting DCA as the proximal DCA. Although the subproblems are simpler, the proximal DCA is the same as the proximal gradient algorithm when the concave part of the objective is void, and hence is potentially slow in practice. In this paper, motivated by the extrapolation techniques for accelerating the proximal gradient algorithm in the convex settings, we consider a proximal difference-of-convex algorithm with extrapolation to possibly accelerate the proximal DCA. We show that any cluster point of the sequence generated by our algorithm is a stationary point of the DC optimization problem for a fairly general choice of extrapolation parameters: in particular, the parameters can be chosen as in FISTA with fixed restart (O’Donoghue and Candès in Found Comput Math 15, 715–732, 2015 ). In addition, by assuming the Kurdyka-Łojasiewicz property of the objective and the differentiability of the concave part, we establish global convergence of the sequence generated by our algorithm and analyze its convergence rate. Our numerical experiments on two difference-of-convex regularized least squares models show that our algorithm usually outperforms the proximal DCA and the general iterative shrinkage and thresholding algorithm proposed in Gong et al. (A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems, 2013 ).
We consider a class of difference-of-convex (DC) optimization problems whose objective is level-bounded and is the sum of a smooth convex function with Lipschitz gradient, a proper closed convex function and a continuous concave function. While this kind of problems can be solved by the classical difference-of-convex algorithm (DCA) (Pham et al. Acta Math Vietnam 22:289–355, 1997), the difficulty of the subproblems of this algorithm depends heavily on the choice of DC decomposition. Simpler subproblems can be obtained by using a specific DC decomposition described in Pham et al. (SIAM J Optim 8:476–505, 1998). This decomposition has been proposed in numerous work such as Gotoh et al. (DC formulations and algorithms for sparse optimization problems, 2017), and we refer to the resulting DCA as the proximal DCA. Although the subproblems are simpler, the proximal DCA is the same as the proximal gradient algorithm when the concave part of the objective is void, and hence is potentially slow in practice. In this paper, motivated by the extrapolation techniques for accelerating the proximal gradient algorithm in the convex settings, we consider a proximal difference-of-convex algorithm with extrapolation to possibly accelerate the proximal DCA. We show that any cluster point of the sequence generated by our algorithm is a stationary point of the DC optimization problem for a fairly general choice of extrapolation parameters: in particular, the parameters can be chosen as in FISTA with fixed restart (O’Donoghue and Candès in Found Comput Math 15, 715–732, 2015). In addition, by assuming the Kurdyka-Łojasiewicz property of the objective and the differentiability of the concave part, we establish global convergence of the sequence generated by our algorithm and analyze its convergence rate. Our numerical experiments on two difference-of-convex regularized least squares models show that our algorithm usually outperforms the proximal DCA and the general iterative shrinkage and thresholding algorithm proposed in Gong et al. (A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems, 2013).
Author Chen, Xiaojun
Wen, Bo
Pong, Ting Kei
Author_xml – sequence: 1
  givenname: Bo
  surname: Wen
  fullname: Wen, Bo
  organization: School of Science, Hebei University of Technology, Department of Mathematics, Harbin Institute of Technology, Department of Applied Mathematics, The Hong Kong Polytechnic University
– sequence: 2
  givenname: Xiaojun
  orcidid: 0000-0001-8053-0121
  surname: Chen
  fullname: Chen, Xiaojun
  email: maxjchen@polyu.edu.hk
  organization: Department of Applied Mathematics, The Hong Kong Polytechnic University
– sequence: 3
  givenname: Ting Kei
  surname: Pong
  fullname: Pong, Ting Kei
  organization: Department of Applied Mathematics, The Hong Kong Polytechnic University
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnqOTZHeTgJdS_IKCFz2HbDpbt2w3Ndlq_femriAIeplc3ifzzjMho853SMg5g0sGIK8ig0JpCkxSrYucsiMyZoUUlCudj8gYNC9pCSBOyCTGNQBoKfiYXM-ybfD7ZmPbbNnUNQbsHFJfU-e7N9xntl350PQvm-w9zQz3fbBb39q-8d0pOa5tG_Hs-52S59ubp_k9XTzePcxnC-pEoXvKtIIqB6wFFgXXS2cLyR2rlqpiiFg6JSupBXKF6RQoRZ3nGhBBKCtYZcWUXAz_pqqvO4y9Wftd6NJKwwEUL1muVErJIeWCjzFgbVzTf_VMlZvWMDAHVWZQZZIqc1BlWCLZL3IbkpHw8S_DByambLfC8NPpb-gTpZB9IA
CitedBy_id crossref_primary_10_1155_2021_5629868
crossref_primary_10_1007_s10898_023_01272_1
crossref_primary_10_1007_s10898_022_01126_2
crossref_primary_10_1109_LCSYS_2024_3407630
crossref_primary_10_1007_s10107_018_1318_9
crossref_primary_10_1109_TSP_2025_3580667
crossref_primary_10_1007_s10915_025_02950_w
crossref_primary_10_1142_S0217595923500288
crossref_primary_10_1007_s10589_020_00241_8
crossref_primary_10_1109_ACCESS_2025_3589260
crossref_primary_10_1007_s10915_021_01547_3
crossref_primary_10_1007_s11081_022_09716_5
crossref_primary_10_1137_18M117337X
crossref_primary_10_1007_s10898_019_00828_4
crossref_primary_10_1287_moor_2020_0393
crossref_primary_10_1007_s10915_024_02550_0
crossref_primary_10_1137_18M1214342
crossref_primary_10_1016_j_cam_2021_113602
crossref_primary_10_1137_20M1314057
crossref_primary_10_1007_s10915_025_02900_6
crossref_primary_10_1007_s10915_025_02904_2
crossref_primary_10_1287_ijoo_2022_0087
crossref_primary_10_1016_j_sigpro_2019_107369
crossref_primary_10_1007_s10589_022_00443_2
crossref_primary_10_1007_s10589_019_00139_0
crossref_primary_10_1007_s11590_024_02132_x
crossref_primary_10_1007_s12190_022_01797_w
crossref_primary_10_1007_s10589_025_00680_1
crossref_primary_10_1137_20M1325381
crossref_primary_10_1109_TII_2019_2916986
crossref_primary_10_1007_s10589_022_00427_2
crossref_primary_10_1016_j_ejor_2025_04_034
crossref_primary_10_1109_TCYB_2021_3067352
crossref_primary_10_1109_TWC_2024_3508763
crossref_primary_10_1007_s10208_021_09528_6
crossref_primary_10_1007_s10957_023_02348_4
crossref_primary_10_1007_s10712_022_09725_0
crossref_primary_10_1109_JAS_2022_105602
crossref_primary_10_1007_s10957_023_02171_x
crossref_primary_10_1186_s13660_023_03001_4
crossref_primary_10_1080_02331934_2024_2314241
crossref_primary_10_1109_ACCESS_2020_2980058
crossref_primary_10_1137_20M1353368
crossref_primary_10_1007_s10589_022_00357_z
crossref_primary_10_1007_s10589_022_00416_5
crossref_primary_10_1080_02331934_2025_2519943
crossref_primary_10_1109_TIP_2020_3008367
crossref_primary_10_1287_moor_2024_0457
crossref_primary_10_1007_s10915_022_02021_4
crossref_primary_10_1007_s00521_021_06348_1
crossref_primary_10_1007_s10589_019_00081_1
crossref_primary_10_1360_SSM_2024_0024
crossref_primary_10_1016_j_apnum_2023_04_004
crossref_primary_10_1007_s10589_019_00067_z
crossref_primary_10_1007_s10915_022_01845_4
crossref_primary_10_1007_s10915_021_01677_8
crossref_primary_10_1137_21M1443455
crossref_primary_10_1007_s40305_025_00600_4
crossref_primary_10_1007_s10898_021_01043_w
crossref_primary_10_1137_21M1434507
crossref_primary_10_3934_jimo_2025077
crossref_primary_10_1016_j_neucom_2019_08_035
crossref_primary_10_1109_TCYB_2021_3050487
crossref_primary_10_1109_MSP_2020_3003845
crossref_primary_10_1137_20M1355380
crossref_primary_10_1007_s10915_024_02715_x
crossref_primary_10_1080_10556788_2024_2368578
crossref_primary_10_1007_s11590_018_1280_8
crossref_primary_10_1080_02331934_2023_2187661
crossref_primary_10_1137_22M1495524
crossref_primary_10_1016_j_asoc_2023_110129
crossref_primary_10_1007_s11590_020_01685_x
crossref_primary_10_1287_moor_2021_1207
crossref_primary_10_1007_s10957_023_02219_y
crossref_primary_10_1007_s10957_024_02580_6
crossref_primary_10_1287_opre_2021_2115
crossref_primary_10_1007_s10957_024_02414_5
crossref_primary_10_1007_s11590_021_01716_1
crossref_primary_10_1016_j_cam_2025_116923
crossref_primary_10_1088_1361_6560_ac3842
crossref_primary_10_1007_s10589_020_00173_3
crossref_primary_10_3390_math10040601
crossref_primary_10_1007_s40314_021_01540_4
crossref_primary_10_1007_s11075_023_01554_5
crossref_primary_10_1016_j_image_2021_116214
crossref_primary_10_1155_2021_9994015
crossref_primary_10_1007_s11075_024_01965_y
crossref_primary_10_1016_j_asoc_2023_110893
crossref_primary_10_1109_TIFS_2020_3047758
crossref_primary_10_1007_s10957_021_01827_w
crossref_primary_10_1007_s10898_021_01079_y
crossref_primary_10_1007_s10898_022_01176_6
crossref_primary_10_1007_s10957_025_02689_2
crossref_primary_10_1109_TIT_2024_3412129
crossref_primary_10_1109_JPHOT_2024_3388469
crossref_primary_10_1007_s10107_024_02190_0
crossref_primary_10_1137_24M1672067
crossref_primary_10_1007_s10589_022_00377_9
crossref_primary_10_1007_s10589_022_00411_w
crossref_primary_10_1007_s10589_023_00525_9
crossref_primary_10_1287_moor_2021_1227
crossref_primary_10_1007_s10898_021_01028_9
crossref_primary_10_1109_TSP_2023_3263724
crossref_primary_10_1007_s43670_025_00102_7
crossref_primary_10_1007_s11075_023_01679_7
crossref_primary_10_1137_20M1326775
Cites_doi 10.1007/978-1-4419-9569-8_10
10.1007/s10107-017-1181-0
10.1109/TSP.2014.2315167
10.1007/s10107-011-0484-9
10.1137/080716542
10.1007/978-1-4419-8853-9
10.1007/s10479-004-5022-1
10.1287/moor.1100.0449
10.1007/s10107-013-0701-9
10.1198/016214501753382273
10.1007/s10107-006-0034-z
10.1007/s10898-011-9765-3
10.1137/16M1084754
10.1007/s12532-011-0029-5
10.1007/s10107-007-0133-5
10.1109/TSP.2009.2016892
10.1007/s00041-008-9045-x
10.1137/050644641
10.1214/09-AOS729
10.1007/s10589-017-9900-2
10.1007/s10208-013-9150-3
10.1109/TSP.2014.2303946
10.1137/15M1028054
10.1007/s10107-012-0629-5
10.1016/0041-5553(64)90137-5
10.1007/978-3-642-02431-3
10.1137/S1052623494274313
10.1137/140952363
10.1007/978-3-319-31484-6
10.1287/moor.2016.0837
10.1007/s10208-017-9366-8
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2017
Computational Optimization and Applications is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC 2017
– notice: Computational Optimization and Applications is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10589-017-9954-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 324
ExternalDocumentID 10_1007_s10589_017_9954_1
GrantInformation_xml – fundername: Hong Kong Research Grants Council
  grantid: PolyU153000/15p; PolyU153085/16p
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c359t-1980b40ef3e5529dca572c1bd8b1eee6c87b793e28e007063f4490ee038a31ba3
IEDL.DBID M2P
ISICitedReferencesCount 128
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426295000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-6003
IngestDate Wed Nov 26 13:52:54 EST 2025
Sat Nov 29 01:51:28 EST 2025
Tue Nov 18 21:54:31 EST 2025
Fri Feb 21 02:36:48 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nonsmooth
Extrapolation
Kurdyka-Łojasiewicz inequality
90C30
65K05
90C26
Difference-of-convex problems
Nonconvex
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-1980b40ef3e5529dca572c1bd8b1eee6c87b793e28e007063f4490ee038a31ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8053-0121
OpenAccessLink http://ira.lib.polyu.edu.hk/bitstream/10397/79655/1/a0585-n03_pDCAe_v2_new.pdf
PQID 2008261488
PQPubID 30811
PageCount 28
ParticipantIDs proquest_journals_2008261488
crossref_citationtrail_10_1007_s10589_017_9954_1
crossref_primary_10_1007_s10589_017_9954_1
springer_journals_10_1007_s10589_017_9954_1
PublicationCentury 2000
PublicationDate 20180300
2018-3-00
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 3
  year: 2018
  text: 20180300
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ZhangCNearly unbiased variable selection under minimax concave penaltyAnn. Stat.201038894942260470110.1214/09-AOS7291183.62120
AlvaradoAScutariGPangJSA new decomposition method for multiuser DC-programming and its applicationsIEEE Trans. Signal Process.20146229842998322516010.1109/TSP.2014.2315167
NesterovYGradient methods for minimizing composite functionsMath. Progr. Ser. B2013140125161307186510.1007/s10107-012-0629-51287.90067
PolyakBTSome methods of speeding up the convergence of iteration methodsUSSR Comput. Math. Math. Phys.1964411710.1016/0041-5553(64)90137-5
YinPLouYHeQXinJMinimization of ℓ1-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1-2}$$\end{document} for compressed sensingSIAM J. Sci. Comput.201537A536A563331522910.1137/1409523631316.90037
AttouchHBolteJSvaiterBFConvergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss-Seidel methodsMath. Progr. Ser. A201313791129301042110.1007/s10107-011-0484-91260.49048
NesterovYDual extrapolation and its applications to solving variational inequalities and related problemsMath. Progr. Ser. B2007109319344229514610.1007/s10107-006-0034-z1167.90014
AttouchHBolteJRedontPSoubeyranAProximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequalityMath. Oper. Res.201035438457267472810.1287/moor.1100.04491214.65036
Le ThiHAPhamDTLeDMExact penalty in D.C. programmingVietnam J. Math.19992716917818108951006.90062
Bian, W., Chen, X.: Optimality and complexity for constrained optimization problems with nonconvex regularization. Math. Oper. Res. (2017). doi:10.1287/moor.2016.0837
CombettesPLPesquetJ-CProximal splitting methods in signal processingFixed-Point Algorithms Inverse Probl. Sci. Eng.201149185212285883810.1007/978-1-4419-9569-8_101242.90160
NesterovYA method of solving a convex programming problem with convergence rate O(1k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\frac{1}{k^2})$$\end{document}Sov. Math. Dokl.1983273723760535.90071
FanJLiRVariable selection via nonconcave penalized likelihood and its oracle propertiesJ. Am. Stat. Assoc.20019613481360194658110.1198/0162145017533822731073.62547
PhamDTLe ThiHAA D.C. optimization algorithm for solving the trust-region subproblemSIAM J. Optim.19988476505161853110.1137/S10526234942743130913.65054
SanjabiMRazaviyaynMLuoZ-QOptimal joint base station assignment and beamforming for heterogeneous networksIEEE Trans. Signal Process.20146219501961319519010.1109/TSP.2014.2303946
LiuTPongTKFurther properties of the forward-backward envelope with applications to difference-of-convex programmingComput. Optim. Appl.201767489520365418310.1007/s10589-017-9900-206748147
WrightSJNowakRFigueiredoMATSparse reconstruction by separable approximationIEEE Trans. Signal Process.20095724792493265016510.1109/TSP.2009.2016892
Gong, P., Zhang, C., Lu, Z., Huang, J., Ye, J.: A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. In: ICML (2013)
ChenXLuZPongTKPenalty methods for a class of non-Lipschitz optimization problemsSIAM J. Optim.20162614651492352308510.1137/15M10280541342.90181
NesterovYIntroductory Lectures on Convex Optimization: A Basic Course2004BostonKluwer Academic Publishers10.1007/978-1-4419-8853-91086.90045
BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092183202248652710.1137/0807165421175.94009
Zhang, S., Xin, J.: Minimization of transformed L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} penalty: theory, difference of convex function algorithm, and robust application in compressed sensing. arXiv preprint arXiv:1411.5735v3
Li, G., Pong, T.K.: Calculus of the exponent of Kurdyka-Łojasiewicz inequality and its applications to linear convergence of first-order methods. Found. Comput. Math. (2017). doi:10.1007/s10208-017-9366-8
Le ThiHAPhamDTHuynhVNExact penalty and error bounds in DC programmingJ. Glob. Optim.201252509535289253410.1007/s10898-011-9765-31242.49037
BeckerSCandèsEJGrantMCTemplates for convex cone problems with applications to sparse signal recoveryMath. Progr. Comput.20113165218283326210.1007/s12532-011-0029-51257.90042
BolteJSabachSTeboulleMProximal alternating linearized minimization for nonconvex and nonsmooth problemsMath. Progr. Ser. A2014146459494323262310.1007/s10107-013-0701-91297.90125
RockafellarRTWetsRJ-BVariational Analysis1998BerlinSpringer10.1007/978-3-642-02431-30888.49001
Le ThiHAPhamDTThe DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problemsAnn. Oper. Res.20051332346211931110.1007/s10479-004-5022-11116.90122
Banert, S., Boţ, R.I.: A general double-proximal gradient algorithm for d.c. programming. arXiv preprint arXiv:1610.06538v1
Gotoh, J., Takeda, A., Tono, K.: DC formulations and algorithms for sparse optimization problems. Math. Progr. Ser. B. (2017). doi:10.1007/s10107-017-1181-0
Ahn, M., Pang, J.S., Xin, J.: Difference-of-convex learning: directional stationarity, optimality, and sparsity. SIAM J. Optim. 27, 1637–1665 (2017)
TuyHConvex Analysis and Global Optimization20162BerlinSpringer10.1007/978-3-319-31484-61362.90001
AttouchHBolteJOn the convergence of the proximal algorithm for nonsmooth functions involving analytic featuresMath. Progr. Ser. B2009116516242127010.1007/s10107-007-0133-51165.90018
CandèsEJWakinMBoydSEnhancing sparsity by reweighted ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document} minimizationJ. Fourier Anal. Appl.200814877905246161110.1007/s00041-008-9045-x1176.94014
BolteJDaniilidisALewisAThe Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systemsSIAM J. Optim.2007171205122310.1137/0506446411129.26012
PhamDTLe ThiHAConvex analysis approach to D.C. programming: theory, algorithms and applicationsActa Math. Vietnam.19972228935514797510895.90152
O’DonoghueBCandèsEJAdaptive restart for accelerated gradient schemesFound. Comput. Math.201515715732334817110.1007/s10208-013-9150-31320.90061
9954_CR1
SJ Wright (9954_CR34) 2009; 57
9954_CR6
X Chen (9954_CR13) 2016; 26
9954_CR9
HA Thi Le (9954_CR19) 1999; 27
J Bolte (9954_CR10) 2007; 17
Y Nesterov (9954_CR23) 1983; 27
Y Nesterov (9954_CR24) 2004
H Attouch (9954_CR4) 2010; 35
9954_CR21
P Yin (9954_CR35) 2015; 37
C Zhang (9954_CR36) 2010; 38
PL Combettes (9954_CR14) 2011; 49
H Tuy (9954_CR33) 2016
A Alvarado (9954_CR2) 2014; 62
J Bolte (9954_CR11) 2014; 146
T Liu (9954_CR22) 2017; 67
H Attouch (9954_CR5) 2013; 137
M Sanjabi (9954_CR32) 2014; 62
RT Rockafellar (9954_CR31) 1998
HA Thi Le (9954_CR18) 2005; 133
Y Nesterov (9954_CR25) 2007; 109
H Attouch (9954_CR3) 2009; 116
J Fan (9954_CR15) 2001; 96
DT Pham (9954_CR28) 1997; 22
BT Polyak (9954_CR30) 1964; 4
EJ Candès (9954_CR12) 2008; 14
9954_CR37
9954_CR16
DT Pham (9954_CR29) 1998; 8
9954_CR17
Y Nesterov (9954_CR26) 2013; 140
S Becker (9954_CR8) 2011; 3
A Beck (9954_CR7) 2009; 2
HA Thi Le (9954_CR20) 2012; 52
B O’Donoghue (9954_CR27) 2015; 15
References_xml – reference: PhamDTLe ThiHAConvex analysis approach to D.C. programming: theory, algorithms and applicationsActa Math. Vietnam.19972228935514797510895.90152
– reference: PhamDTLe ThiHAA D.C. optimization algorithm for solving the trust-region subproblemSIAM J. Optim.19988476505161853110.1137/S10526234942743130913.65054
– reference: WrightSJNowakRFigueiredoMATSparse reconstruction by separable approximationIEEE Trans. Signal Process.20095724792493265016510.1109/TSP.2009.2016892
– reference: AttouchHBolteJSvaiterBFConvergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss-Seidel methodsMath. Progr. Ser. A201313791129301042110.1007/s10107-011-0484-91260.49048
– reference: BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092183202248652710.1137/0807165421175.94009
– reference: BolteJSabachSTeboulleMProximal alternating linearized minimization for nonconvex and nonsmooth problemsMath. Progr. Ser. A2014146459494323262310.1007/s10107-013-0701-91297.90125
– reference: CombettesPLPesquetJ-CProximal splitting methods in signal processingFixed-Point Algorithms Inverse Probl. Sci. Eng.201149185212285883810.1007/978-1-4419-9569-8_101242.90160
– reference: Le ThiHAPhamDTLeDMExact penalty in D.C. programmingVietnam J. Math.19992716917818108951006.90062
– reference: RockafellarRTWetsRJ-BVariational Analysis1998BerlinSpringer10.1007/978-3-642-02431-30888.49001
– reference: YinPLouYHeQXinJMinimization of ℓ1-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1-2}$$\end{document} for compressed sensingSIAM J. Sci. Comput.201537A536A563331522910.1137/1409523631316.90037
– reference: Ahn, M., Pang, J.S., Xin, J.: Difference-of-convex learning: directional stationarity, optimality, and sparsity. SIAM J. Optim. 27, 1637–1665 (2017)
– reference: BolteJDaniilidisALewisAThe Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systemsSIAM J. Optim.2007171205122310.1137/0506446411129.26012
– reference: Gotoh, J., Takeda, A., Tono, K.: DC formulations and algorithms for sparse optimization problems. Math. Progr. Ser. B. (2017). doi:10.1007/s10107-017-1181-0
– reference: Banert, S., Boţ, R.I.: A general double-proximal gradient algorithm for d.c. programming. arXiv preprint arXiv:1610.06538v1
– reference: NesterovYIntroductory Lectures on Convex Optimization: A Basic Course2004BostonKluwer Academic Publishers10.1007/978-1-4419-8853-91086.90045
– reference: NesterovYGradient methods for minimizing composite functionsMath. Progr. Ser. B2013140125161307186510.1007/s10107-012-0629-51287.90067
– reference: PolyakBTSome methods of speeding up the convergence of iteration methodsUSSR Comput. Math. Math. Phys.1964411710.1016/0041-5553(64)90137-5
– reference: AttouchHBolteJRedontPSoubeyranAProximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequalityMath. Oper. Res.201035438457267472810.1287/moor.1100.04491214.65036
– reference: AttouchHBolteJOn the convergence of the proximal algorithm for nonsmooth functions involving analytic featuresMath. Progr. Ser. B2009116516242127010.1007/s10107-007-0133-51165.90018
– reference: CandèsEJWakinMBoydSEnhancing sparsity by reweighted ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}$$\end{document} minimizationJ. Fourier Anal. Appl.200814877905246161110.1007/s00041-008-9045-x1176.94014
– reference: LiuTPongTKFurther properties of the forward-backward envelope with applications to difference-of-convex programmingComput. Optim. Appl.201767489520365418310.1007/s10589-017-9900-206748147
– reference: ChenXLuZPongTKPenalty methods for a class of non-Lipschitz optimization problemsSIAM J. Optim.20162614651492352308510.1137/15M10280541342.90181
– reference: TuyHConvex Analysis and Global Optimization20162BerlinSpringer10.1007/978-3-319-31484-61362.90001
– reference: Gong, P., Zhang, C., Lu, Z., Huang, J., Ye, J.: A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. In: ICML (2013)
– reference: Li, G., Pong, T.K.: Calculus of the exponent of Kurdyka-Łojasiewicz inequality and its applications to linear convergence of first-order methods. Found. Comput. Math. (2017). doi:10.1007/s10208-017-9366-8
– reference: BeckerSCandèsEJGrantMCTemplates for convex cone problems with applications to sparse signal recoveryMath. Progr. Comput.20113165218283326210.1007/s12532-011-0029-51257.90042
– reference: Le ThiHAPhamDTThe DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problemsAnn. Oper. Res.20051332346211931110.1007/s10479-004-5022-11116.90122
– reference: SanjabiMRazaviyaynMLuoZ-QOptimal joint base station assignment and beamforming for heterogeneous networksIEEE Trans. Signal Process.20146219501961319519010.1109/TSP.2014.2303946
– reference: NesterovYDual extrapolation and its applications to solving variational inequalities and related problemsMath. Progr. Ser. B2007109319344229514610.1007/s10107-006-0034-z1167.90014
– reference: Zhang, S., Xin, J.: Minimization of transformed L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} penalty: theory, difference of convex function algorithm, and robust application in compressed sensing. arXiv preprint arXiv:1411.5735v3
– reference: AlvaradoAScutariGPangJSA new decomposition method for multiuser DC-programming and its applicationsIEEE Trans. Signal Process.20146229842998322516010.1109/TSP.2014.2315167
– reference: NesterovYA method of solving a convex programming problem with convergence rate O(1k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\frac{1}{k^2})$$\end{document}Sov. Math. Dokl.1983273723760535.90071
– reference: O’DonoghueBCandèsEJAdaptive restart for accelerated gradient schemesFound. Comput. Math.201515715732334817110.1007/s10208-013-9150-31320.90061
– reference: FanJLiRVariable selection via nonconcave penalized likelihood and its oracle propertiesJ. Am. Stat. Assoc.20019613481360194658110.1198/0162145017533822731073.62547
– reference: Bian, W., Chen, X.: Optimality and complexity for constrained optimization problems with nonconvex regularization. Math. Oper. Res. (2017). doi:10.1287/moor.2016.0837
– reference: Le ThiHAPhamDTHuynhVNExact penalty and error bounds in DC programmingJ. Glob. Optim.201252509535289253410.1007/s10898-011-9765-31242.49037
– reference: ZhangCNearly unbiased variable selection under minimax concave penaltyAnn. Stat.201038894942260470110.1214/09-AOS7291183.62120
– volume: 49
  start-page: 185
  year: 2011
  ident: 9954_CR14
  publication-title: Fixed-Point Algorithms Inverse Probl. Sci. Eng.
  doi: 10.1007/978-1-4419-9569-8_10
– ident: 9954_CR17
  doi: 10.1007/s10107-017-1181-0
– ident: 9954_CR16
– ident: 9954_CR37
– volume: 62
  start-page: 2984
  year: 2014
  ident: 9954_CR2
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2315167
– volume: 137
  start-page: 91
  year: 2013
  ident: 9954_CR5
  publication-title: Math. Progr. Ser. A
  doi: 10.1007/s10107-011-0484-9
– volume: 27
  start-page: 169
  year: 1999
  ident: 9954_CR19
  publication-title: Vietnam J. Math.
– volume: 2
  start-page: 183
  year: 2009
  ident: 9954_CR7
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume-title: Introductory Lectures on Convex Optimization: A Basic Course
  year: 2004
  ident: 9954_CR24
  doi: 10.1007/978-1-4419-8853-9
– volume: 133
  start-page: 23
  year: 2005
  ident: 9954_CR18
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-004-5022-1
– volume: 35
  start-page: 438
  year: 2010
  ident: 9954_CR4
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0449
– volume: 146
  start-page: 459
  year: 2014
  ident: 9954_CR11
  publication-title: Math. Progr. Ser. A
  doi: 10.1007/s10107-013-0701-9
– volume: 96
  start-page: 1348
  year: 2001
  ident: 9954_CR15
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753382273
– volume: 109
  start-page: 319
  year: 2007
  ident: 9954_CR25
  publication-title: Math. Progr. Ser. B
  doi: 10.1007/s10107-006-0034-z
– volume: 52
  start-page: 509
  year: 2012
  ident: 9954_CR20
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-011-9765-3
– ident: 9954_CR1
  doi: 10.1137/16M1084754
– volume: 3
  start-page: 165
  year: 2011
  ident: 9954_CR8
  publication-title: Math. Progr. Comput.
  doi: 10.1007/s12532-011-0029-5
– volume: 116
  start-page: 5
  year: 2009
  ident: 9954_CR3
  publication-title: Math. Progr. Ser. B
  doi: 10.1007/s10107-007-0133-5
– volume: 57
  start-page: 2479
  year: 2009
  ident: 9954_CR34
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2016892
– volume: 14
  start-page: 877
  year: 2008
  ident: 9954_CR12
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-008-9045-x
– volume: 17
  start-page: 1205
  year: 2007
  ident: 9954_CR10
  publication-title: SIAM J. Optim.
  doi: 10.1137/050644641
– volume: 38
  start-page: 894
  year: 2010
  ident: 9954_CR36
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS729
– volume: 67
  start-page: 489
  year: 2017
  ident: 9954_CR22
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-017-9900-2
– volume: 15
  start-page: 715
  year: 2015
  ident: 9954_CR27
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-013-9150-3
– volume: 62
  start-page: 1950
  year: 2014
  ident: 9954_CR32
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2303946
– volume: 26
  start-page: 1465
  year: 2016
  ident: 9954_CR13
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1028054
– volume: 27
  start-page: 372
  year: 1983
  ident: 9954_CR23
  publication-title: Sov. Math. Dokl.
– volume: 140
  start-page: 125
  year: 2013
  ident: 9954_CR26
  publication-title: Math. Progr. Ser. B
  doi: 10.1007/s10107-012-0629-5
– volume: 22
  start-page: 289
  year: 1997
  ident: 9954_CR28
  publication-title: Acta Math. Vietnam.
– volume: 4
  start-page: 1
  year: 1964
  ident: 9954_CR30
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– volume-title: Variational Analysis
  year: 1998
  ident: 9954_CR31
  doi: 10.1007/978-3-642-02431-3
– volume: 8
  start-page: 476
  year: 1998
  ident: 9954_CR29
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494274313
– volume: 37
  start-page: A536
  year: 2015
  ident: 9954_CR35
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140952363
– volume-title: Convex Analysis and Global Optimization
  year: 2016
  ident: 9954_CR33
  doi: 10.1007/978-3-319-31484-6
– ident: 9954_CR9
  doi: 10.1287/moor.2016.0837
– ident: 9954_CR21
  doi: 10.1007/s10208-017-9366-8
– ident: 9954_CR6
SSID ssj0009732
Score 2.5692167
Snippet We consider a class of difference-of-convex (DC) optimization problems whose objective is level-bounded and is the sum of a smooth convex function with...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 297
SubjectTerms Algorithms
Continuity (mathematics)
Convergence
Convex and Discrete Geometry
Decomposition
Economic models
Extrapolation
Formulations
Iterative methods
Management Science
Mathematical models
Mathematics
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Shrinkage
Statistics
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6keqgHH1WxWmUPnpTAbrKPBLwUsXhRxBe9LdnsRAttt7RV_Pkm--hWUUGPyybDMklmJpsv3wdwolniCo6MaBop4kuhiUy1JtxuHlImlKKF2ER0c8P7fXFb3uOeVWj36kgyj9RLl90CC-8xUdVymBGz5Vk12Y5bvYa7-6eaaTfKVclcQUNisjmrjjK_M_E5GdUV5pdD0TzX9Db_9ZVbsFGWlk63mAvbsILjFqwvEQ6ap-sFS-usBU1baRZEzTtw3nUspGUwMiYq1RSFJNMkB6a_O3L4nE0H85eRY__dOiaoT-UkK6B0u_DYu3y4uCKltAJRLBBz4hm_Jb6LmmEQUJEqGURUeUnKEw8RQ8WjxKxcpBwtIVDItO8LF9FlXDIvkWwPGuNsjPvgUI1p4KGQ9k6sRYSl2kui1JWCaYVh2Aa38nGsSt5xK38xjGvGZOuz2Pgstj6LvTacLrpMCtKN3xp3qoGLy_U3y8U1qeU45W04qwaqfv2jsYM_tT6EpqmfeAFJ60BjPn3FI1hTb2bspsf5tPwAVBfcLw
  priority: 102
  providerName: Springer Nature
Title A proximal difference-of-convex algorithm with extrapolation
URI https://link.springer.com/article/10.1007/s10589-017-9954-1
https://www.proquest.com/docview/2008261488
Volume 69
WOSCitedRecordID wos000426295000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4V6AEOtBSqLqWrHDiBrPqxiW2pUkURqBJiteLRUi6R44xbJNhddrdVf349eTS0Urn0MlIUx4o8znji-fx9ALtBFdwaVCxI7dnA2cBcGQIz9PNQKuu9rMUm9HBorq7sqNlwmzewyjYmVoG6nHjaI39LdXpJrJXm_fSekWoUVVcbCY0lWImZjSBI16kcdaS7uhIo41ZmLC7sqq1q1kfnUgILxRhNjGhM_LkudcnmX_XRatk5fva_L_wc1puEMzmoZ8gGPMHxC1h7QEO4Ce8OEkKz3NzFdq1gikc2CazCpP9M3O3X2PPi211C27ZJjOczN53UKLotuDw-ujj8yBpVBeZVahdMWMOLAcegME2lLb1LtfSiKE0hEDHzRhfxo0VpkLiAMhUGA8sRuTJOicKpl7A8nozxFSQyYJkKtI6OwxIYrAyi0CV3VgWPWdYD3o5p7hvKcVK-uM07smRyQx7dkJMbctGDvd-PTGu-jcca77RDnzef3jzvxr0H-63zutv_7Gz78c5ew2rMlUwNP9uB5cXsO76Bp_7H4mY-68OS_vylDysfjoajs3h1olm0p_ywX81Isvo82lF6He3Z-adfNpXlHQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xkmgPvNqK5ZkDvYCsJnYetgRCiIdAwIoDlbiljjOGlWB32d3y-FP8RjzJhtBKcOPAOY6VZCaeseeb7wNYsyLzlUTBLE8MC7WyTOfWMkmbh1woY3gpNpE0m_LiQp2NwFPVC0OwympNLBbqvGPojPwX1ek5sVbK7e4tI9Uoqq5WEhqlWxzj473bsvW3jvacfX9yfrB_vnvIhqoCzIhIDZjbZftZ6KMVGEVc5UZHCTdBlsssQMTYyCRzTotcInHhxMKGofIRfSG1CDIt3LyjMB4SsxhBBflZTfKbFIJovuIxc4mEqKqoZateROAkFxOIgY0F_8bBOrn9rx5bhLmD6c_2gWZgaphQezvlHzALI9ieg6-vaBa_weaOR2id1o0bVwnCGGQdywrM_YOnry_dmwyubjw6lvZcvOrpbqdECX6H3x_y-D9grN1p4zx43GIeBag0tfsS2C23QZbkvlbCGozjBviVDVMzpFQnZY_rtCaDJrOnzuwpmT0NGrD-cku35BN5b_BSZep0uLT009rODdionKW-_OZkC-9PtgqTh-enJ-nJUfN4Eb64vFCWULslGBv0_uIyTJi7QavfWyl83oM_H-1Dz8aHOlw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB3RBVXtobSUqkuXNodyaWWR2JvElkBoVboqolrtgUqIS-o44xaJ3Wx30xb-Gr8OTz4aQIIbh57jWHHm2Z7xPL8BeG9F6iuJglkeG9bXyjKdWcskBQ-ZUMbwqthEPBrJ42M1XoLL5i4M0SqbNbFcqLPc0Bn5NuXpOalWym1b0yLG-8O92S9GFaQo09qU06ggcogXf134ttg92He23uJ8-Pno0xdWVxhgRoSqYC7i9tO-j1ZgGHKVGR3G3ARpJtMAESMj49QBGLlE0sWJhO33lY_oC6lFkGrh-n0Ey7GLMYlOOA5PWsHfuCyO5iseMedUiCajWl3bC4mo5PYHUmNjwc09sXV0b-Vmyy1vuPo__6zn8Kx2tL1BNTNewBJO1-DpNfnFl7Az8IjFczpx7ZpCMQZZblnJxT_39NkPN5Li58Sj42rPjW-uZ3nFHlyHbw_y-a-gM82n-Bo8bjELA1SargETCS6zQRpnvlbCGoyiLviNPRNTS61TxY-zpBWJJggkDgIJQSAJuvDh3yuzSmfkvsa9xuxJveQsktbmXfjYAKd9fGdnG_d39g4eO-gkXw9Gh2_giXMXZcXA60GnmP_GTVgxf4rTxfxtCX8Pvj80hK4ADehDSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+proximal+difference-of-convex+algorithm+with+extrapolation&rft.jtitle=Computational+optimization+and+applications&rft.au=Wen%2C+Bo&rft.au=Chen%2C+Xiaojun&rft.au=Pong%2C+Ting+Kei&rft.date=2018-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=69&rft.issue=2&rft.spage=297&rft.epage=324&rft_id=info:doi/10.1007%2Fs10589-017-9954-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon