The role of crossover operator in the genetic optimization of magnetic models

The Ising model, introduced almost 100 years ago by Wilhelm Lenz and Ernst Ising, is the formalism still popular as a tool to describe magnetic properties of a wide class of materials. Among many issues which arise when using this model there exist problems related to the process of finding minimum...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 217; číslo 22; s. 9368 - 9379
Hlavní autor: GWIZDALLA, Tomasz M
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 15.07.2011
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Ising model, introduced almost 100 years ago by Wilhelm Lenz and Ernst Ising, is the formalism still popular as a tool to describe magnetic properties of a wide class of materials. Among many issues which arise when using this model there exist problems related to the process of finding minimum energy of the system. Since these problems are NP-hard, optimizations can either be performed for some approximated cases or be the subject of global optimization techniques. In this paper we present an analysis of the effect of different crossover operators on the efficiency of genetic algorithm used to minimize energy in the Ising model. Although it is not a benchmark tool, we hope it may be interesting as a testing tool.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2011.04.025