Monte Carlo simulations for water adsorption in porous materials: Best practices and new insights

Technologies based on water adsorption such as water harvesting from air have tremendous potential in mitigating important global crises such as water scarcity. An important challenge to the deployment of such technologies is finding optimal adsorbent materials. Given the large materials space of av...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal Vol. 67; no. 12
Main Authors: Datar, Archit, Witman, Matthew, Lin, Li‐Chiang
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.12.2021
American Institute of Chemical Engineers
Subjects:
ISSN:0001-1541, 1547-5905
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Technologies based on water adsorption such as water harvesting from air have tremendous potential in mitigating important global crises such as water scarcity. An important challenge to the deployment of such technologies is finding optimal adsorbent materials. Given the large materials space of available adsorbents, large‐scale computational screening can be extremely helpful for this task. This work explores the methods and details associated with such screening procedures and recommends best practices. We also shed light on the limitations of traditionally used and inexpensive to compute prescreening approaches involving geometric and energetic features to predict water adsorption behavior of porous materials. Such approaches can provide general trends to predict adsorption behavior but may lead to the overlook of potentially important structures due to the complex nature of water adsorption. This study offers insights for future water adsorption simulations to facilitate the development of optimal water adsorbents.
AbstractList Technologies based on water adsorption such as water harvesting from air have tremendous potential in mitigating important global crises such as water scarcity. An important challenge to the deployment of such technologies is finding optimal adsorbent materials. Given the large materials space of available adsorbents, large‐scale computational screening can be extremely helpful for this task. This work explores the methods and details associated with such screening procedures and recommends best practices. We also shed light on the limitations of traditionally used and inexpensive to compute prescreening approaches involving geometric and energetic features to predict water adsorption behavior of porous materials. Such approaches can provide general trends to predict adsorption behavior but may lead to the overlook of potentially important structures due to the complex nature of water adsorption. This study offers insights for future water adsorption simulations to facilitate the development of optimal water adsorbents.
Technologies based on water adsorption such as water harvesting from air have tremendous potential in mitigating important global crises such as water scarcity. An important challenge to the deployment of such technologies is finding optimal adsorbent materials. Given the large materials space of available adsorbents, large-scale computational screening can be extremely helpful for this task. This work explores the methods and details associated with such screening procedures and recommends best practices. We also shed light on the limitations of traditionally used and inexpensive to compute prescreening approaches involving geometric and energetic features to predict water adsorption behavior of porous materials. Such approaches can provide general trends to predict adsorption behavior but may lead to the overlook of potentially important structures due to the complex nature of water adsorption. Finally, this study offers insights for future water adsorption simulations to facilitate the development of optimal water adsorbents.
Author Witman, Matthew
Datar, Archit
Lin, Li‐Chiang
Author_xml – sequence: 1
  givenname: Archit
  orcidid: 0000-0002-5276-0103
  surname: Datar
  fullname: Datar, Archit
  organization: The Ohio State University
– sequence: 2
  givenname: Matthew
  surname: Witman
  fullname: Witman, Matthew
  organization: Sandia National Laboratories
– sequence: 3
  givenname: Li‐Chiang
  orcidid: 0000-0002-2821-9501
  surname: Lin
  fullname: Lin, Li‐Chiang
  email: lclin@ntu.edu.tw
  organization: National Taiwan University
BackLink https://www.osti.gov/servlets/purl/1830512$$D View this record in Osti.gov
BookMark eNp1kEtPwzAQhC0EEm3hwD-w4MQhre28Gm4l4lGpiAucrY3jUFepHWxHVf89btMTgtNqd78ZjWaMzrXREqEbSqaUEDYDJaY0T5L8DI1omuRRWpD0HI0IITQKB3qJxs5twsbyORsheDPaS1yCbQ12atu34JXRDjfG4h14aTHUztjucMVK485Y0zu8PbwUtO4BP0rncWdBeCWkw6BrrOUusE59rb27QhdN4OT1aU7Q5_PTR_kard5fluViFYk4LfJIMmiAsJgVpAGRESiquqmlyEWaZLWAeV1VpG5Ek1Q0ZYzEksYskVWWFQEqaDxBt4OvcV5xJ5SXYi2M1lJ4TucxSSkL0N0AddZ89yE435je6pCLs5AiIXNKskDNBkpY45yVDQ9ux168BdVySvihbB7K5seyg-L-l6Kzagt2_yd7ct-pVu7_B_liWQ6KH0hYkXk
CitedBy_id crossref_primary_10_1002_adma_202301730
crossref_primary_10_1021_acscentsci_5c00777
crossref_primary_10_1016_j_memsci_2022_120879
crossref_primary_10_1021_cbe_4c00111
crossref_primary_10_1002_cjce_25374
crossref_primary_10_55225_sti_619
crossref_primary_10_1016_j_apenergy_2022_118732
crossref_primary_10_1002_adma_202412005
crossref_primary_10_1021_acs_langmuir_5c01303
crossref_primary_10_1002_adma_202405532
crossref_primary_10_1016_j_cej_2025_164419
crossref_primary_10_1021_acs_energyfuels_5c00420
crossref_primary_10_1021_acs_jpcc_4c04486
crossref_primary_10_1038_s43246_023_00409_9
crossref_primary_10_1021_acsami_5c12959
crossref_primary_10_1021_jacs_5c10686
crossref_primary_10_1038_s41578_024_00665_2
crossref_primary_10_1021_jacs_4c15287
crossref_primary_10_1002_aic_17684
crossref_primary_10_1002_aic_17686
crossref_primary_10_1080_08927022_2023_2220411
Cites_doi 10.1038/nchem.1192
10.1021/j100308a038
10.1021/acs.langmuir.0c02527
10.1038/natrevmats.2017.45
10.1016/j.solener.2003.07.036
10.1021/acs.jpcc.0c09073
10.1063/1.1615966
10.1080/08927022.2015.1010082
10.1021/acs.jpclett.9b02449
10.1021/acs.jpcc.0c10104
10.1080/08927022.2019.1626990
10.1063/1.2159472
10.1021/acs.langmuir.7b01682
10.1021/acs.langmuir.7b04399
10.1021/jp201075u
10.1038/nmat3336
10.1016/j.fuel.2020.119342
10.1039/C4CS00032C
10.1038/srep25638
10.1063/1.2085031
10.1039/c3cp53814a
10.1016/j.energy.2020.117630
10.1063/1.1683075
10.1016/j.micromeso.2011.08.020
10.1063/1.481505
10.1021/ja400267g
10.1039/b804680h
10.1039/c3cp55039g
10.1021/acs.chemrev.5b00059
10.1023/A:1013180330892
10.1126/science.aam8743
10.1063/1.1652434
10.1021/acs.jced.9b00835
10.1039/C4CS00078A
10.1038/s42004-018-0028-9
10.1021/jp310497u
10.1021/ct3002199
10.1119/1.1707017
10.1016/j.carbon.2017.03.044
10.1021/acs.jctc.8b00534
10.1021/acs.jpcc.0c01524
10.1002/adma.201570216
10.1021/acs.chemmater.5b03836
10.1021/ja1023699
10.1021/jp054168o
10.1107/S2052520616003954
10.1002/adma.201704304
10.1021/acs.jpcc.7b06405
10.1002/aic.14707
10.1016/j.micromeso.2005.10.021
10.3390/app10020569
10.1021/ct100125x
10.1016/j.ccr.2009.05.019
10.1039/c0cp02766a
10.1063/1.1572463
10.1016/j.rser.2009.07.016
10.1021/jp410758t
10.1021/acs.jpcc.0c11082
10.1038/s41467-018-03162-7
10.1016/j.ces.2019.03.053
10.1021/acs.accounts.9b00062
10.1021/acsmaterialslett.0c00130
10.1002/andp.19213690304
10.1021/acs.jpcc.8b00014
10.1080/08927020902865923
10.1039/b610621h
10.1021/la4043556
10.1021/acs.jpclett.0c01518
10.1021/cm502594j
10.1021/acscentsci.0c00678
10.1021/acs.jpcc.9b02116
10.1039/b802256a
10.1016/j.enconman.2005.10.034
10.1063/1.445869
ContentType Journal Article
Copyright 2021 American Institute of Chemical Engineers.
2021 American Institute of Chemical Engineers
Copyright_xml – notice: 2021 American Institute of Chemical Engineers.
– notice: 2021 American Institute of Chemical Engineers
CorporateAuthor Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
CorporateAuthor_xml – name: Sandia National Lab. (SNL-CA), Livermore, CA (United States)
– name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
DBID AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
OIOZB
OTOTI
DOI 10.1002/aic.17447
DatabaseName CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Solid State and Superconductivity Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage n/a
ExternalDocumentID 1830512
10_1002_aic_17447
AIC17447
Genre article
GrantInformation_xml – fundername: Ministry of Education in Taiwan
  funderid: NTU‐110VV009
– fundername: Institute for Materials Research at the Ohio State University
  funderid: GR122429
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABJIA
ADMLS
AEFGJ
AEYWJ
AFFHD
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
PHGZM
PHGZT
PQGLB
7ST
7U5
8FD
C1K
L7M
SOI
AAPBV
ABHUG
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-c3597-e2afa023290fac60a9bdfdec7c546dca8dbb0dfcf4b152203e1324eb669ec7913
IEDL.DBID DRFUL
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704710200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-1541
IngestDate Thu May 18 22:30:24 EDT 2023
Fri Jul 25 19:38:36 EDT 2025
Tue Nov 18 22:33:10 EST 2025
Sat Nov 29 07:19:18 EST 2025
Wed Jan 22 16:28:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3597-e2afa023290fac60a9bdfdec7c546dca8dbb0dfcf4b152203e1324eb669ec7913
Notes Funding information
Institute for Materials Research at the Ohio State University, Grant/Award Number: GR122429; Ministry of Education in Taiwan, Grant/Award Number: NTU‐110VV009
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
NA0003525; GR122429; NTU-110VV009
SAND-2021-6257J
Ohio State University
USDOE National Nuclear Security Administration (NNSA)
Ministry of Education in Taiwan
ORCID 0000-0002-2821-9501
0000-0002-5276-0103
0000000252760103
0000000228219501
OpenAccessLink https://www.osti.gov/servlets/purl/1830512
PQID 2597408106
PQPubID 7879
PageCount 13
ParticipantIDs osti_scitechconnect_1830512
proquest_journals_2597408106
crossref_citationtrail_10_1002_aic_17447
crossref_primary_10_1002_aic_17447
wiley_primary_10_1002_aic_17447_AIC17447
PublicationCentury 2000
PublicationDate December 2021
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
– name: United States
PublicationTitle AIChE journal
PublicationYear 2021
Publisher John Wiley & Sons, Inc
American Institute of Chemical Engineers
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Institute of Chemical Engineers
References 2011; 115
2018; 122
2004; 120
2003; 119
2017; 2
2003; 118
2010; 14
2019; 52
2021; 125
2019; 10
2019; 203
2014; 26
2011; 13
2016; 72
2020; 11
2020; 124
2020; 201
2021; 286
2020; 10
2017; 356
2012; 11
2019; 123
2017; 118
2004; 76
2018; 9
2020; 6
2013; 15
2004; 72
2020; 2
2019; 64
2018; 1
2015; 42
2017; 33
2013; 117
2014; 16
2002; 106
2005; 109
2018; 30
2017; 121
2018; 34
2010; 6
2006; 124
1990; 94
2014; 118
2006; 90
1987; 91
2009; 253
2006; 8
2020; 36
2000; 112
2011; 4
2012; 149
1983; 79
2014; 43
2016; 6
2009; 35
2015; 27
2015; 115
2005; 123
1921; 369
2015; 61
2019; 45
2006; 47
2010; 132
2017
2013; 135
2014
2014; 30
2016; 28
2009; 38
2018; 14
2012; 8
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
Mayo SL (e_1_2_9_67_1) 1990; 94
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Shen VK (e_1_2_9_73_1) 2014
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 43
  start-page: 5594
  issue: 16
  year: 2014
  end-page: 5617
  article-title: Water adsorption in MOFs: fundamentals and applications
  publication-title: Chem Soc Rev
– start-page: 1448
  year: 2017
  end-page: 1453
– volume: 123
  start-page: 20195
  issue: 33
  year: 2019
  end-page: 20209
  article-title: Surface area determination of porous materials using the Brunauer–Emmett–Teller (BET) method: limitations and improvements
  publication-title: J Phys Chem C
– volume: 30
  start-page: 1921
  issue: 8
  year: 2014
  end-page: 1925
  article-title: Microporous coordination polymers as efficient sorbents for air dehumidification
  publication-title: Langmuir
– volume: 8
  start-page: 5396
  issue: 46
  year: 2006
  end-page: 5546
  article-title: Molecular simulation studies of water physisorption in zeolites
  publication-title: Phys Chem Chem Phys
– volume: 109
  start-page: 24071
  issue: 50
  year: 2005
  end-page: 24076
  article-title: Water condensation in hydrophobic silicalite‐1 zeolite: a molecular simulation study
  publication-title: J Phys Chem B
– volume: 149
  start-page: 134
  issue: 1
  year: 2012
  end-page: 141
  article-title: Algorithms and tools for high‐throughput geometry‐based analysis of crystalline porous materials
  publication-title: Microporous Mesoporous Mater
– volume: 106
  start-page: 245
  issue: 1
  year: 2002
  end-page: 285
  article-title: Transition matrix Monte Carlo method
  publication-title: J Stat Phys
– volume: 47
  start-page: 2523
  issue: 15
  year: 2006
  end-page: 2534
  article-title: Experimental comparison of two honeycombed desiccant wheels fabricated with silica gel and composite desiccant material
  publication-title: Energ Conver Manage
– volume: 8
  start-page: 2844
  issue: 8
  year: 2012
  end-page: 2867
  article-title: Improved atoms‐in‐molecule charge partitioning functional for simultaneously reproducing the electrostatic potential and chemical states in periodic and nonperiodic materials
  publication-title: J Chem Theory Comput
– volume: 124
  issue: 2
  year: 2006
  article-title: Determination of surface tension in binary mixtures using transition‐matrix Monte Carlo
  publication-title: J Chem Phys
– volume: 1
  start-page: 1
  issue: 1
  year: 2018
  end-page: 6
  article-title: Water harvesting from air with a hygroscopic salt in a hydrogel–derived matrix
  publication-title: Commun Chem
– volume: 118
  start-page: 127
  year: 2017
  end-page: 138
  article-title: Molecular simulation and experiments of water adsorption in a high surface area activated carbon: hysteresis, scanning curves and spatial organization of water clusters
  publication-title: Carbon
– volume: 36
  start-page: 13070
  issue: 43
  year: 2020
  end-page: 13078
  article-title: Do internal and external surfaces of metal–organic frameworks have the same hydrophobicity? Insights from molecular simulations
  publication-title: Langmuir
– volume: 9
  start-page: 1191
  issue: 1
  year: 2018
  article-title: Adsorption‐based atmospheric water harvesting device for arid climates
  publication-title: Nat Commun
– volume: 64
  start-page: 5985
  issue: 12
  year: 2019
  end-page: 5998
  article-title: Advances, updates, and analytics for the computation‐ready, experimental metal–organic framework database: CoRE MOF 2019
  publication-title: J Chem Eng Data
– volume: 79
  start-page: 926
  issue: 2
  year: 1983
  end-page: 935
  article-title: Comparison of simple potential functions for simulating liquid water
  publication-title: J Chem Phys
– volume: 201
  year: 2020
  article-title: Reviews of atmospheric water harvesting technologies
  publication-title: Energy
– volume: 121
  start-page: 24000
  issue: 43
  year: 2017
  end-page: 24010
  article-title: Computational study of water adsorption in the hydrophobic metal–organic framework ZIF‐8: adsorption mechanism and acceleration of the simulations
  publication-title: J Phys Chem C
– volume: 135
  start-page: 7545
  issue: 20
  year: 2013
  end-page: 7552
  article-title: Large‐scale screening of zeolite structures for CO membrane separations
  publication-title: J Am Chem Soc
– volume: 15
  start-page: 20937
  issue: 48
  year: 2013
  end-page: 20942
  article-title: Methane storage capabilities of diamond analogues
  publication-title: Phys Chem Chem Phys
– year: 2014
– volume: 10
  start-page: 5929
  issue: 19
  year: 2019
  end-page: 5934
  article-title: Simulating enhanced methane deliverable capacity of guest responsive pores in intrinsically flexible MOFs
  publication-title: J Phys Chem Lett
– volume: 10
  start-page: 569
  issue: 2
  year: 2020
  article-title: Large‐scale screening and machine learning to predict the computation‐ready, experimental metal‐organic frameworks for CO capture from air
  publication-title: Appl Sci
– volume: 356
  start-page: 430
  issue: 6336
  year: 2017
  end-page: 434
  article-title: Water harvesting from air with metal‐organic frameworks powered by natural sunlight
  publication-title: Science
– volume: 2
  start-page: 671
  issue: 7
  year: 2020
  end-page: 684
  article-title: Atmospheric water harvesting: a review of material and structural designs
  publication-title: ACS Materials Lett
– volume: 115
  start-page: 4824
  issue: 11
  year: 2011
  end-page: 4836
  article-title: Accurate treatment of electrostatics during molecular adsorption in nanoporous crystals without assigning point charges to framework atoms
  publication-title: J Phys Chem C
– volume: 38
  start-page: 1294
  issue: 5
  year: 2009
  end-page: 1314
  article-title: Hydrogen storage in metal–organic frameworks
  publication-title: Chem Soc Rev
– volume: 124
  start-page: 27580
  issue: 50
  year: 2020
  end-page: 27591
  article-title: Machine learning‐aided computational study of metal–organic frameworks for sour gas sweetening
  publication-title: J Phys Chem C
– volume: 76
  start-page: 339
  issue: 1
  year: 2004
  end-page: 344
  article-title: Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat
  publication-title: Sol Energy
– volume: 124
  start-page: 11428
  issue: 21
  year: 2020
  end-page: 11437
  article-title: Efficient and accurate charge assignments via a multilayer connectivity‐based atom contribution (m‐CBAC) approach
  publication-title: J Phys Chem C
– volume: 115
  start-page: 12205
  issue: 22
  year: 2015
  end-page: 12250
  article-title: Adsorption‐driven heat pumps: the potential of metal–organic frameworks
  publication-title: Chem Rev
– volume: 35
  start-page: 1067
  issue: 12–13
  year: 2009
  end-page: 1076
  article-title: Evaluation of various water models for simulation of adsorption in hydrophobic zeolites
  publication-title: Mol Simul
– volume: 112
  start-page: 8910
  issue: 20
  year: 2000
  end-page: 8922
  article-title: A five‐site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions
  publication-title: J Chem Phys
– volume: 6
  start-page: 2455
  issue: 8
  year: 2010
  end-page: 2468
  article-title: Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials
  publication-title: J Chem Theory Comput
– volume: 253
  start-page: 3042
  issue: 23–24
  year: 2009
  end-page: 3066
  article-title: Potential applications of metal‐organic frameworks
  publication-title: Coord Chem Rev
– volume: 2
  issue: 8
  year: 2017
  article-title: The chemistry of metal–organic frameworks for CO capture, regeneration and conversion
  publication-title: Nat Rev Mater
– volume: 94
  start-page: 8897
  issue: 26
  year: 1990
  end-page: 8909
  article-title: DREIDING: a generic force field for molecular simulations
  publication-title: Chem Rev
– volume: 14
  start-page: 130
  issue: 1
  year: 2010
  end-page: 147
  article-title: Technical development of rotary desiccant dehumidification and air conditioning: a review
  publication-title: Renew Sustain Energy Rev
– volume: 52
  start-page: 1588
  issue: 6
  year: 2019
  end-page: 1597
  article-title: Adsorption‐based atmospheric water harvesting: impact of material and component properties on system‐level performance
  publication-title: Acc Chem Res
– volume: 13
  start-page: 5053
  issue: 11
  year: 2011
  end-page: 5060
  article-title: Pore size analysis of >250 000 hypothetical zeolites
  publication-title: Phys Chem Chem Phys
– volume: 27
  start-page: 4803
  issue: 32
  year: 2015
  article-title: Metal organic framework: design of hydrophilic metal organic framework water adsorbents for heat reallocation
  publication-title: Adv Mater
– volume: 117
  start-page: 7519
  issue: 15
  year: 2013
  end-page: 7525
  article-title: Prediction of water adsorption in copper‐based metal–organic frameworks using force fields derived from dispersion‐corrected DFT calculations
  publication-title: J Phys Chem C
– volume: 14
  start-page: 6149
  issue: 12
  year: 2018
  end-page: 6158
  article-title: Flat‐histogram Monte Carlo as an efficient tool to evaluate adsorption processes involving rigid and deformable molecules
  publication-title: J Chem Theory Comput
– volume: 11
  start-page: 5412
  issue: 14
  year: 2020
  end-page: 5417
  article-title: Beyond the BET analysis: the surface area prediction of nanoporous materials using a machine learning method
  publication-title: J Phys Chem Lett
– volume: 125
  start-page: 4253
  issue: 7
  year: 2021
  end-page: 4266
  article-title: Improving computational assessment of porous materials for water adsorption applications via flat histogram methods
  publication-title: J Phys Chem C
– volume: 125
  start-page: 6090
  issue: 11
  year: 2021
  end-page: 6098
  article-title: First‐principles grand‐canonical simulations of water adsorption in proton‐exchanged zeolites
  publication-title: J Phys Chem C
– volume: 33
  start-page: 14529
  issue: 51
  year: 2017
  end-page: 14538
  article-title: Accurate characterization of the pore volume in microporous crystalline materials
  publication-title: Langmuir
– volume: 28
  start-page: 785
  issue: 3
  year: 2016
  end-page: 793
  article-title: A comprehensive set of high‐quality point charges for simulations of metal–organic frameworks
  publication-title: Chem Mater
– volume: 6
  issue: 1
  year: 2016
  article-title: Enhanced adsorptive removal of p‐nitrophenol from water by aluminum metal–organic framework/reduced graphene oxide composite
  publication-title: Sci Rep
– volume: 90
  start-page: 293
  issue: 1
  year: 2006
  end-page: 298
  article-title: Water adsorption in hydrophobic nanopores: Monte Carlo simulations of water in silicalite
  publication-title: Microporous Mesoporous Mater
– volume: 132
  start-page: 7528
  issue: 21
  year: 2010
  end-page: 7539
  article-title: Efficient calculation of diffusion limitations in metal organic framework materials: a tool for identifying materials for kinetic separations
  publication-title: J Am Chem Soc
– volume: 118
  start-page: 9915
  issue: 22
  year: 2003
  end-page: 9925
  article-title: Direct calculation of liquid–vapor phase equilibria from transition matrix Monte Carlo simulation
  publication-title: J Chem Phys
– volume: 203
  start-page: 346
  year: 2019
  end-page: 357
  article-title: Impact of MOF defects on the binary adsorption of CO and water in UiO‐66
  publication-title: Chem Eng Sci
– volume: 119
  start-page: 9406
  issue: 18
  year: 2003
  end-page: 9411
  article-title: An improved Monte Carlo method for direct calculation of the density of states
  publication-title: J Chem Phys
– volume: 91
  start-page: 6269
  issue: 24
  year: 1987
  end-page: 6271
  article-title: The missing term in effective pair potentials
  publication-title: J Phys Chem
– volume: 43
  start-page: 5657
  issue: 16
  year: 2014
  end-page: 5678
  article-title: Methane storage in metal–organic frameworks
  publication-title: Chem Soc Rev
– volume: 34
  start-page: 4180
  issue: 14
  year: 2018
  end-page: 4187
  article-title: Investigation of the water adsorption properties and structural stability of MIL‐100 (Fe) with different anions
  publication-title: Langmuir
– volume: 72
  start-page: 1294
  issue: 10
  year: 2004
  end-page: 1302
  article-title: A new approach to Monte Carlo simulations in statistical physics: Wang‐Landau sampling
  publication-title: Am J Phys
– volume: 38
  start-page: 1284
  issue: 5
  year: 2009
  end-page: 1293
  article-title: Industrial applications of metal–organic frameworks
  publication-title: Chem Soc Rev
– volume: 30
  issue: 37
  year: 2018
  article-title: Metal‐organic frameworks for water harvesting from air
  publication-title: Adv Mater
– volume: 6
  start-page: 1348
  issue: 8
  year: 2020
  end-page: 1354
  article-title: Metal–organic frameworks for water harvesting from air, anywhere, anytime
  publication-title: ACS Cent Sci
– volume: 45
  start-page: 1122
  issue: 14–15
  year: 2019
  end-page: 1147
  article-title: Computational discovery of nanoporous materials for energy‐ and environment‐related applications
  publication-title: Mol Simul
– volume: 123
  issue: 19
  year: 2005
  article-title: Characterization of the TIP4P‐ew water model: vapor pressure and boiling point
  publication-title: J Chem Phys
– volume: 120
  start-page: 9665
  issue: 20
  year: 2004
  end-page: 9678
  article-title: Development of an improved four‐site water model for biomolecular simulations: TIP4P‐ew
  publication-title: J Chem Phys
– volume: 26
  start-page: 6185
  issue: 21
  year: 2014
  end-page: 6192
  article-title: Computation‐ready, experimental metal–organic frameworks: a tool to enable high‐throughput screening of nanoporous crystals
  publication-title: Chem Mater
– volume: 72
  start-page: 171
  issue: 2
  year: 2016
  end-page: 179
  article-title: The Cambridge structural database
  publication-title: Acta Crystallogr B: Struct Sci Cryst Eng Mater
– volume: 61
  start-page: 677
  issue: 2
  year: 2015
  end-page: 687
  article-title: Water adsorption in metal‐organic frameworks with open‐metal sites
  publication-title: AIChE J
– volume: 286
  start-page: 119342
  year: 2021
  article-title: Molecular simulation of adsorption and diffusion of CH and H O in flexible metal‐organic framework ZIF‐8
  publication-title: Fuel
– volume: 118
  start-page: 1102
  issue: 2
  year: 2014
  end-page: 1110
  article-title: Modeling water and ammonia adsorption in hydrophobic metal–organic frameworks: single components and mixtures
  publication-title: J Phys Chem C
– volume: 42
  start-page: 81
  issue: 2
  year: 2015
  end-page: 101
  article-title: RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials
  publication-title: Mol Simul
– volume: 16
  start-page: 5499
  issue: 12
  year: 2014
  end-page: 5513
  article-title: Optimizing nanoporous materials for gas storage
  publication-title: Phys Chem Chem Phys
– volume: 11
  start-page: 633
  issue: 7
  year: 2012
  end-page: 641
  article-title: In silico screening of carbon‐capture materials
  publication-title: Nat Mater
– volume: 120
  start-page: 6085
  issue: 13
  year: 2004
  end-page: 6093
  article-title: A reoptimization of the five‐site water potential (TIP5P) for use with Ewald sums
  publication-title: J Chem Phys
– volume: 369
  start-page: 253
  issue: 3
  year: 1921
  end-page: 287
  article-title: Die berechnung optischer und elektrostatischer gitterpotentiale
  publication-title: Ann Phys
– volume: 4
  start-page: 83
  issue: 2
  year: 2011
  end-page: 89
  article-title: Large‐scale screening of hypothetical metal–organic frameworks
  publication-title: Nat Chem
– volume: 122
  start-page: 5545
  issue: 10
  year: 2018
  end-page: 5552
  article-title: Role of structural defects in the water adsorption properties of MOF‐801
  publication-title: J Phys Chem C
– ident: e_1_2_9_21_1
  doi: 10.1038/nchem.1192
– ident: e_1_2_9_44_1
  doi: 10.1021/j100308a038
– ident: e_1_2_9_36_1
  doi: 10.1021/acs.langmuir.0c02527
– ident: e_1_2_9_31_1
  doi: 10.1038/natrevmats.2017.45
– ident: e_1_2_9_5_1
  doi: 10.1016/j.solener.2003.07.036
– ident: e_1_2_9_78_1
  doi: 10.1021/acs.jpcc.0c09073
– ident: e_1_2_9_75_1
  doi: 10.1063/1.1615966
– ident: e_1_2_9_59_1
  doi: 10.1080/08927022.2015.1010082
– ident: e_1_2_9_53_1
  doi: 10.1021/acs.jpclett.9b02449
– ident: e_1_2_9_6_1
  doi: 10.1021/acs.jpcc.0c10104
– ident: e_1_2_9_28_1
  doi: 10.1080/08927022.2019.1626990
– ident: e_1_2_9_65_1
  doi: 10.1063/1.2159472
– volume: 94
  start-page: 8897
  issue: 26
  year: 1990
  ident: e_1_2_9_67_1
  article-title: DREIDING: a generic force field for molecular simulations
  publication-title: Chem Rev
– ident: e_1_2_9_64_1
  doi: 10.1021/acs.langmuir.7b01682
– ident: e_1_2_9_39_1
  doi: 10.1021/acs.langmuir.7b04399
– ident: e_1_2_9_69_1
  doi: 10.1021/jp201075u
– ident: e_1_2_9_32_1
  doi: 10.1038/nmat3336
– ident: e_1_2_9_35_1
  doi: 10.1016/j.fuel.2020.119342
– ident: e_1_2_9_23_1
  doi: 10.1039/C4CS00032C
– ident: e_1_2_9_4_1
  doi: 10.1038/srep25638
– ident: e_1_2_9_38_1
  doi: 10.1063/1.2085031
– ident: e_1_2_9_29_1
  doi: 10.1039/c3cp53814a
– ident: e_1_2_9_10_1
  doi: 10.1016/j.energy.2020.117630
– ident: e_1_2_9_47_1
  doi: 10.1063/1.1683075
– ident: e_1_2_9_63_1
  doi: 10.1016/j.micromeso.2011.08.020
– ident: e_1_2_9_45_1
  doi: 10.1063/1.481505
– ident: e_1_2_9_57_1
  doi: 10.1021/ja400267g
– ident: e_1_2_9_25_1
  doi: 10.1039/b804680h
– ident: e_1_2_9_30_1
  doi: 10.1039/c3cp55039g
– ident: e_1_2_9_2_1
  doi: 10.1021/acs.chemrev.5b00059
– ident: e_1_2_9_61_1
  doi: 10.1023/A:1013180330892
– ident: e_1_2_9_7_1
  doi: 10.1126/science.aam8743
– ident: e_1_2_9_46_1
  doi: 10.1063/1.1652434
– ident: e_1_2_9_27_1
  doi: 10.1021/acs.jced.9b00835
– ident: e_1_2_9_11_1
  doi: 10.1039/C4CS00078A
– ident: e_1_2_9_14_1
  doi: 10.1038/s42004-018-0028-9
– ident: e_1_2_9_50_1
  doi: 10.1021/jp310497u
– ident: e_1_2_9_70_1
  doi: 10.1021/ct3002199
– ident: e_1_2_9_74_1
  doi: 10.1119/1.1707017
– ident: e_1_2_9_77_1
  doi: 10.1016/j.carbon.2017.03.044
– ident: e_1_2_9_52_1
  doi: 10.1021/acs.jctc.8b00534
– ident: e_1_2_9_72_1
  doi: 10.1021/acs.jpcc.0c01524
– ident: e_1_2_9_33_1
  doi: 10.1002/adma.201570216
– ident: e_1_2_9_71_1
  doi: 10.1021/acs.chemmater.5b03836
– ident: e_1_2_9_55_1
  doi: 10.1021/ja1023699
– ident: e_1_2_9_40_1
  doi: 10.1021/jp054168o
– ident: e_1_2_9_66_1
  doi: 10.1107/S2052520616003954
– ident: e_1_2_9_17_1
  doi: 10.1002/adma.201704304
– ident: e_1_2_9_42_1
  doi: 10.1021/acs.jpcc.7b06405
– ident: e_1_2_9_48_1
  doi: 10.1002/aic.14707
– ident: e_1_2_9_51_1
  doi: 10.1016/j.micromeso.2005.10.021
– ident: e_1_2_9_58_1
  doi: 10.3390/app10020569
– ident: e_1_2_9_68_1
  doi: 10.1021/ct100125x
– ident: e_1_2_9_22_1
  doi: 10.1016/j.ccr.2009.05.019
– ident: e_1_2_9_56_1
  doi: 10.1039/c0cp02766a
– ident: e_1_2_9_62_1
  doi: 10.1063/1.1572463
– ident: e_1_2_9_16_1
  doi: 10.1016/j.rser.2009.07.016
– ident: e_1_2_9_41_1
  doi: 10.1021/jp410758t
– ident: e_1_2_9_54_1
  doi: 10.1021/acs.jpcc.0c11082
– volume-title: Standard Reference Simulation Website, NIST Standard Reference Database 173
  year: 2014
  ident: e_1_2_9_73_1
– ident: e_1_2_9_8_1
  doi: 10.1038/s41467-018-03162-7
– ident: e_1_2_9_34_1
  doi: 10.1016/j.ces.2019.03.053
– ident: e_1_2_9_13_1
  doi: 10.1021/acs.accounts.9b00062
– ident: e_1_2_9_12_1
  doi: 10.1021/acsmaterialslett.0c00130
– ident: e_1_2_9_60_1
  doi: 10.1002/andp.19213690304
– ident: e_1_2_9_37_1
  doi: 10.1021/acs.jpcc.8b00014
– ident: e_1_2_9_49_1
  doi: 10.1080/08927020902865923
– ident: e_1_2_9_76_1
  doi: 10.1039/b610621h
– ident: e_1_2_9_3_1
  doi: 10.1021/la4043556
– ident: e_1_2_9_19_1
  doi: 10.1021/acs.jpclett.0c01518
– ident: e_1_2_9_26_1
  doi: 10.1021/cm502594j
– ident: e_1_2_9_20_1
  doi: 10.1021/acscentsci.0c00678
– ident: e_1_2_9_18_1
  doi: 10.1021/acs.jpcc.9b02116
– ident: e_1_2_9_24_1
  doi: 10.1039/b802256a
– ident: e_1_2_9_15_1
  doi: 10.1016/j.enconman.2005.10.034
– ident: e_1_2_9_9_1
– ident: e_1_2_9_43_1
  doi: 10.1063/1.445869
SSID ssj0012782
Score 2.5165157
Snippet Technologies based on water adsorption such as water harvesting from air have tremendous potential in mitigating important global crises such as water...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Adsorbed water
Adsorbents
Adsorption
Best practice
Computer applications
ENGINEERING
flat histogram methods
metal–organic frameworks (MOFs)
Monte Carlo simulation
Monte Carlo simulations
Porous materials
Screening
water adsorption
Water harvesting
Water scarcity
Title Monte Carlo simulations for water adsorption in porous materials: Best practices and new insights
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.17447
https://www.proquest.com/docview/2597408106
https://www.osti.gov/servlets/purl/1830512
Volume 67
WOSCitedRecordID wos000704710200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-wwFD7o6OK68HFVHGeUIC7uZjCmnabVlY4OCipyuYK7kFdhQFtpRv37nqTtqKBwwV2gpyXkvL7TnHwB2GeponGu4wE1kmGBgiPpD-rS2Ebc8oQrGSjzr_jNTXp_n93OwXF7Fqbmh5j9cPOeEeK1d3Cp3ME7aaicaN-NE_N5WGBot8MOLJz9Hd9dzTYRGE9rsnCsmBEpHLbEQpQdzF7-lI46JbrVJ6j5EbCGjDNe-dFcV2G5AZrkpLaMNZizxW9Y-kA_uA7y2lNTkZGsHkriJo_NTV6OIJAlrwhCKyKNK6sQVcikIIjVy2dHHv0jb7dH5BTnT9qTVo7IwhDE6SjrfNHvNuBufP5vdDForlwY6AhLi4FlMpeYxllGc6kTKjNlcmM118M4MVqmRilqcp3HChM_o5HFaja2KkkyFMoOo03oFGVht4CkQxppRT3fXhbrjMvI8EQnJmzFRcZ04U-78kI3fOT-WowHUTMpM4GrJsKqdWFvJvpUk3B8JdTz6hOIHDz9rfZ9QnoqMGRh3GFd6LdaFY2XOsF8NYWYiCY4maC_7z8vTi5HYbD9_6I9-MV8C0zofulDZ1o92x1Y1C_Tiat2G3N9Ax5_7Y8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFD7YVWj74KVVuvUWxAdfFrOZ7GSm9EVXF8V1EVHwLWSSDCzoTJnstn-_J5mZVUGh0LfAnBkyybl8Jzn5AnDIkozyXPMeNYphgoIt5Q_qUm4jYUUsMhUo88diMkkeHtKbJfjZnoWp-SEWC27eMoK_9gbuF6SPn1lD1VT7chwuPsAyRzVC_V4-ux3djxe7CEwkNVs4pswIFfotsxBlx4uXX8WjTol29QprvkSsIeSM1v6vs-uw2kBNclLrxgYs2eILfH5BQPgV1LUnpyJDVT2WxE2fmru8HEEoS_4gDK2IMq6sgl8h04IgWi_njjz5R15zf5BT_AHSnrVyRBWGIFJHWefTfrcJ96Pzu-FFr7l0oacjTC56lqlcYSBnKc2VjqlKM5Mbq4Ue8NholZgsoybXOc8w9DMaWcxnuc3iOEWhtB9tQacoC_sNSDKgkc6oZ9xLuU6FioyIdWzCZlxkTBeO2qGXumEk9xdjPMqaS5lJHDUZRq0LBwvRXzUNx1tC237-JGIHT4CrfaWQnkl0Wuh5WBd22mmVjZ06yXw-haiIxtiZMIHvf16eXA5D4_u_i-7Dx4u767EcX06utuET8wUxoRZmBzqzam53YUX_nk1dtdfo7l9YT_F_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB-8VY7zwc87bv26IPfgy2I2jU0rvujqcuK6yKHgW0iTFBa0lWa9-_edpO2qoCD4Fui0pElm5jfJ5DcAv1mSUZ5r3qNGMQxQsKX8RV3KbSSsiEWmAmX-SIzHye1tejUHR-1dmJofYrbh5jUj2Guv4PbB5PvPrKFqon06DhdfYJ77IjIdmD_9O7wZzU4RmEhqtnAMmREq9FtmIcr2Zy-_8kedEvXqFdZ8iViDyxkuf66zK7DUQE1yXK-NVZizxRosviAgXAd16cmpyEBVdyVxk_umlpcjCGXJf4ShFVHGlVWwK2RSEETr5aMj9_6RX7mH5AR_gLR3rRxRhSGI1FHW-bDffYeb4dn14E-vKbrQ0xEGFz3LVK7QkbOU5krHVKWZyY3VQh_w2GiVmCyjJtc5z9D1MxpZjGe5zeI4RaG0H_2ATlEW9ieQ5IBGOqOecS_lOhUqMiLWsQmHcZExXdhrh17qhpHcF8a4kzWXMpM4ajKMWhd2Z6IPNQ3HW0Kbfv4kYgdPgKt9ppCeSjRaaHlYF7baaZWNnjrJfDyFqIjG2Jkwge9_Xh6fD0Jj4-Oiv-Dr1elQjs7HF5vwjfl8mJAKswWdafVot2FB_5tOXLXTLN0n-Pfw-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monte+Carlo+simulations+for+water+adsorption+in+porous+materials%3A+Best+practices+and+new+insights&rft.jtitle=AIChE+journal&rft.au=Datar%2C+Archit&rft.au=Witman%2C+Matthew&rft.au=Lin%2C+Li%E2%80%90Chiang&rft.date=2021-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=67&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faic.17447&rft.externalDBID=10.1002%252Faic.17447&rft.externalDocID=AIC17447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon