Monte Carlo simulations for water adsorption in porous materials: Best practices and new insights
Technologies based on water adsorption such as water harvesting from air have tremendous potential in mitigating important global crises such as water scarcity. An important challenge to the deployment of such technologies is finding optimal adsorbent materials. Given the large materials space of av...
Uloženo v:
| Vydáno v: | AIChE journal Ročník 67; číslo 12 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
01.12.2021
American Institute of Chemical Engineers |
| Témata: | |
| ISSN: | 0001-1541, 1547-5905 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Technologies based on water adsorption such as water harvesting from air have tremendous potential in mitigating important global crises such as water scarcity. An important challenge to the deployment of such technologies is finding optimal adsorbent materials. Given the large materials space of available adsorbents, large‐scale computational screening can be extremely helpful for this task. This work explores the methods and details associated with such screening procedures and recommends best practices. We also shed light on the limitations of traditionally used and inexpensive to compute prescreening approaches involving geometric and energetic features to predict water adsorption behavior of porous materials. Such approaches can provide general trends to predict adsorption behavior but may lead to the overlook of potentially important structures due to the complex nature of water adsorption. This study offers insights for future water adsorption simulations to facilitate the development of optimal water adsorbents. |
|---|---|
| AbstractList | Technologies based on water adsorption such as water harvesting from air have tremendous potential in mitigating important global crises such as water scarcity. An important challenge to the deployment of such technologies is finding optimal adsorbent materials. Given the large materials space of available adsorbents, large‐scale computational screening can be extremely helpful for this task. This work explores the methods and details associated with such screening procedures and recommends best practices. We also shed light on the limitations of traditionally used and inexpensive to compute prescreening approaches involving geometric and energetic features to predict water adsorption behavior of porous materials. Such approaches can provide general trends to predict adsorption behavior but may lead to the overlook of potentially important structures due to the complex nature of water adsorption. This study offers insights for future water adsorption simulations to facilitate the development of optimal water adsorbents. Technologies based on water adsorption such as water harvesting from air have tremendous potential in mitigating important global crises such as water scarcity. An important challenge to the deployment of such technologies is finding optimal adsorbent materials. Given the large materials space of available adsorbents, large-scale computational screening can be extremely helpful for this task. This work explores the methods and details associated with such screening procedures and recommends best practices. We also shed light on the limitations of traditionally used and inexpensive to compute prescreening approaches involving geometric and energetic features to predict water adsorption behavior of porous materials. Such approaches can provide general trends to predict adsorption behavior but may lead to the overlook of potentially important structures due to the complex nature of water adsorption. Finally, this study offers insights for future water adsorption simulations to facilitate the development of optimal water adsorbents. |
| Author | Witman, Matthew Datar, Archit Lin, Li‐Chiang |
| Author_xml | – sequence: 1 givenname: Archit orcidid: 0000-0002-5276-0103 surname: Datar fullname: Datar, Archit organization: The Ohio State University – sequence: 2 givenname: Matthew surname: Witman fullname: Witman, Matthew organization: Sandia National Laboratories – sequence: 3 givenname: Li‐Chiang orcidid: 0000-0002-2821-9501 surname: Lin fullname: Lin, Li‐Chiang email: lclin@ntu.edu.tw organization: National Taiwan University |
| BackLink | https://www.osti.gov/servlets/purl/1830512$$D View this record in Osti.gov |
| BookMark | eNp1kEtPwzAQhC0EEm3hwD-w4MQhre28Gm4l4lGpiAucrY3jUFepHWxHVf89btMTgtNqd78ZjWaMzrXREqEbSqaUEDYDJaY0T5L8DI1omuRRWpD0HI0IITQKB3qJxs5twsbyORsheDPaS1yCbQ12atu34JXRDjfG4h14aTHUztjucMVK485Y0zu8PbwUtO4BP0rncWdBeCWkw6BrrOUusE59rb27QhdN4OT1aU7Q5_PTR_kard5fluViFYk4LfJIMmiAsJgVpAGRESiquqmlyEWaZLWAeV1VpG5Ek1Q0ZYzEksYskVWWFQEqaDxBt4OvcV5xJ5SXYi2M1lJ4TucxSSkL0N0AddZ89yE435je6pCLs5AiIXNKskDNBkpY45yVDQ9ux168BdVySvihbB7K5seyg-L-l6Kzagt2_yd7ct-pVu7_B_liWQ6KH0hYkXk |
| CitedBy_id | crossref_primary_10_1002_adma_202301730 crossref_primary_10_1021_acscentsci_5c00777 crossref_primary_10_1016_j_memsci_2022_120879 crossref_primary_10_1021_cbe_4c00111 crossref_primary_10_1002_cjce_25374 crossref_primary_10_55225_sti_619 crossref_primary_10_1016_j_apenergy_2022_118732 crossref_primary_10_1002_adma_202412005 crossref_primary_10_1021_acs_langmuir_5c01303 crossref_primary_10_1002_adma_202405532 crossref_primary_10_1016_j_cej_2025_164419 crossref_primary_10_1021_acs_energyfuels_5c00420 crossref_primary_10_1021_acs_jpcc_4c04486 crossref_primary_10_1038_s43246_023_00409_9 crossref_primary_10_1021_acsami_5c12959 crossref_primary_10_1021_jacs_5c10686 crossref_primary_10_1038_s41578_024_00665_2 crossref_primary_10_1021_jacs_4c15287 crossref_primary_10_1002_aic_17684 crossref_primary_10_1002_aic_17686 crossref_primary_10_1080_08927022_2023_2220411 |
| Cites_doi | 10.1038/nchem.1192 10.1021/j100308a038 10.1021/acs.langmuir.0c02527 10.1038/natrevmats.2017.45 10.1016/j.solener.2003.07.036 10.1021/acs.jpcc.0c09073 10.1063/1.1615966 10.1080/08927022.2015.1010082 10.1021/acs.jpclett.9b02449 10.1021/acs.jpcc.0c10104 10.1080/08927022.2019.1626990 10.1063/1.2159472 10.1021/acs.langmuir.7b01682 10.1021/acs.langmuir.7b04399 10.1021/jp201075u 10.1038/nmat3336 10.1016/j.fuel.2020.119342 10.1039/C4CS00032C 10.1038/srep25638 10.1063/1.2085031 10.1039/c3cp53814a 10.1016/j.energy.2020.117630 10.1063/1.1683075 10.1016/j.micromeso.2011.08.020 10.1063/1.481505 10.1021/ja400267g 10.1039/b804680h 10.1039/c3cp55039g 10.1021/acs.chemrev.5b00059 10.1023/A:1013180330892 10.1126/science.aam8743 10.1063/1.1652434 10.1021/acs.jced.9b00835 10.1039/C4CS00078A 10.1038/s42004-018-0028-9 10.1021/jp310497u 10.1021/ct3002199 10.1119/1.1707017 10.1016/j.carbon.2017.03.044 10.1021/acs.jctc.8b00534 10.1021/acs.jpcc.0c01524 10.1002/adma.201570216 10.1021/acs.chemmater.5b03836 10.1021/ja1023699 10.1021/jp054168o 10.1107/S2052520616003954 10.1002/adma.201704304 10.1021/acs.jpcc.7b06405 10.1002/aic.14707 10.1016/j.micromeso.2005.10.021 10.3390/app10020569 10.1021/ct100125x 10.1016/j.ccr.2009.05.019 10.1039/c0cp02766a 10.1063/1.1572463 10.1016/j.rser.2009.07.016 10.1021/jp410758t 10.1021/acs.jpcc.0c11082 10.1038/s41467-018-03162-7 10.1016/j.ces.2019.03.053 10.1021/acs.accounts.9b00062 10.1021/acsmaterialslett.0c00130 10.1002/andp.19213690304 10.1021/acs.jpcc.8b00014 10.1080/08927020902865923 10.1039/b610621h 10.1021/la4043556 10.1021/acs.jpclett.0c01518 10.1021/cm502594j 10.1021/acscentsci.0c00678 10.1021/acs.jpcc.9b02116 10.1039/b802256a 10.1016/j.enconman.2005.10.034 10.1063/1.445869 |
| ContentType | Journal Article |
| Copyright | 2021 American Institute of Chemical Engineers. 2021 American Institute of Chemical Engineers |
| Copyright_xml | – notice: 2021 American Institute of Chemical Engineers. – notice: 2021 American Institute of Chemical Engineers |
| CorporateAuthor | Sandia National Lab. (SNL-CA), Livermore, CA (United States) Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) |
| CorporateAuthor_xml | – name: Sandia National Lab. (SNL-CA), Livermore, CA (United States) – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) |
| DBID | AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI OIOZB OTOTI |
| DOI | 10.1002/aic.17447 |
| DatabaseName | CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1547-5905 |
| EndPage | n/a |
| ExternalDocumentID | 1830512 10_1002_aic_17447 AIC17447 |
| Genre | article |
| GrantInformation_xml | – fundername: Ministry of Education in Taiwan funderid: NTU‐110VV009 – fundername: Institute for Materials Research at the Ohio State University funderid: GR122429 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHHS AAHQN AAIHA AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 S0X SAMSI SUPJJ TAE TN5 TUS UAO UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX ABJIA ADMLS AEFGJ AEYWJ AFFHD AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X PHGZM PHGZT PQGLB 7ST 7U5 8FD C1K L7M SOI AAPBV ABHUG ACSMX ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI |
| ID | FETCH-LOGICAL-c3597-e2afa023290fac60a9bdfdec7c546dca8dbb0dfcf4b152203e1324eb669ec7913 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704710200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-1541 |
| IngestDate | Thu May 18 22:30:24 EDT 2023 Fri Jul 25 19:38:36 EDT 2025 Tue Nov 18 22:33:10 EST 2025 Sat Nov 29 07:19:18 EST 2025 Wed Jan 22 16:28:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3597-e2afa023290fac60a9bdfdec7c546dca8dbb0dfcf4b152203e1324eb669ec7913 |
| Notes | Funding information Institute for Materials Research at the Ohio State University, Grant/Award Number: GR122429; Ministry of Education in Taiwan, Grant/Award Number: NTU‐110VV009 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 NA0003525; GR122429; NTU-110VV009 SAND-2021-6257J Ohio State University USDOE National Nuclear Security Administration (NNSA) Ministry of Education in Taiwan |
| ORCID | 0000-0002-2821-9501 0000-0002-5276-0103 0000000252760103 0000000228219501 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1830512 |
| PQID | 2597408106 |
| PQPubID | 7879 |
| PageCount | 13 |
| ParticipantIDs | osti_scitechconnect_1830512 proquest_journals_2597408106 crossref_citationtrail_10_1002_aic_17447 crossref_primary_10_1002_aic_17447 wiley_primary_10_1002_aic_17447_AIC17447 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: New York – name: United States |
| PublicationTitle | AIChE journal |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc American Institute of Chemical Engineers |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: American Institute of Chemical Engineers |
| References | 2011; 115 2018; 122 2004; 120 2003; 119 2017; 2 2003; 118 2010; 14 2019; 52 2021; 125 2019; 10 2019; 203 2014; 26 2011; 13 2016; 72 2020; 11 2020; 124 2020; 201 2021; 286 2020; 10 2017; 356 2012; 11 2019; 123 2017; 118 2004; 76 2018; 9 2020; 6 2013; 15 2004; 72 2020; 2 2019; 64 2018; 1 2015; 42 2017; 33 2013; 117 2014; 16 2002; 106 2005; 109 2018; 30 2017; 121 2018; 34 2010; 6 2006; 124 1990; 94 2014; 118 2006; 90 1987; 91 2009; 253 2006; 8 2020; 36 2000; 112 2011; 4 2012; 149 1983; 79 2014; 43 2016; 6 2009; 35 2015; 27 2015; 115 2005; 123 1921; 369 2015; 61 2019; 45 2006; 47 2010; 132 2017 2013; 135 2014 2014; 30 2016; 28 2009; 38 2018; 14 2012; 8 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 Mayo SL (e_1_2_9_67_1) 1990; 94 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Shen VK (e_1_2_9_73_1) 2014 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – volume: 43 start-page: 5594 issue: 16 year: 2014 end-page: 5617 article-title: Water adsorption in MOFs: fundamentals and applications publication-title: Chem Soc Rev – start-page: 1448 year: 2017 end-page: 1453 – volume: 123 start-page: 20195 issue: 33 year: 2019 end-page: 20209 article-title: Surface area determination of porous materials using the Brunauer–Emmett–Teller (BET) method: limitations and improvements publication-title: J Phys Chem C – volume: 30 start-page: 1921 issue: 8 year: 2014 end-page: 1925 article-title: Microporous coordination polymers as efficient sorbents for air dehumidification publication-title: Langmuir – volume: 8 start-page: 5396 issue: 46 year: 2006 end-page: 5546 article-title: Molecular simulation studies of water physisorption in zeolites publication-title: Phys Chem Chem Phys – volume: 109 start-page: 24071 issue: 50 year: 2005 end-page: 24076 article-title: Water condensation in hydrophobic silicalite‐1 zeolite: a molecular simulation study publication-title: J Phys Chem B – volume: 149 start-page: 134 issue: 1 year: 2012 end-page: 141 article-title: Algorithms and tools for high‐throughput geometry‐based analysis of crystalline porous materials publication-title: Microporous Mesoporous Mater – volume: 106 start-page: 245 issue: 1 year: 2002 end-page: 285 article-title: Transition matrix Monte Carlo method publication-title: J Stat Phys – volume: 47 start-page: 2523 issue: 15 year: 2006 end-page: 2534 article-title: Experimental comparison of two honeycombed desiccant wheels fabricated with silica gel and composite desiccant material publication-title: Energ Conver Manage – volume: 8 start-page: 2844 issue: 8 year: 2012 end-page: 2867 article-title: Improved atoms‐in‐molecule charge partitioning functional for simultaneously reproducing the electrostatic potential and chemical states in periodic and nonperiodic materials publication-title: J Chem Theory Comput – volume: 124 issue: 2 year: 2006 article-title: Determination of surface tension in binary mixtures using transition‐matrix Monte Carlo publication-title: J Chem Phys – volume: 1 start-page: 1 issue: 1 year: 2018 end-page: 6 article-title: Water harvesting from air with a hygroscopic salt in a hydrogel–derived matrix publication-title: Commun Chem – volume: 118 start-page: 127 year: 2017 end-page: 138 article-title: Molecular simulation and experiments of water adsorption in a high surface area activated carbon: hysteresis, scanning curves and spatial organization of water clusters publication-title: Carbon – volume: 36 start-page: 13070 issue: 43 year: 2020 end-page: 13078 article-title: Do internal and external surfaces of metal–organic frameworks have the same hydrophobicity? Insights from molecular simulations publication-title: Langmuir – volume: 9 start-page: 1191 issue: 1 year: 2018 article-title: Adsorption‐based atmospheric water harvesting device for arid climates publication-title: Nat Commun – volume: 64 start-page: 5985 issue: 12 year: 2019 end-page: 5998 article-title: Advances, updates, and analytics for the computation‐ready, experimental metal–organic framework database: CoRE MOF 2019 publication-title: J Chem Eng Data – volume: 79 start-page: 926 issue: 2 year: 1983 end-page: 935 article-title: Comparison of simple potential functions for simulating liquid water publication-title: J Chem Phys – volume: 201 year: 2020 article-title: Reviews of atmospheric water harvesting technologies publication-title: Energy – volume: 121 start-page: 24000 issue: 43 year: 2017 end-page: 24010 article-title: Computational study of water adsorption in the hydrophobic metal–organic framework ZIF‐8: adsorption mechanism and acceleration of the simulations publication-title: J Phys Chem C – volume: 135 start-page: 7545 issue: 20 year: 2013 end-page: 7552 article-title: Large‐scale screening of zeolite structures for CO membrane separations publication-title: J Am Chem Soc – volume: 15 start-page: 20937 issue: 48 year: 2013 end-page: 20942 article-title: Methane storage capabilities of diamond analogues publication-title: Phys Chem Chem Phys – year: 2014 – volume: 10 start-page: 5929 issue: 19 year: 2019 end-page: 5934 article-title: Simulating enhanced methane deliverable capacity of guest responsive pores in intrinsically flexible MOFs publication-title: J Phys Chem Lett – volume: 10 start-page: 569 issue: 2 year: 2020 article-title: Large‐scale screening and machine learning to predict the computation‐ready, experimental metal‐organic frameworks for CO capture from air publication-title: Appl Sci – volume: 356 start-page: 430 issue: 6336 year: 2017 end-page: 434 article-title: Water harvesting from air with metal‐organic frameworks powered by natural sunlight publication-title: Science – volume: 2 start-page: 671 issue: 7 year: 2020 end-page: 684 article-title: Atmospheric water harvesting: a review of material and structural designs publication-title: ACS Materials Lett – volume: 115 start-page: 4824 issue: 11 year: 2011 end-page: 4836 article-title: Accurate treatment of electrostatics during molecular adsorption in nanoporous crystals without assigning point charges to framework atoms publication-title: J Phys Chem C – volume: 38 start-page: 1294 issue: 5 year: 2009 end-page: 1314 article-title: Hydrogen storage in metal–organic frameworks publication-title: Chem Soc Rev – volume: 124 start-page: 27580 issue: 50 year: 2020 end-page: 27591 article-title: Machine learning‐aided computational study of metal–organic frameworks for sour gas sweetening publication-title: J Phys Chem C – volume: 76 start-page: 339 issue: 1 year: 2004 end-page: 344 article-title: Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat publication-title: Sol Energy – volume: 124 start-page: 11428 issue: 21 year: 2020 end-page: 11437 article-title: Efficient and accurate charge assignments via a multilayer connectivity‐based atom contribution (m‐CBAC) approach publication-title: J Phys Chem C – volume: 115 start-page: 12205 issue: 22 year: 2015 end-page: 12250 article-title: Adsorption‐driven heat pumps: the potential of metal–organic frameworks publication-title: Chem Rev – volume: 35 start-page: 1067 issue: 12–13 year: 2009 end-page: 1076 article-title: Evaluation of various water models for simulation of adsorption in hydrophobic zeolites publication-title: Mol Simul – volume: 112 start-page: 8910 issue: 20 year: 2000 end-page: 8922 article-title: A five‐site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions publication-title: J Chem Phys – volume: 6 start-page: 2455 issue: 8 year: 2010 end-page: 2468 article-title: Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials publication-title: J Chem Theory Comput – volume: 253 start-page: 3042 issue: 23–24 year: 2009 end-page: 3066 article-title: Potential applications of metal‐organic frameworks publication-title: Coord Chem Rev – volume: 2 issue: 8 year: 2017 article-title: The chemistry of metal–organic frameworks for CO capture, regeneration and conversion publication-title: Nat Rev Mater – volume: 94 start-page: 8897 issue: 26 year: 1990 end-page: 8909 article-title: DREIDING: a generic force field for molecular simulations publication-title: Chem Rev – volume: 14 start-page: 130 issue: 1 year: 2010 end-page: 147 article-title: Technical development of rotary desiccant dehumidification and air conditioning: a review publication-title: Renew Sustain Energy Rev – volume: 52 start-page: 1588 issue: 6 year: 2019 end-page: 1597 article-title: Adsorption‐based atmospheric water harvesting: impact of material and component properties on system‐level performance publication-title: Acc Chem Res – volume: 13 start-page: 5053 issue: 11 year: 2011 end-page: 5060 article-title: Pore size analysis of >250 000 hypothetical zeolites publication-title: Phys Chem Chem Phys – volume: 27 start-page: 4803 issue: 32 year: 2015 article-title: Metal organic framework: design of hydrophilic metal organic framework water adsorbents for heat reallocation publication-title: Adv Mater – volume: 117 start-page: 7519 issue: 15 year: 2013 end-page: 7525 article-title: Prediction of water adsorption in copper‐based metal–organic frameworks using force fields derived from dispersion‐corrected DFT calculations publication-title: J Phys Chem C – volume: 14 start-page: 6149 issue: 12 year: 2018 end-page: 6158 article-title: Flat‐histogram Monte Carlo as an efficient tool to evaluate adsorption processes involving rigid and deformable molecules publication-title: J Chem Theory Comput – volume: 11 start-page: 5412 issue: 14 year: 2020 end-page: 5417 article-title: Beyond the BET analysis: the surface area prediction of nanoporous materials using a machine learning method publication-title: J Phys Chem Lett – volume: 125 start-page: 4253 issue: 7 year: 2021 end-page: 4266 article-title: Improving computational assessment of porous materials for water adsorption applications via flat histogram methods publication-title: J Phys Chem C – volume: 125 start-page: 6090 issue: 11 year: 2021 end-page: 6098 article-title: First‐principles grand‐canonical simulations of water adsorption in proton‐exchanged zeolites publication-title: J Phys Chem C – volume: 33 start-page: 14529 issue: 51 year: 2017 end-page: 14538 article-title: Accurate characterization of the pore volume in microporous crystalline materials publication-title: Langmuir – volume: 28 start-page: 785 issue: 3 year: 2016 end-page: 793 article-title: A comprehensive set of high‐quality point charges for simulations of metal–organic frameworks publication-title: Chem Mater – volume: 6 issue: 1 year: 2016 article-title: Enhanced adsorptive removal of p‐nitrophenol from water by aluminum metal–organic framework/reduced graphene oxide composite publication-title: Sci Rep – volume: 90 start-page: 293 issue: 1 year: 2006 end-page: 298 article-title: Water adsorption in hydrophobic nanopores: Monte Carlo simulations of water in silicalite publication-title: Microporous Mesoporous Mater – volume: 132 start-page: 7528 issue: 21 year: 2010 end-page: 7539 article-title: Efficient calculation of diffusion limitations in metal organic framework materials: a tool for identifying materials for kinetic separations publication-title: J Am Chem Soc – volume: 118 start-page: 9915 issue: 22 year: 2003 end-page: 9925 article-title: Direct calculation of liquid–vapor phase equilibria from transition matrix Monte Carlo simulation publication-title: J Chem Phys – volume: 203 start-page: 346 year: 2019 end-page: 357 article-title: Impact of MOF defects on the binary adsorption of CO and water in UiO‐66 publication-title: Chem Eng Sci – volume: 119 start-page: 9406 issue: 18 year: 2003 end-page: 9411 article-title: An improved Monte Carlo method for direct calculation of the density of states publication-title: J Chem Phys – volume: 91 start-page: 6269 issue: 24 year: 1987 end-page: 6271 article-title: The missing term in effective pair potentials publication-title: J Phys Chem – volume: 43 start-page: 5657 issue: 16 year: 2014 end-page: 5678 article-title: Methane storage in metal–organic frameworks publication-title: Chem Soc Rev – volume: 34 start-page: 4180 issue: 14 year: 2018 end-page: 4187 article-title: Investigation of the water adsorption properties and structural stability of MIL‐100 (Fe) with different anions publication-title: Langmuir – volume: 72 start-page: 1294 issue: 10 year: 2004 end-page: 1302 article-title: A new approach to Monte Carlo simulations in statistical physics: Wang‐Landau sampling publication-title: Am J Phys – volume: 38 start-page: 1284 issue: 5 year: 2009 end-page: 1293 article-title: Industrial applications of metal–organic frameworks publication-title: Chem Soc Rev – volume: 30 issue: 37 year: 2018 article-title: Metal‐organic frameworks for water harvesting from air publication-title: Adv Mater – volume: 6 start-page: 1348 issue: 8 year: 2020 end-page: 1354 article-title: Metal–organic frameworks for water harvesting from air, anywhere, anytime publication-title: ACS Cent Sci – volume: 45 start-page: 1122 issue: 14–15 year: 2019 end-page: 1147 article-title: Computational discovery of nanoporous materials for energy‐ and environment‐related applications publication-title: Mol Simul – volume: 123 issue: 19 year: 2005 article-title: Characterization of the TIP4P‐ew water model: vapor pressure and boiling point publication-title: J Chem Phys – volume: 120 start-page: 9665 issue: 20 year: 2004 end-page: 9678 article-title: Development of an improved four‐site water model for biomolecular simulations: TIP4P‐ew publication-title: J Chem Phys – volume: 26 start-page: 6185 issue: 21 year: 2014 end-page: 6192 article-title: Computation‐ready, experimental metal–organic frameworks: a tool to enable high‐throughput screening of nanoporous crystals publication-title: Chem Mater – volume: 72 start-page: 171 issue: 2 year: 2016 end-page: 179 article-title: The Cambridge structural database publication-title: Acta Crystallogr B: Struct Sci Cryst Eng Mater – volume: 61 start-page: 677 issue: 2 year: 2015 end-page: 687 article-title: Water adsorption in metal‐organic frameworks with open‐metal sites publication-title: AIChE J – volume: 286 start-page: 119342 year: 2021 article-title: Molecular simulation of adsorption and diffusion of CH and H O in flexible metal‐organic framework ZIF‐8 publication-title: Fuel – volume: 118 start-page: 1102 issue: 2 year: 2014 end-page: 1110 article-title: Modeling water and ammonia adsorption in hydrophobic metal–organic frameworks: single components and mixtures publication-title: J Phys Chem C – volume: 42 start-page: 81 issue: 2 year: 2015 end-page: 101 article-title: RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials publication-title: Mol Simul – volume: 16 start-page: 5499 issue: 12 year: 2014 end-page: 5513 article-title: Optimizing nanoporous materials for gas storage publication-title: Phys Chem Chem Phys – volume: 11 start-page: 633 issue: 7 year: 2012 end-page: 641 article-title: In silico screening of carbon‐capture materials publication-title: Nat Mater – volume: 120 start-page: 6085 issue: 13 year: 2004 end-page: 6093 article-title: A reoptimization of the five‐site water potential (TIP5P) for use with Ewald sums publication-title: J Chem Phys – volume: 369 start-page: 253 issue: 3 year: 1921 end-page: 287 article-title: Die berechnung optischer und elektrostatischer gitterpotentiale publication-title: Ann Phys – volume: 4 start-page: 83 issue: 2 year: 2011 end-page: 89 article-title: Large‐scale screening of hypothetical metal–organic frameworks publication-title: Nat Chem – volume: 122 start-page: 5545 issue: 10 year: 2018 end-page: 5552 article-title: Role of structural defects in the water adsorption properties of MOF‐801 publication-title: J Phys Chem C – ident: e_1_2_9_21_1 doi: 10.1038/nchem.1192 – ident: e_1_2_9_44_1 doi: 10.1021/j100308a038 – ident: e_1_2_9_36_1 doi: 10.1021/acs.langmuir.0c02527 – ident: e_1_2_9_31_1 doi: 10.1038/natrevmats.2017.45 – ident: e_1_2_9_5_1 doi: 10.1016/j.solener.2003.07.036 – ident: e_1_2_9_78_1 doi: 10.1021/acs.jpcc.0c09073 – ident: e_1_2_9_75_1 doi: 10.1063/1.1615966 – ident: e_1_2_9_59_1 doi: 10.1080/08927022.2015.1010082 – ident: e_1_2_9_53_1 doi: 10.1021/acs.jpclett.9b02449 – ident: e_1_2_9_6_1 doi: 10.1021/acs.jpcc.0c10104 – ident: e_1_2_9_28_1 doi: 10.1080/08927022.2019.1626990 – ident: e_1_2_9_65_1 doi: 10.1063/1.2159472 – volume: 94 start-page: 8897 issue: 26 year: 1990 ident: e_1_2_9_67_1 article-title: DREIDING: a generic force field for molecular simulations publication-title: Chem Rev – ident: e_1_2_9_64_1 doi: 10.1021/acs.langmuir.7b01682 – ident: e_1_2_9_39_1 doi: 10.1021/acs.langmuir.7b04399 – ident: e_1_2_9_69_1 doi: 10.1021/jp201075u – ident: e_1_2_9_32_1 doi: 10.1038/nmat3336 – ident: e_1_2_9_35_1 doi: 10.1016/j.fuel.2020.119342 – ident: e_1_2_9_23_1 doi: 10.1039/C4CS00032C – ident: e_1_2_9_4_1 doi: 10.1038/srep25638 – ident: e_1_2_9_38_1 doi: 10.1063/1.2085031 – ident: e_1_2_9_29_1 doi: 10.1039/c3cp53814a – ident: e_1_2_9_10_1 doi: 10.1016/j.energy.2020.117630 – ident: e_1_2_9_47_1 doi: 10.1063/1.1683075 – ident: e_1_2_9_63_1 doi: 10.1016/j.micromeso.2011.08.020 – ident: e_1_2_9_45_1 doi: 10.1063/1.481505 – ident: e_1_2_9_57_1 doi: 10.1021/ja400267g – ident: e_1_2_9_25_1 doi: 10.1039/b804680h – ident: e_1_2_9_30_1 doi: 10.1039/c3cp55039g – ident: e_1_2_9_2_1 doi: 10.1021/acs.chemrev.5b00059 – ident: e_1_2_9_61_1 doi: 10.1023/A:1013180330892 – ident: e_1_2_9_7_1 doi: 10.1126/science.aam8743 – ident: e_1_2_9_46_1 doi: 10.1063/1.1652434 – ident: e_1_2_9_27_1 doi: 10.1021/acs.jced.9b00835 – ident: e_1_2_9_11_1 doi: 10.1039/C4CS00078A – ident: e_1_2_9_14_1 doi: 10.1038/s42004-018-0028-9 – ident: e_1_2_9_50_1 doi: 10.1021/jp310497u – ident: e_1_2_9_70_1 doi: 10.1021/ct3002199 – ident: e_1_2_9_74_1 doi: 10.1119/1.1707017 – ident: e_1_2_9_77_1 doi: 10.1016/j.carbon.2017.03.044 – ident: e_1_2_9_52_1 doi: 10.1021/acs.jctc.8b00534 – ident: e_1_2_9_72_1 doi: 10.1021/acs.jpcc.0c01524 – ident: e_1_2_9_33_1 doi: 10.1002/adma.201570216 – ident: e_1_2_9_71_1 doi: 10.1021/acs.chemmater.5b03836 – ident: e_1_2_9_55_1 doi: 10.1021/ja1023699 – ident: e_1_2_9_40_1 doi: 10.1021/jp054168o – ident: e_1_2_9_66_1 doi: 10.1107/S2052520616003954 – ident: e_1_2_9_17_1 doi: 10.1002/adma.201704304 – ident: e_1_2_9_42_1 doi: 10.1021/acs.jpcc.7b06405 – ident: e_1_2_9_48_1 doi: 10.1002/aic.14707 – ident: e_1_2_9_51_1 doi: 10.1016/j.micromeso.2005.10.021 – ident: e_1_2_9_58_1 doi: 10.3390/app10020569 – ident: e_1_2_9_68_1 doi: 10.1021/ct100125x – ident: e_1_2_9_22_1 doi: 10.1016/j.ccr.2009.05.019 – ident: e_1_2_9_56_1 doi: 10.1039/c0cp02766a – ident: e_1_2_9_62_1 doi: 10.1063/1.1572463 – ident: e_1_2_9_16_1 doi: 10.1016/j.rser.2009.07.016 – ident: e_1_2_9_41_1 doi: 10.1021/jp410758t – ident: e_1_2_9_54_1 doi: 10.1021/acs.jpcc.0c11082 – volume-title: Standard Reference Simulation Website, NIST Standard Reference Database 173 year: 2014 ident: e_1_2_9_73_1 – ident: e_1_2_9_8_1 doi: 10.1038/s41467-018-03162-7 – ident: e_1_2_9_34_1 doi: 10.1016/j.ces.2019.03.053 – ident: e_1_2_9_13_1 doi: 10.1021/acs.accounts.9b00062 – ident: e_1_2_9_12_1 doi: 10.1021/acsmaterialslett.0c00130 – ident: e_1_2_9_60_1 doi: 10.1002/andp.19213690304 – ident: e_1_2_9_37_1 doi: 10.1021/acs.jpcc.8b00014 – ident: e_1_2_9_49_1 doi: 10.1080/08927020902865923 – ident: e_1_2_9_76_1 doi: 10.1039/b610621h – ident: e_1_2_9_3_1 doi: 10.1021/la4043556 – ident: e_1_2_9_19_1 doi: 10.1021/acs.jpclett.0c01518 – ident: e_1_2_9_26_1 doi: 10.1021/cm502594j – ident: e_1_2_9_20_1 doi: 10.1021/acscentsci.0c00678 – ident: e_1_2_9_18_1 doi: 10.1021/acs.jpcc.9b02116 – ident: e_1_2_9_24_1 doi: 10.1039/b802256a – ident: e_1_2_9_15_1 doi: 10.1016/j.enconman.2005.10.034 – ident: e_1_2_9_9_1 – ident: e_1_2_9_43_1 doi: 10.1063/1.445869 |
| SSID | ssj0012782 |
| Score | 2.5165157 |
| Snippet | Technologies based on water adsorption such as water harvesting from air have tremendous potential in mitigating important global crises such as water... |
| SourceID | osti proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Adsorbed water Adsorbents Adsorption Best practice Computer applications ENGINEERING flat histogram methods metal–organic frameworks (MOFs) Monte Carlo simulation Monte Carlo simulations Porous materials Screening water adsorption Water harvesting Water scarcity |
| Title | Monte Carlo simulations for water adsorption in porous materials: Best practices and new insights |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.17447 https://www.proquest.com/docview/2597408106 https://www.osti.gov/servlets/purl/1830512 |
| Volume | 67 |
| WOSCitedRecordID | wos000704710200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1547-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012782 issn: 0001-1541 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEC5014MekphEsnETGskhl8HZnp5HJyezyRJBJYiCt6b6MbCgM2F6NX8_1fPYKBgQvA1M9dB01-Or6eqvAD7xmc1zjTySFnUkrEmjAmcyymUZl2luCmvbriUn-dlZcXUlf23A1-EuTMcPsf7hFiyj9dfBwFH7w3-kobg0oRpH5Jsw5qS36QjG388XlyfrQwSeFx1ZOGXMhBRmA7FQzA_Xgx-Eo1FNZvUAat4HrG3EWbx81lxfwYseaLKjTjN2YcNVr2HnHv3gG8DTQE3F5thc18wvb_pOXp4RkGV_CIQ2DK2vm9arsGXFCKvXt57dhFdBb7-wbzR_Nty08gwrywink6wPSb9_C5eLHxfzn1HfciEyCaUWkeNYIoVxLuMSTRaj1La0zuQmFZk1WFitY1uaUmgK_DxOHGWzwukskyQkZ8kejKq6cu-AEU4UJWI41gu0aUKK1InM8QBpkkTjBD4PK69Mz0ce2mJcq45JmStaNdWu2gQO1qK_OxKOx4T2w_YpQg6B_taEOiGzUuSyyO_wCUyHXVW9lXrFQzZFmCjOaDLt_v3_8-roeN4-vH-66D5s81AC01a_TGG0am7dB9gyd6ulbz726voX4Avt2Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6tLDtoftqWdZuE6MPezF1ZMW2xl7abKFlSSglgb4JWZIhkNrDSrd_f3f-SBvoYLA3g8_Glu7jd9LpdwAnfGCTJNM8kFZngbBmGKR6IINE5mE-TExqbd21ZJLMZunNjbzaga_dWZiGH2Kz4EaWUftrMnBakD69Zw3VS0PlOCJ5ArsC1Qj1e_fb9Xgx2ewi8CRt2MIxZUaoMOiYhUJ-unl4Kx71SrSrLaz5ELHWIWf84v8-9iXst1CTnTW68Qp2XPEanj8gIHwDekrkVGykq1XJ_PK27eXlGUJZ9hthaMW09WVV-xW2LBii9fLOs1u6RZr7hZ3jD7DurJVnurAMkTrKekr7_QEsxt_no4ugbboQmAiTi8BxnWsM5FyGuTZxqGVmc-tMYoYitkanNstCm5tcZBj6eRg5zGeFy-JYopAcRIfQK8rCvQWGSFHkWtPGHhGnCSmGTsSOE6iJokz34XM39Mq0jOTUGGOlGi5lrnDUVD1qffi0Ef3Z0HA8JnRE86cQOxABrqFKIbNW6LTQ8_A-HHfTqlo79YpTPoWoKIzxY-oJ_Pvr1dnlqL549--iH-HpxXw6UZPL2Y8jeMapIKauhTmG3rq6c-9hz_xaL331odXdPx7O8ck |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_0LFIf-qn01Nql9KEvwdxmL8lKX-zpUen1kFLBt2WzH3CgiWTP9t93Jh9XhRYE3wKZhM3szsxvsrO_AfjERzbLCs0jaXURCWvGUa5HMsqkj_04M7m1TdeSWTaf55eX8nwNvvRnYVp-iNUPN7KMxl-Tgbsb6w__sobqhaFyHJGtw4agJjID2Dj5Ob2YrXYReJa3bOGYMiNUGPXMQjE_XD38IB4NKrSrB1jzPmJtQs705dMG-wpedFCTHbdr4zWsufINbN0jIHwL-geRU7GJrq8qFhbXXS-vwBDKsj8IQ2umbajqxq-wRckQrVe3gV3TLVq5R-wrfgDrz1oFpkvLEKmjbKC0P2zDxfT01-Rb1DVdiEyCyUXkuPYaAzmXsdcmjbUsrLfOZGYsUmt0bositt54UWDo53HiMJ8VrkhTiUJylOzAoKxK9w4YIkXhtaaNPSJOE1KMnUgdJ1CTJIUewude9cp0jOTUGONKtVzKXKHWVKO1IXxcid60NBz_Etqj-VOIHYgA11ClkFkqdFroefgQ9vtpVZ2dBsUpn0JUFKc4mGYC__96dXw2aS52Hy_6ATbPT6Zqdjb_vgfPOdXDNKUw-zBY1rfuPTwzv5eLUB90S_cOvyzxRA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monte+Carlo+simulations+for+water+adsorption+in+porous+materials%3A+Best+practices+and+new+insights&rft.jtitle=AIChE+journal&rft.au=Datar%2C+Archit&rft.au=Witman%2C+Matthew&rft.au=Lin%2C+Li%E2%80%90Chiang&rft.date=2021-12-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=67&rft.issue=12&rft_id=info:doi/10.1002%2Faic.17447&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aic_17447 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |