Lossy volume compression using Tucker truncation and thresholding

Tensor decompositions, in particular the Tucker model, are a powerful family of techniques for dimensionality reduction and are being increasingly used for compactly encoding large multidimensional arrays, images and other visual data sets. In interactive applications, volume data often needs to be...

Full description

Saved in:
Bibliographic Details
Published in:The Visual computer Vol. 32; no. 11; pp. 1433 - 1446
Main Authors: Ballester-Ripoll, Rafael, Pajarola, Renato
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2016
Springer Nature B.V
Subjects:
ISSN:0178-2789, 1432-2315
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Tensor decompositions, in particular the Tucker model, are a powerful family of techniques for dimensionality reduction and are being increasingly used for compactly encoding large multidimensional arrays, images and other visual data sets. In interactive applications, volume data often needs to be decompressed and manipulated dynamically; when designing data reduction and reconstruction methods, several parameters must be taken into account, such as the achievable compression ratio, approximation error and reconstruction speed. Weighing these variables in an effective way is challenging, and here we present two main contributions to solve this issue for Tucker tensor decompositions. First, we provide algorithms to efficiently compute, store and retrieve good choices of tensor rank selection and decompression parameters in order to optimize memory usage, approximation quality and computational costs. Second, we propose a Tucker compression alternative based on coefficient thresholding and zigzag traversal, followed by logarithmic quantization on both the transformed tensor core and its factor matrices. In terms of approximation accuracy, this approach is theoretically and empirically better than the commonly used tensor rank truncation method.
AbstractList Tensor decompositions, in particular the Tucker model, are a powerful family of techniques for dimensionality reduction and are being increasingly used for compactly encoding large multidimensional arrays, images and other visual data sets. In interactive applications, volume data often needs to be decompressed and manipulated dynamically; when designing data reduction and reconstruction methods, several parameters must be taken into account, such as the achievable compression ratio, approximation error and reconstruction speed. Weighing these variables in an effective way is challenging, and here we present two main contributions to solve this issue for Tucker tensor decompositions. First, we provide algorithms to efficiently compute, store and retrieve good choices of tensor rank selection and decompression parameters in order to optimize memory usage, approximation quality and computational costs. Second, we propose a Tucker compression alternative based on coefficient thresholding and zigzag traversal, followed by logarithmic quantization on both the transformed tensor core and its factor matrices. In terms of approximation accuracy, this approach is theoretically and empirically better than the commonly used tensor rank truncation method.
Author Ballester-Ripoll, Rafael
Pajarola, Renato
Author_xml – sequence: 1
  givenname: Rafael
  surname: Ballester-Ripoll
  fullname: Ballester-Ripoll, Rafael
  email: rballester@ifi.uzh.ch
  organization: Visualization and MultiMedia Lab, Department of Informatics, University of Zürich
– sequence: 2
  givenname: Renato
  surname: Pajarola
  fullname: Pajarola, Renato
  organization: Visualization and MultiMedia Lab, Department of Informatics, University of Zürich
BookMark eNp9kN9LwzAQx4NMcJv-Ab4VfI7eJU3TPo7hLxj4Mp9D0qZbZ9fMpBX235tZQRD06bjj-7m773dGJp3rLCHXCLcIIO8CAJdIAQVF5ECPZ2SKKWeUcRQTMgWUOWUyLy7ILIQdxF6mxZQsVi6EY_Lh2mFvk9LtD96G0LguGULTbZL1UL5Zn_R-6Erdn-a6q5J-G1Vb11ZRcknOa90Ge_Vd5-T14X69fKKrl8fn5WJFSy6KniLLaqhqrHSemUzISvBclNwI1IUWYNI049yktRQ1Myw3hdYFcAaMV8yAQT4nN-Peg3fvgw292rnBd_GkYgXmIEFmLKpwVJU-GvO2Vgff7LU_KgR1SkqNSamYlDolpY6Rkb-Ysum_zPZeN-2_JBvJEK90G-t_fvob-gTrYX95
CitedBy_id crossref_primary_10_1109_TCOMM_2024_3496749
crossref_primary_10_3390_computation5020024
crossref_primary_10_1016_j_cageo_2023_105298
crossref_primary_10_1111_cgf_14295
crossref_primary_10_1007_s42514_022_00119_7
crossref_primary_10_1007_s11831_021_09602_w
crossref_primary_10_1109_JSTSP_2021_3054314
crossref_primary_10_1109_TVCG_2020_3030381
crossref_primary_10_1007_s00371_020_02000_6
crossref_primary_10_1007_s11042_021_11738_7
crossref_primary_10_1111_cgf_13336
crossref_primary_10_1111_cgf_14955
crossref_primary_10_1109_TVCG_2019_2904063
crossref_primary_10_1016_j_future_2018_09_062
crossref_primary_10_1109_TSUSC_2024_3425962
crossref_primary_10_1016_j_bspc_2021_102749
crossref_primary_10_1007_s00371_020_01951_0
crossref_primary_10_1109_TVCG_2024_3432710
crossref_primary_10_1109_TVCG_2018_2864853
Cites_doi 10.1145/2167076.2167077
10.1007/978-3-642-28027-6
10.1145/1015706.1015725
10.1016/j.cag.2014.10.002
10.1109/TCOM.1976.1093309
10.1109/TPAMI.2012.140
10.1137/S0895479898346995
10.1109/TVCG.2011.214
10.1109/TVCG.2007.70406
10.1137/07070111X
10.1137/S0895479896305696
10.1111/j.1467-8659.2011.02072.x
10.1145/1073204.1073224
10.1145/1141911.1141981
10.1109/IGARSS.2012.6350833
10.1111/cgf.12102
10.1109/ICIP.2000.899404
10.1088/0266-5611/27/2/025010
10.1109/ICIP.2007.4379951
10.1007/s10543-013-0455-z
10.1137/110836067
10.1016/j.neucom.2012.03.039
10.1145/1276377.1276411
10.1109/SIBGRAPI.2001.963051
10.1109/TVCG.2012.274
10.1109/ICIP.2008.4712383
10.1007/BF02310791
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2015
Springer-Verlag Berlin Heidelberg 2015.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2015
– notice: Springer-Verlag Berlin Heidelberg 2015.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00371-015-1130-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 1446
ExternalDocumentID 10_1007_s00371_015_1130_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YOT
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c359t-126f0df1da86b657d5385c3b51a9a50b44633b4f75f2b28b9aa9032023d2b0b13
IEDL.DBID P5Z
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386397000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-2789
IngestDate Wed Nov 05 08:18:45 EST 2025
Sat Nov 29 07:54:01 EST 2025
Tue Nov 18 21:33:17 EST 2025
Fri Feb 21 02:34:58 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Tensor rank reduction
Tensor approximation
Higher-order decompositions
Data compression
Multidimensional data encoding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-126f0df1da86b657d5385c3b51a9a50b44633b4f75f2b28b9aa9032023d2b0b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s00371-015-1130-y.pdf
PQID 2918070762
PQPubID 2043737
PageCount 14
ParticipantIDs proquest_journals_2918070762
crossref_primary_10_1007_s00371_015_1130_y
crossref_citationtrail_10_1007_s00371_015_1130_y
springer_journals_10_1007_s00371_015_1130_y
PublicationCentury 2000
PublicationDate 20161100
2016-11-00
20161101
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 20161100
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ballester-RipollRSuterSKPajarolaRAnalysis of tensor approximation for compression-domain volume visualizationComput. Graph.201547344710.1016/j.cag.2014.10.002
WangHWuQShiLYuYAhujaNOut-of-core tensor approximation of multi-dimensional matrices of visual dataACM Trans. Graph.200524352753510.1145/1073204.1073224
TsaiYTShihZCAll-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximationACM Trans. Graph.200625396797610.1145/1141911.1141981
Bader, B.W., Kolda, T.G. et al.: MATLAB tensor toolbox version 2.5. (2012). http://www.sandia.gov/tgkolda/TensorToolbox
Wang, H., Ahuja, N.: Rank-R approximation of tensors: using image-as-matrix representation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 346–353 (2005)
AndrewsHCPattersonCISingular value decomposition (SVD) image codingCommun. IEEE Trans.197624442543210.1109/TCOM.1976.1093309
BilgiliAÖztürkAKurtMA general BRDF representation based on tensor decompositionComput. Graph. Forum20113082427243910.1111/j.1467-8659.2011.02072.x
de LathauwerLde MoorBVandewalleJOn the best rank-1 and rank-(R1,R2,...,RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_1, R_2, ..., R_N$$\end{document}) approximation of higher-order tensorsSIAM J. Matrix Anal. Appl.200021413241342178027610.1137/S08954798983469950958.15026
Sun, X., Zhou, K., Chen, Y., Lin, S., Shi, J., Guo, B.: Interactive relighting with dynamic brdfs. ACM Trans. Graph. 26(3) (2007)
GandySRechtBYamadaITensor completion and low-n-rank tensor recovery via convex optimizationInverse Problems2011272025010276562810.1088/0266-5611/27/2/0250101211.15036
VannieuwenhovenNVandebrilRMeerbergenKA new truncation strategy for the higher-order singular value decompositionSIAM J. Sci. Comput.201234210271052291431410.1137/1108360671247.65055
TreibMBürgerKReichlFMeneveauCSzalayAWestermannRTurbulence visualization at the terascale on desktop PCsIEEE Trans. Vis. Comput. Graph. (Proc. Scientific Visualization 2012)201218122169217710.1109/TVCG.2012.274
Real world medical data sets. (2014). http://volvis.org
VasilescuMAOTerzopoulosDTensorTextures: multilinear image-based renderingACM Trans. Graph.200423333634210.1145/1015706.1015725
SuterSKIglesias GuitiánJAMartonFAgusMElsenerAZollikoferCPGopiMGobbettiEPajarolaRInteractive multiscale tensor reconstruction for multiresolution volume visualizationIEEE Trans. Vis. Comput. Graph.201117122135214310.1109/TVCG.2011.214
TanHChengBFengJFengGWangWZhangYJLow-n-rank tensor recovery based on multi-linear augmented lagrange multiplier methodNeurocomputing2013119014415210.1016/j.neucom.2012.03.039Intelligent Processing Techniques for Semantic-based Image and Video Retrieval
Kurt, M., Öztürk, A., Peers, P.: A compact tucker-based factorization model for heterogeneous subsurface scattering. In: Proceedings of the 11th Theory and Practice of Computer Graphics, TPCG ’13, pp. 85–92 (2013)
Pajarola, R., Suter, S.K., Ruiters, R.: Tensor approximation in visualization and computer graphics. In: Eurographics 2013—Tutorials, t6. Eurographics Association, Girona (2013)
Chen, H., Lei, W., Zhou, S., Zhang, Y.: An optimal-truncation-based tucker decomposition method for hyperspectral image compression. In: IGARSS, pp. 4090–4093 (2012)
Wu, Q., Chen, C., Yu, Y.: Wavelet-based hybrid multilinear models for multidimensional image approximation. In: Proceedings IEEE International Conference on Image Processing, pp. 2828–2831 (2008)
Chan, T.F., Zhou, H.M.: Total variation improved wavelet thresholding in image compression. In: ICIP, pp. 391–394 (2000)
International Organization for Standardization: ISO/IEC 10918–1:1994: Information technology—digital compression and coding of continuous-tone still images: requirements and guidelines. International Organization for Standardization, Geneva (1994)
Tsai, Y.T., Shih, Z.C.: K-clustered tensor approximation: a sparse multilinear model for real-time rendering. ACM Trans. Graph. 31(3) (2012)
Rövid, A., Rudas, I.J., Sergyán, S., Szeidl, L.: Hosvd based image processing techniques. In: Proceedings of the 10th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, AIKED’11, pp. 297–302. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point (2011)
Suter, S.K., Zollikofer, C.P., Pajarola, R.: Application of tensor approximation to multiscale volume feature representations. In: Proceedings Vision, Modeling and Visualization, pp. 203–210 (2010)
CarrollJDChangJJAnalysis of individual differences in multidimensional scaling via an n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-way generalization of “Eckart-Young” decompositionsPsychometrika197035328331910.1007/BF023107910202.19101
WuQXiaTChenCLinHYSWangHYuYHierarchical tensor approximation of multidimensional visual dataIEEE Trans. Vis. Comput. Graph.200814118619910.1109/TVCG.2007.70406
RajwadeARangarajanABanerjeeAImage denoising using the higher order singular value decompositionIEEE Trans. Pattern Anal. Mach. Intell.201335484986210.1109/TPAMI.2012.140
KressnerDSteinlechnerMVandereyckenBLow-rank tensor completion by Riemannian optimizationBIT Numer. Math.2014542447468322351010.1007/s10543-013-0455-z1300.65040
Wu, Q., Xia, T., Yu, Y.: Hierarchical tensor approximation of multidimensional images. In: Proceedings of the IEEE International Conference in Image Processing, vol. 4, pp. IV-49–IV-52 (2007)
Hackbusch, W.: Tensor spaces and numerical tensor calculus. Springer series in computational mathematics, vol. 42. Springer, Heidelberg (2012)
SuterSKMakhyniaMPajarolaRTAMRESH: tensor approximation multiresolution hierarchy for interactive volume visualizationComput. Graph. Forum201332315116010.1111/cgf.12102
KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X1173.65029
de LathauwerLde MoorBVandewalleJA multilinear singular value decompositionSIAM J. Matrix Anal. Appl.200021412531278178027210.1137/S08954798963056960962.15005
Zaid, A., Olivier, C., Alata, O., Marmoiton, F.: Transform image coding with global thresholding: application to baseline jpeg. In: Proceedings of the XIV Brazilian Symposium on Computer Graphics and Image Processing, pp. 164–171 (2001)
1130_CR35
D Kressner (1130_CR13) 2014; 54
1130_CR34
1130_CR11
A Bilgili (1130_CR5) 2011; 30
1130_CR10
1130_CR32
1130_CR17
1130_CR14
Q Wu (1130_CR33) 2008; 14
1130_CR19
JD Carroll (1130_CR6) 1970; 35
N Vannieuwenhoven (1130_CR28) 2012; 34
H Tan (1130_CR24) 2013; 119
R Ballester-Ripoll (1130_CR4) 2015; 47
SK Suter (1130_CR22) 2013; 32
1130_CR30
SK Suter (1130_CR21) 2011; 17
L Lathauwer de (1130_CR16) 2000; 21
1130_CR3
1130_CR23
1130_CR1
1130_CR7
1130_CR8
A Rajwade (1130_CR18) 2013; 35
1130_CR27
M Treib (1130_CR25) 2012; 18
MAO Vasilescu (1130_CR29) 2004; 23
TG Kolda (1130_CR12) 2009; 51
YT Tsai (1130_CR26) 2006; 25
H Wang (1130_CR31) 2005; 24
HC Andrews (1130_CR2) 1976; 24
S Gandy (1130_CR9) 2011; 27
L Lathauwer de (1130_CR15) 2000; 21
1130_CR20
References_xml – reference: KressnerDSteinlechnerMVandereyckenBLow-rank tensor completion by Riemannian optimizationBIT Numer. Math.2014542447468322351010.1007/s10543-013-0455-z1300.65040
– reference: Tsai, Y.T., Shih, Z.C.: K-clustered tensor approximation: a sparse multilinear model for real-time rendering. ACM Trans. Graph. 31(3) (2012)
– reference: Wu, Q., Chen, C., Yu, Y.: Wavelet-based hybrid multilinear models for multidimensional image approximation. In: Proceedings IEEE International Conference on Image Processing, pp. 2828–2831 (2008)
– reference: Zaid, A., Olivier, C., Alata, O., Marmoiton, F.: Transform image coding with global thresholding: application to baseline jpeg. In: Proceedings of the XIV Brazilian Symposium on Computer Graphics and Image Processing, pp. 164–171 (2001)
– reference: Bader, B.W., Kolda, T.G. et al.: MATLAB tensor toolbox version 2.5. (2012). http://www.sandia.gov/tgkolda/TensorToolbox/
– reference: RajwadeARangarajanABanerjeeAImage denoising using the higher order singular value decompositionIEEE Trans. Pattern Anal. Mach. Intell.201335484986210.1109/TPAMI.2012.140
– reference: Wu, Q., Xia, T., Yu, Y.: Hierarchical tensor approximation of multidimensional images. In: Proceedings of the IEEE International Conference in Image Processing, vol. 4, pp. IV-49–IV-52 (2007)
– reference: TreibMBürgerKReichlFMeneveauCSzalayAWestermannRTurbulence visualization at the terascale on desktop PCsIEEE Trans. Vis. Comput. Graph. (Proc. Scientific Visualization 2012)201218122169217710.1109/TVCG.2012.274
– reference: Chen, H., Lei, W., Zhou, S., Zhang, Y.: An optimal-truncation-based tucker decomposition method for hyperspectral image compression. In: IGARSS, pp. 4090–4093 (2012)
– reference: Real world medical data sets. (2014). http://volvis.org/
– reference: Sun, X., Zhou, K., Chen, Y., Lin, S., Shi, J., Guo, B.: Interactive relighting with dynamic brdfs. ACM Trans. Graph. 26(3) (2007)
– reference: Rövid, A., Rudas, I.J., Sergyán, S., Szeidl, L.: Hosvd based image processing techniques. In: Proceedings of the 10th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, AIKED’11, pp. 297–302. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point (2011)
– reference: VannieuwenhovenNVandebrilRMeerbergenKA new truncation strategy for the higher-order singular value decompositionSIAM J. Sci. Comput.201234210271052291431410.1137/1108360671247.65055
– reference: CarrollJDChangJJAnalysis of individual differences in multidimensional scaling via an n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-way generalization of “Eckart-Young” decompositionsPsychometrika197035328331910.1007/BF023107910202.19101
– reference: KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X1173.65029
– reference: de LathauwerLde MoorBVandewalleJOn the best rank-1 and rank-(R1,R2,...,RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_1, R_2, ..., R_N$$\end{document}) approximation of higher-order tensorsSIAM J. Matrix Anal. Appl.200021413241342178027610.1137/S08954798983469950958.15026
– reference: SuterSKMakhyniaMPajarolaRTAMRESH: tensor approximation multiresolution hierarchy for interactive volume visualizationComput. Graph. Forum201332315116010.1111/cgf.12102
– reference: GandySRechtBYamadaITensor completion and low-n-rank tensor recovery via convex optimizationInverse Problems2011272025010276562810.1088/0266-5611/27/2/0250101211.15036
– reference: VasilescuMAOTerzopoulosDTensorTextures: multilinear image-based renderingACM Trans. Graph.200423333634210.1145/1015706.1015725
– reference: Chan, T.F., Zhou, H.M.: Total variation improved wavelet thresholding in image compression. In: ICIP, pp. 391–394 (2000)
– reference: Pajarola, R., Suter, S.K., Ruiters, R.: Tensor approximation in visualization and computer graphics. In: Eurographics 2013—Tutorials, t6. Eurographics Association, Girona (2013)
– reference: International Organization for Standardization: ISO/IEC 10918–1:1994: Information technology—digital compression and coding of continuous-tone still images: requirements and guidelines. International Organization for Standardization, Geneva (1994)
– reference: WangHWuQShiLYuYAhujaNOut-of-core tensor approximation of multi-dimensional matrices of visual dataACM Trans. Graph.200524352753510.1145/1073204.1073224
– reference: BilgiliAÖztürkAKurtMA general BRDF representation based on tensor decompositionComput. Graph. Forum20113082427243910.1111/j.1467-8659.2011.02072.x
– reference: Kurt, M., Öztürk, A., Peers, P.: A compact tucker-based factorization model for heterogeneous subsurface scattering. In: Proceedings of the 11th Theory and Practice of Computer Graphics, TPCG ’13, pp. 85–92 (2013)
– reference: SuterSKIglesias GuitiánJAMartonFAgusMElsenerAZollikoferCPGopiMGobbettiEPajarolaRInteractive multiscale tensor reconstruction for multiresolution volume visualizationIEEE Trans. Vis. Comput. Graph.201117122135214310.1109/TVCG.2011.214
– reference: AndrewsHCPattersonCISingular value decomposition (SVD) image codingCommun. IEEE Trans.197624442543210.1109/TCOM.1976.1093309
– reference: Suter, S.K., Zollikofer, C.P., Pajarola, R.: Application of tensor approximation to multiscale volume feature representations. In: Proceedings Vision, Modeling and Visualization, pp. 203–210 (2010)
– reference: TsaiYTShihZCAll-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximationACM Trans. Graph.200625396797610.1145/1141911.1141981
– reference: Wang, H., Ahuja, N.: Rank-R approximation of tensors: using image-as-matrix representation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 346–353 (2005)
– reference: Hackbusch, W.: Tensor spaces and numerical tensor calculus. Springer series in computational mathematics, vol. 42. Springer, Heidelberg (2012)
– reference: de LathauwerLde MoorBVandewalleJA multilinear singular value decompositionSIAM J. Matrix Anal. Appl.200021412531278178027210.1137/S08954798963056960962.15005
– reference: Ballester-RipollRSuterSKPajarolaRAnalysis of tensor approximation for compression-domain volume visualizationComput. Graph.201547344710.1016/j.cag.2014.10.002
– reference: TanHChengBFengJFengGWangWZhangYJLow-n-rank tensor recovery based on multi-linear augmented lagrange multiplier methodNeurocomputing2013119014415210.1016/j.neucom.2012.03.039Intelligent Processing Techniques for Semantic-based Image and Video Retrieval
– reference: WuQXiaTChenCLinHYSWangHYuYHierarchical tensor approximation of multidimensional visual dataIEEE Trans. Vis. Comput. Graph.200814118619910.1109/TVCG.2007.70406
– ident: 1130_CR27
  doi: 10.1145/2167076.2167077
– ident: 1130_CR30
– ident: 1130_CR10
  doi: 10.1007/978-3-642-28027-6
– volume: 23
  start-page: 336
  issue: 3
  year: 2004
  ident: 1130_CR29
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1015706.1015725
– volume: 47
  start-page: 34
  year: 2015
  ident: 1130_CR4
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2014.10.002
– volume: 24
  start-page: 425
  issue: 4
  year: 1976
  ident: 1130_CR2
  publication-title: Commun. IEEE Trans.
  doi: 10.1109/TCOM.1976.1093309
– volume: 35
  start-page: 849
  issue: 4
  year: 2013
  ident: 1130_CR18
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.140
– volume: 21
  start-page: 1324
  issue: 4
  year: 2000
  ident: 1130_CR16
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479898346995
– volume: 17
  start-page: 2135
  issue: 12
  year: 2011
  ident: 1130_CR21
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2011.214
– volume: 14
  start-page: 186
  issue: 1
  year: 2008
  ident: 1130_CR33
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2007.70406
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 1130_CR12
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– ident: 1130_CR11
– volume: 21
  start-page: 1253
  issue: 4
  year: 2000
  ident: 1130_CR15
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896305696
– ident: 1130_CR3
– volume: 30
  start-page: 2427
  issue: 8
  year: 2011
  ident: 1130_CR5
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2011.02072.x
– ident: 1130_CR1
– volume: 24
  start-page: 527
  issue: 3
  year: 2005
  ident: 1130_CR31
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1073204.1073224
– volume: 25
  start-page: 967
  issue: 3
  year: 2006
  ident: 1130_CR26
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1141911.1141981
– ident: 1130_CR8
  doi: 10.1109/IGARSS.2012.6350833
– ident: 1130_CR23
– volume: 32
  start-page: 151
  issue: 3
  year: 2013
  ident: 1130_CR22
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.12102
– ident: 1130_CR7
  doi: 10.1109/ICIP.2000.899404
– volume: 27
  start-page: 025010
  issue: 2
  year: 2011
  ident: 1130_CR9
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/27/2/025010
– ident: 1130_CR34
  doi: 10.1109/ICIP.2007.4379951
– volume: 54
  start-page: 447
  issue: 2
  year: 2014
  ident: 1130_CR13
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-013-0455-z
– ident: 1130_CR14
– volume: 34
  start-page: 1027
  issue: 2
  year: 2012
  ident: 1130_CR28
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/110836067
– volume: 119
  start-page: 144
  issue: 0
  year: 2013
  ident: 1130_CR24
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.03.039
– ident: 1130_CR19
– ident: 1130_CR20
  doi: 10.1145/1276377.1276411
– ident: 1130_CR17
– ident: 1130_CR35
  doi: 10.1109/SIBGRAPI.2001.963051
– volume: 18
  start-page: 2169
  issue: 12
  year: 2012
  ident: 1130_CR25
  publication-title: IEEE Trans. Vis. Comput. Graph. (Proc. Scientific Visualization 2012)
  doi: 10.1109/TVCG.2012.274
– ident: 1130_CR32
  doi: 10.1109/ICIP.2008.4712383
– volume: 35
  start-page: 283
  issue: 3
  year: 1970
  ident: 1130_CR6
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
SSID ssj0017749
Score 2.2852404
Snippet Tensor decompositions, in particular the Tucker model, are a powerful family of techniques for dimensionality reduction and are being increasingly used for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1433
SubjectTerms 3-D graphics
Algorithms
Approximation
Artificial Intelligence
Compression ratio
Computer Graphics
Computer Science
Data compression
Data reduction
Datasets
Decomposition
Fourier transforms
Image coding
Image Processing and Computer Vision
Original Article
Parameters
Reconstruction
Tensors
Video compression
Wavelet transforms
SummonAdditionalLinks – databaseName: Springer Standard Collection
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCDj6pYrbIHT0ogm2STzbGIxUMp4ovewr4igkRpotB_72w2aVVU0HP2xczszLeZF8AJVUaHGrUfQtnQi5TkHqf4WDFoDlXMTMLyurr-KBmP-WSSXjV53GUb7d66JGtNPU92q6vL4dOXeRQVrzdbhhW0dtz2a7i-uZ-7DhDP1JjX7mjTPFtX5ndLfDZGC4T5xSla25rh5r9OuQUbDbQkAycL27Bkii5stm0bSHOLu7D-oQbhDgxGeLIZcVqK2AhzFxlbEBsS_0Bc4AWppq-F-7tHRKFJhSJQNp6rXbgbXtyeX3pNXwVPhSytPBrEua9zqgWPZcwSjUqPqVAyKlLBfIkvxDCUUY58CmTAZSpE6vqs60D6koZ70CmeC7MPRCPiU1FiZKRxmqYi4BopYHKEYakUQQ_8lsCZaoqO294XT9m8XHJNsAwJllmCZbMenM6nvLiKG78N7rdcy5rLV2ZBSrmtYhTj9mctlxaff1zs4E-jD2ENwVPs8hL70EE-mCNYVW_VYzk9rmXyHRxv20Y
  priority: 102
  providerName: Springer Nature
Title Lossy volume compression using Tucker truncation and thresholding
URI https://link.springer.com/article/10.1007/s00371-015-1130-y
https://www.proquest.com/docview/2918070762
Volume 32
WOSCitedRecordID wos000386397000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: P5Z
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: K7-
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1432-2315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017749
  issn: 0178-2789
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RlgEG3ohCqTwwgSziJM5jQgW1QqKqqvJQxRLFdoKQUFqagNR_zzmPFpDowpIlsWPd2efPd-fvAM6YjJSl0PohlLWoLYVHPYaHlQi3Q-nwyOVxzq7fdwcDbzz2h6XDLS3TKiubmBtqNZHaR35p-szT1DSOeTV9p7pqlI6uliU0atDQLAm6dMOQPy-iCAhtcvirf65vfFZRTSMnEbVcfZDmlKEZp_Of-9ISbP6Kj-bbTm_7vwPega0ScJJOMUN2YS1K9mDzGw3hPnT6OKI5KQwV0UnmRXJsQnRW_Aspci9INvtICgcfCRNFMpwFaRm8OoDHXvfh5paWpRWotLifUWY6saFipkLPEQ53Fdo9Li3BWeiH3BB4SLQsYceoKlOYnvDD0C9KrStTGIJZh1BPJkl0BEQh6JO2GwlbYTPFQtNTKNwoRiTmi9BsglEJNpAl77guf_EWLBiTc10EqItA6yKYN-F80WRakG6s-rhVyT8o118aLIXfhItKg8vXf3Z2vLqzE9hAwOQUdxFbUEfBR6ewLj-z13TWhsZ1dzActaF259J2PhXxObp_-gJzk-KT
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gXrwLa7PHPSiBJukz4OI-EDZdfGg4K02j4og9bGrsn_K3-ikaXdV0JsHz21Dk28y801mMgOwyZTRQqP2QyorqK9kTGOGzopBc6jCwERBXlbXb0Xtdnx9nVwMwXt9F8amVdY6sVTU-kHZM_JdnrDYlqYJ-f7jE7Vdo2x0tW6h4cSiaXpv6LJ19s6OEN8tzk-OLw9PadVVgCoRJF3KeJh7Omc6i0MZBpHGLR8oIQOWJVngSfSPhJB-jn_JJY9lkmWJ6zKuufQkEzjuMIz6Io7svmpGtB-1QCpV0m07WXvDtI6iemXRUhFZxz2gDM0G7X21gwNy-y0eW5q5k-n_tkAzMFURanLgdsAsDJliDiY_lVmch4MWrkCPOEVMbBK9S_4tiM36vyUut4R0n18Kd4BJskKTLkp5pwrOLcDVn8xhEUaKh8IsAdFIapUfGelr_EyzjMcawTQ5Ms1EZrwBXg1kqqq66ra9x33arwhdYp8i9qnFPu01YLv_yaMrKvLby6s13mmlXzrpAOwG7NQSM3j842DLvw-2AeOnl-ettHXWbq7ABJLD0N27XIURBMGswZh67d51ntdLwSdw89eC9AEpXjn0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD06k4P_Pgk1LWtE0_Hoc6FMcY-MHeStKkIkgdaxX233tp2k1FBfG5-eIuufzSu_sdwAlNlHQlWj-Esq7lJSK0QoqPFYXXYeIzFbC0ZNfvB4NBOBpFw6rOaV5Hu9cuSZPToFmasqIzlmlnlvhWMs3hM5hZFI2wNV2EJU_H0evn-u3DzI2A2KbEv3p2nfJZuzW_G-LzxTRHm18cpOW902v-e8UbsF5BTtI1e2QTFlTWgmZdzoFUp7sFax-4Cbeg28dVTomxXkRHnpuI2YzoUPlHYgIySDF5zcxfP8IzSQrcGnnl0dqG-97l3fmVVdVbsBKXRYVFHT-1ZUolD33hs0CiMWSJKxjlEWe2wJej6wovRf05wglFxHlk6q9LR9iCujvQyF4ytQtEIhJMvEAJT2I3SbkTSpSAShGeRYI7bbBrYcdJRUaua2I8xzMa5VJgMQos1gKLp204nXUZGyaO3xof1BqMq0OZx05EQ81u5OP0Z7XG5p9_HGzvT62PYWV40Yv714ObfVhFfOWb1MUDaKBK1CEsJ2_FUz45KrfqO5I35w4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lossy+volume+compression+using+Tucker+truncation+and+thresholding&rft.jtitle=The+Visual+computer&rft.au=Ballester-Ripoll%2C+Rafael&rft.au=Pajarola%2C+Renato&rft.date=2016-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-2789&rft.eissn=1432-2315&rft.volume=32&rft.issue=11&rft.spage=1433&rft.epage=1446&rft_id=info:doi/10.1007%2Fs00371-015-1130-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon