Shake table test and numerical study of self‐centering steel frame with SMA braces

Summary Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self‐centering steel frame with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Earthquake engineering & structural dynamics Ročník 46; číslo 1; s. 117 - 137
Hlavní autoři: Qiu, Canxing, Zhu, Songye
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bognor Regis Wiley Subscription Services, Inc 01.01.2017
Témata:
ISSN:0098-8847, 1096-9845
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self‐centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni–Ti wires. The braces were fabricated and cyclically characterized before their installation in a two‐story one‐bay steel frame. The equivalent viscous damping ratio and ‘post‐yield’ stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self‐centering capacity and pin‐connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic‐resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList Summary Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self‐centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni–Ti wires. The braces were fabricated and cyclically characterized before their installation in a two‐story one‐bay steel frame. The equivalent viscous damping ratio and ‘post‐yield’ stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self‐centering capacity and pin‐connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic‐resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Copyright © 2016 John Wiley & Sons, Ltd.
Given their excellent self-centering and energy-dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self-centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni-Ti wires. The braces were fabricated and cyclically characterized before their installation in a two-story one-bay steel frame. The equivalent viscous damping ratio and 'post-yield' stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self-centering capacity and pin-connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic-resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes.
Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self‐centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni–Ti wires. The braces were fabricated and cyclically characterized before their installation in a two‐story one‐bay steel frame. The equivalent viscous damping ratio and ‘post‐yield’ stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self‐centering capacity and pin‐connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic‐resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Copyright © 2016 John Wiley & Sons, Ltd.
Summary Given their excellent self-centering and energy-dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self-centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni-Ti wires. The braces were fabricated and cyclically characterized before their installation in a two-story one-bay steel frame. The equivalent viscous damping ratio and 'post-yield' stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self-centering capacity and pin-connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic-resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Copyright © 2016 John Wiley & Sons, Ltd.
Author Qiu, Canxing
Zhu, Songye
Author_xml – sequence: 1
  givenname: Canxing
  surname: Qiu
  fullname: Qiu, Canxing
  organization: The Hong Kong Polytechnic University
– sequence: 2
  givenname: Songye
  orcidid: 0000-0002-2617-3378
  surname: Zhu
  fullname: Zhu, Songye
  email: ceszhu@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
BookMark eNqNkctKBDEQRYMoOD7ATwi4cdNjutN5LQcZH6CIjK6bdLri9JhJa9LNMDs_wW_0S4yPhYiCFFQt7qlLFXcHbfrOA0IHORnnhBTH8ATjQgixgUY5UTxTsmSbaESIkpmUpdhGOzEuCCGUEzFCt7O5fgDc69qlDrHH2jfYD0sIrdEOx35o1rizOIKzr88vBnyfJH-fFACHbdBLwKu2n-PZ1QTXQRuIe2jLahdh_2vuorvT6e3JeXZ5fXZxMrnMDGVKZE1eWwOcaVsXtaSC54yBVUypmnNqlKWWKICmBEpNDRIaqUrNRM1ybURp6C46-vR9DN3TkI6vlm004Jz20A2xyiUvGS-kkP9AGSOiYFwk9PAHuuiG4NMjiSpT0aL8ZmhCF2MAWz2GdqnDuspJ9Z5ElZKo3pNI6PgHatpe923n-6Bb99tC9rmwah2s_zSupjfTD_4NGt-bwg
CODEN IJEEBG
CitedBy_id crossref_primary_10_1016_j_engstruct_2024_118981
crossref_primary_10_1016_j_jobe_2024_110375
crossref_primary_10_1061_JBENF2_BEENG_6069
crossref_primary_10_1016_j_istruc_2022_01_075
crossref_primary_10_1080_13632469_2024_2359425
crossref_primary_10_3390_ma15196589
crossref_primary_10_1016_j_engstruct_2022_114935
crossref_primary_10_1016_j_engstruct_2021_112125
crossref_primary_10_1016_j_engstruct_2023_115632
crossref_primary_10_1016_j_engstruct_2019_01_087
crossref_primary_10_1016_j_jcsr_2022_107480
crossref_primary_10_1016_j_engstruct_2021_112486
crossref_primary_10_1177_1045389X20963167
crossref_primary_10_1016_j_jobe_2022_105337
crossref_primary_10_1016_j_soildyn_2018_07_040
crossref_primary_10_1016_j_jcsr_2024_108575
crossref_primary_10_1186_s43065_022_00070_5
crossref_primary_10_1080_15732479_2025_2486289
crossref_primary_10_1016_j_jobe_2023_108325
crossref_primary_10_1186_s43251_024_00133_5
crossref_primary_10_1088_1361_665X_ac7ca4
crossref_primary_10_1177_1369433220945055
crossref_primary_10_3390_polym14235268
crossref_primary_10_1007_s10518_019_00586_4
crossref_primary_10_1016_j_engstruct_2022_115126
crossref_primary_10_1061_JSENDH_STENG_14330
crossref_primary_10_1061_JSENDH_STENG_14457
crossref_primary_10_1016_j_engstruct_2021_112113
crossref_primary_10_1016_j_engstruct_2022_115125
crossref_primary_10_1016_j_engstruct_2023_115982
crossref_primary_10_1016_j_soildyn_2020_106143
crossref_primary_10_1177_1045389X20987000
crossref_primary_10_4028_www_scientific_net_KEM_763_661
crossref_primary_10_1016_j_jobe_2022_105225
crossref_primary_10_1016_j_jcsr_2023_108186
crossref_primary_10_1088_1757_899X_789_1_012062
crossref_primary_10_1016_j_istruc_2021_06_039
crossref_primary_10_1016_j_istruc_2025_108770
crossref_primary_10_1088_1361_665X_abedf4
crossref_primary_10_1007_s13296_022_00595_1
crossref_primary_10_1016_j_istruc_2025_109982
crossref_primary_10_1016_j_engstruct_2024_118524
crossref_primary_10_1016_j_engstruct_2025_121171
crossref_primary_10_1061__ASCE_ST_1943_541X_0002786
crossref_primary_10_1007_s10518_021_01060_w
crossref_primary_10_1016_j_tws_2024_111605
crossref_primary_10_1002_stc_2233
crossref_primary_10_1002_stc_2596
crossref_primary_10_1016_j_conbuildmat_2018_07_047
crossref_primary_10_1016_j_istruc_2024_106620
crossref_primary_10_1016_j_soildyn_2021_106794
crossref_primary_10_1061__ASCE_ST_1943_541X_0002789
crossref_primary_10_1016_j_jcsr_2020_105965
crossref_primary_10_1016_j_soildyn_2024_109066
crossref_primary_10_1002_eqe_3174
crossref_primary_10_1002_eqe_70034
crossref_primary_10_1016_j_istruc_2020_04_025
crossref_primary_10_1016_j_jcsr_2022_107267
crossref_primary_10_1016_j_jcsr_2019_105864
crossref_primary_10_1088_1361_665X_ab6883
crossref_primary_10_1061__ASCE_CF_1943_5509_0001191
crossref_primary_10_1016_j_jcsr_2021_106545
crossref_primary_10_1007_s13296_018_0165_0
crossref_primary_10_1061__ASCE_ST_1943_541X_0003082
crossref_primary_10_1002_stc_2462
crossref_primary_10_1007_s10064_022_02965_9
crossref_primary_10_1155_2018_1946818
crossref_primary_10_1007_s10518_024_01997_8
crossref_primary_10_1016_j_engstruct_2025_121280
crossref_primary_10_1007_s10518_018_0415_8
crossref_primary_10_1007_s13296_021_00519_5
crossref_primary_10_1016_j_jcsr_2024_109198
crossref_primary_10_1016_j_engstruct_2023_116976
crossref_primary_10_1016_j_jcsr_2024_109073
crossref_primary_10_1061__ASCE_ST_1943_541X_0002679
crossref_primary_10_1016_j_tws_2024_111962
crossref_primary_10_1016_j_jcsr_2022_107252
crossref_primary_10_1155_2019_9204362
crossref_primary_10_1016_j_engstruct_2023_116295
crossref_primary_10_1061_JSENDH_STENG_12858
crossref_primary_10_1016_j_soildyn_2025_109490
crossref_primary_10_1016_j_jobe_2023_105944
crossref_primary_10_1016_j_jcsr_2021_106630
crossref_primary_10_1088_1361_665X_ac8efc
crossref_primary_10_1002_stc_2337
crossref_primary_10_1061__ASCE_ST_1943_541X_0002127
crossref_primary_10_1016_j_engstruct_2020_110651
crossref_primary_10_1177_1045389X20975473
crossref_primary_10_1016_j_engstruct_2020_110779
crossref_primary_10_1016_j_soildyn_2024_108632
crossref_primary_10_1016_j_jobe_2022_104209
crossref_primary_10_1061_JSENDH_STENG_14762
crossref_primary_10_1061_JSENDH_STENG_14521
crossref_primary_10_1061__ASCE_ST_1943_541X_0003459
crossref_primary_10_1016_j_engstruct_2023_115671
crossref_primary_10_1080_15732479_2020_1835997
crossref_primary_10_1016_j_conbuildmat_2025_141787
crossref_primary_10_1016_j_engstruct_2019_01_049
crossref_primary_10_1016_j_istruc_2023_06_017
crossref_primary_10_1016_j_jcsr_2020_106473
crossref_primary_10_1061_JPCFEV_CFENG_4686
crossref_primary_10_1016_j_engstruct_2021_112708
crossref_primary_10_1016_j_engstruct_2024_117580
crossref_primary_10_1016_j_jobe_2022_104340
crossref_primary_10_1016_j_jcsr_2022_107438
crossref_primary_10_1016_j_jcsr_2022_107559
crossref_primary_10_1016_j_jcsr_2024_108802
crossref_primary_10_1002_stc_3099
crossref_primary_10_1016_j_istruc_2021_08_094
crossref_primary_10_1002_stc_2443
crossref_primary_10_1016_j_istruc_2020_05_058
crossref_primary_10_1016_j_engstruct_2021_112151
crossref_primary_10_1002_eqe_70040
crossref_primary_10_1177_1045389X221109249
crossref_primary_10_1016_j_soildyn_2022_107392
crossref_primary_10_3390_ma15010304
crossref_primary_10_1080_13632469_2021_1997840
crossref_primary_10_1016_j_istruc_2023_105538
crossref_primary_10_1061__ASCE_ST_1943_541X_0002587
crossref_primary_10_1007_s11709_022_0807_3
crossref_primary_10_1016_j_istruc_2024_106943
crossref_primary_10_1061_JSENDH_STENG_12480
crossref_primary_10_1016_j_engstruct_2016_09_051
crossref_primary_10_1016_j_engstruct_2021_113232
crossref_primary_10_1016_j_soildyn_2023_108213
crossref_primary_10_1061__ASCE_ST_1943_541X_0003318
crossref_primary_10_1016_j_engstruct_2023_116664
crossref_primary_10_1002_eqe_4183
crossref_primary_10_1016_j_soildyn_2020_106397
crossref_primary_10_1016_j_tws_2023_111456
crossref_primary_10_1061_JSENDH_STENG_13217
crossref_primary_10_1016_j_engstruct_2019_110021
crossref_primary_10_1016_j_jcsr_2020_106321
crossref_primary_10_1016_j_jcsr_2018_12_026
crossref_primary_10_1016_j_jcsr_2020_106323
crossref_primary_10_1061_JBENF2_BEENG_7123
crossref_primary_10_1016_j_jobe_2023_107015
crossref_primary_10_1016_j_jobe_2024_111233
crossref_primary_10_1007_s13369_024_08734_y
crossref_primary_10_1061__ASCE_ST_1943_541X_0002235
crossref_primary_10_3390_buildings15050764
crossref_primary_10_1016_j_engstruct_2021_112368
crossref_primary_10_1016_j_engstruct_2024_117920
crossref_primary_10_1016_j_engstruct_2020_110447
crossref_primary_10_1016_j_engstruct_2022_114603
crossref_primary_10_1088_1361_665X_acfd6e
crossref_primary_10_1016_j_soildyn_2020_106283
crossref_primary_10_1016_j_engstruct_2021_113588
crossref_primary_10_1061_JSENDH_STENG_13466
crossref_primary_10_1016_j_jcsr_2019_07_011
crossref_primary_10_1016_j_jobe_2022_104918
crossref_primary_10_1016_j_jcsr_2023_107872
crossref_primary_10_1016_j_soildyn_2024_109033
crossref_primary_10_1016_j_jobe_2022_104358
crossref_primary_10_1016_j_jcsr_2022_107455
crossref_primary_10_1016_j_jcsr_2022_107576
crossref_primary_10_1002_eqe_3421
crossref_primary_10_1016_j_istruc_2020_11_022
crossref_primary_10_1016_j_engstruct_2020_111827
crossref_primary_10_1002_eqe_3914
crossref_primary_10_1002_eqe_3912
crossref_primary_10_1016_j_jcsr_2020_106318
crossref_primary_10_1080_13632469_2022_2127978
crossref_primary_10_1061__ASCE_EM_1943_7889_0001925
crossref_primary_10_1016_j_istruc_2024_105914
crossref_primary_10_1080_13632469_2023_2166163
crossref_primary_10_1007_s43452_025_01185_8
crossref_primary_10_1080_15732479_2021_1887290
crossref_primary_10_1016_j_jobe_2021_103950
crossref_primary_10_1016_j_istruc_2021_04_042
crossref_primary_10_1088_1361_665X_ab8c28
crossref_primary_10_1002_eqe_3231
crossref_primary_10_1016_j_jobe_2022_104761
crossref_primary_10_1002_eqe_3595
crossref_primary_10_1016_j_jobe_2021_103839
crossref_primary_10_1061_JSENDH_STENG_12306
crossref_primary_10_1061_JSENDH_STENG_13516
crossref_primary_10_1016_j_jobe_2023_106429
crossref_primary_10_1016_j_jcsr_2024_109266
crossref_primary_10_1016_j_engstruct_2020_110506
crossref_primary_10_1088_1361_665X_abd5db
crossref_primary_10_1016_j_jcsr_2024_108969
crossref_primary_10_1007_s10518_020_00851_x
crossref_primary_10_1016_j_engstruct_2024_118474
crossref_primary_10_1016_j_engstruct_2025_120130
crossref_primary_10_1016_j_jcsr_2024_108968
crossref_primary_10_1016_j_istruc_2021_03_115
crossref_primary_10_1016_j_engstruct_2025_119945
crossref_primary_10_1016_j_engstruct_2018_11_002
crossref_primary_10_1016_j_engstruct_2021_112621
crossref_primary_10_3390_su16010427
crossref_primary_10_1016_j_engstruct_2020_110502
crossref_primary_10_1061__ASCE_ST_1943_541X_0003267
crossref_primary_10_3389_fbuil_2022_953273
crossref_primary_10_1080_13632469_2021_2009059
crossref_primary_10_1016_j_engstruct_2021_112191
crossref_primary_10_1016_j_engstruct_2020_110751
crossref_primary_10_3390_buildings13112760
crossref_primary_10_1016_j_jcsr_2021_106817
crossref_primary_10_1080_13632469_2021_2009060
crossref_primary_10_3390_su14020712
crossref_primary_10_1007_s11709_022_0873_6
crossref_primary_10_1016_j_engstruct_2020_111171
crossref_primary_10_1016_j_engstruct_2025_119809
crossref_primary_10_1080_13632469_2020_1856233
crossref_primary_10_1016_j_jobe_2021_103059
crossref_primary_10_1088_1361_665X_ab8f68
crossref_primary_10_1016_j_istruc_2024_107553
crossref_primary_10_1016_j_istruc_2024_107791
crossref_primary_10_1061_JSENDH_STENG_13414
crossref_primary_10_1016_j_jobe_2022_105753
crossref_primary_10_1016_j_jobe_2023_107056
crossref_primary_10_1061__ASCE_EM_1943_7889_0001699
crossref_primary_10_1016_j_engstruct_2025_120596
crossref_primary_10_3390_s19010050
crossref_primary_10_1016_j_engstruct_2025_120111
crossref_primary_10_1088_1755_1315_330_2_022050
crossref_primary_10_1016_j_engstruct_2020_111611
crossref_primary_10_1088_1361_665X_aab52d
crossref_primary_10_1088_1361_665X_ab6abd
crossref_primary_10_1177_1369433218773487
crossref_primary_10_1016_j_soildyn_2019_105751
crossref_primary_10_1061_JSENDH_STENG_13667
crossref_primary_10_1002_tal_1797
crossref_primary_10_1016_j_jcsr_2023_107950
crossref_primary_10_1080_13632469_2022_2152137
crossref_primary_10_1155_2023_9748991
crossref_primary_10_1016_j_engstruct_2025_120464
crossref_primary_10_1016_j_jobe_2024_109107
crossref_primary_10_1002_eqe_3953
crossref_primary_10_1007_s10518_017_0213_8
crossref_primary_10_1061__ASCE_ST_1943_541X_0003058
crossref_primary_10_1016_j_engstruct_2021_113407
crossref_primary_10_1016_j_mtcomm_2023_107723
crossref_primary_10_1016_j_engstruct_2022_115556
crossref_primary_10_1061__ASCE_ST_1943_541X_0002649
crossref_primary_10_1088_1361_665X_ac177e
crossref_primary_10_1016_j_istruc_2023_105153
crossref_primary_10_1088_1361_665X_ab1974
crossref_primary_10_1080_15397734_2021_1939048
crossref_primary_10_1016_j_engstruct_2024_119471
crossref_primary_10_1016_j_jobe_2023_107671
crossref_primary_10_1177_1369433218791606
crossref_primary_10_1016_j_engstruct_2024_119000
crossref_primary_10_1002_eqe_3728
crossref_primary_10_1002_stc_2847
crossref_primary_10_1002_eqe_3726
crossref_primary_10_1061__ASCE_EM_1943_7889_0001838
crossref_primary_10_1016_j_istruc_2024_107968
crossref_primary_10_1016_j_engstruct_2017_10_075
crossref_primary_10_3390_ma15072349
crossref_primary_10_1016_j_engstruct_2018_10_013
crossref_primary_10_1016_j_jcsr_2022_107392
crossref_primary_10_1177_1045389X19844328
crossref_primary_10_1061__ASCE_ST_1943_541X_0002414
crossref_primary_10_1016_j_engstruct_2025_120205
crossref_primary_10_1088_1755_1315_455_1_012071
crossref_primary_10_1016_j_engstruct_2020_110836
crossref_primary_10_1016_j_jcsr_2021_106578
crossref_primary_10_1016_j_jobe_2024_109201
crossref_primary_10_1016_j_jobe_2021_103261
crossref_primary_10_1016_j_engstruct_2023_115728
crossref_primary_10_1061_AJRUA6_RUENG_1495
crossref_primary_10_1016_j_soildyn_2020_106546
crossref_primary_10_1061_JSENDH_STENG_13176
crossref_primary_10_1080_13632469_2022_2033354
crossref_primary_10_1016_j_engstruct_2018_12_077
crossref_primary_10_1080_30656680_2025_2559071
crossref_primary_10_1016_j_engstruct_2017_10_068
crossref_primary_10_1016_j_soildyn_2023_108291
crossref_primary_10_1016_j_tws_2025_113394
crossref_primary_10_1088_1361_665X_ad142a
crossref_primary_10_1002_eqe_3820
crossref_primary_10_1016_j_jcsr_2023_108447
crossref_primary_10_1016_j_jobe_2021_103494
crossref_primary_10_3390_app10010284
crossref_primary_10_1016_j_istruc_2023_105028
crossref_primary_10_1016_j_engstruct_2021_112527
crossref_primary_10_1016_j_tws_2022_110351
crossref_primary_10_1016_j_engstruct_2020_111382
crossref_primary_10_1016_j_jcsr_2022_107172
crossref_primary_10_1061__ASCE_ST_1943_541X_0002515
crossref_primary_10_1061_JSENDH_STENG_13982
crossref_primary_10_3390_ma15010012
crossref_primary_10_1016_j_jcsr_2025_109456
crossref_primary_10_1016_j_tws_2025_113044
Cites_doi 10.1016/j.jcsr.2015.12.008
10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
10.1061/(ASCE)0733-9445(2007)133:9(1205)
10.1002/stc.328
10.1016/j.engstruct.2010.07.013
10.1177/1045389X11411220
10.12989/eas.2013.4.6.607
10.1016/S0141-0296(98)00097-2
10.1088/0964-1726/16/5/014
10.1016/j.conbuildmat.2014.08.065
10.1007/s11665-009-9433-7
10.1061/(ASCE)ST.1943-541X.0001109,04014163
10.1002/eqe.501
10.1002/eqe.243
10.1002/eqe.2241
10.1002/eqe.2160
10.1016/j.engstruct.2005.12.010
10.1016/j.engstruct.2006.11.028
10.1016/j.jcsr.2007.02.001
10.1002/tal.1149
10.1061/(ASCE)0733-9445(2008)134:1(121)
10.1061/(ASCE)0733-9445(2004)130:1(38)
10.1088/0964-1726/19/6/065004
10.1080/13632460601125763
10.1016/j.engstruct.2008.05.025
10.1061/(ASCE)0733-9399(2008)134:3(240)
10.1088/0964-1726/17/3/035018
10.1260/1369-4332.17.3.429
10.1061/(ASCE)0733-9445(2007)133:6(862)
10.1002/eqe.2290
10.1061/(ASCE)ST.1943-541X.0001005,04014083
10.1002/eqe.761
10.1016/j.engstruct.2012.02.037
10.1061/(ASCE)0733-9445(2001)127:2(113)
10.1002/eqe.152
10.1088/0964-1726/14/3/008
10.1002/eqe.683
10.1061/(ASCE)ST.1943-541X.0001166,04014193
10.1061/(ASCE)0733-9445(2002)128:9(1111)
10.1016/j.engstruct.2009.10.011
10.1088/0964-1726/17/2/025008
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
– notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7SM
8BQ
JG9
DOI 10.1002/eqe.2777
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Earthquake Engineering Abstracts
METADEX
Materials Research Database
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earthquake Engineering Abstracts
Materials Research Database
METADEX
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earthquake Engineering Abstracts
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9845
EndPage 137
ExternalDocumentID 4277509801
10_1002_eqe_2777
EQE2777
Genre article
GrantInformation_xml – fundername: Research Institute for Sustainable Urban Development of the Hong Kong Polytechnic University
  funderid: 4‐ZZCG
– fundername: National Natural Science Foundation of China
  funderid: NSFC‐51208447
GroupedDBID .3N
.GA
02
05W
08R
0R
10A
1L6
1OB
1OC
31
33P
3N
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6XO
702
7PT
8-0
8-1
8-3
8-4
8-5
8RP
8UM
8WZ
930
A03
A6W
AABCJ
AAESR
AAEVG
AAIKC
AAONW
AAYOK
AAZKR
ABCUV
ABHUG
ABPVW
ACAHQ
ACGFS
ACIWK
ACKIV
ACPOU
ACVYA
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
ADZMN
AEIMD
AENEX
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CKXBT
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GA
GNP
GODZA
H.T
H.X
HBH
HHY
HVGLF
HZ
IA
IPNFZ
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M58
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4A
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIG
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SPW
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WT
WWC
WYISQ
X
XG1
XPP
XV2
Y3
ZY4
ZZTAW
~IA
~WT
-~X
.DC
.Y3
0R~
31~
AAHQN
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYXX
ABCQN
ABEML
ABIJN
ABJNI
ACBWZ
ACCZN
ACRPL
ACSCC
ACXBN
ACYXJ
ADKYN
ADNMO
AEFGJ
AEIGN
AEUYR
AEYWJ
AFFPM
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
CITATION
HF~
HGLYW
HZ~
O8X
OIG
WXSBR
~02
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7SM
8BQ
JG9
ID FETCH-LOGICAL-c3597-d1bfce65afb2b8376155ef9599b663c9f3f09eed4e33cbe8ed894a57b51ac74c3
IEDL.DBID DRFUL
ISICitedReferencesCount 310
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000390260700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-8847
IngestDate Thu Oct 02 05:12:18 EDT 2025
Tue Oct 07 09:36:45 EDT 2025
Sun Nov 09 06:14:44 EST 2025
Tue Nov 18 20:47:46 EST 2025
Sat Nov 29 03:40:48 EST 2025
Fri Apr 02 05:00:57 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3597-d1bfce65afb2b8376155ef9599b663c9f3f09eed4e33cbe8ed894a57b51ac74c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2617-3378
PQID 1848483248
PQPubID 866380
PageCount 21
ParticipantIDs proquest_miscellaneous_1864562878
proquest_miscellaneous_1855072567
proquest_journals_1848483248
crossref_primary_10_1002_eqe_2777
crossref_citationtrail_10_1002_eqe_2777
wiley_primary_10_1002_eqe_2777_EQE2777
ProviderPackageCode 10A
RJQFR
A03
ADOZA
BFHJK
BROTX
AMBMR
DCZOG
~IA
ACAHQ
LEEKS
AFGKR
50Y
50Z
AEUQT
XG1
AAEVG
MRSTM
.3N
MEWTI
H.T
Q11
LP7
H.X
LP6
51W
51X
ACXME
WBKPD
QB0
AJXKR
ADMGS
UB1
AEIMD
GNP
ATUGU
WOHZO
G-S
O66
AZBYB
52M
3WU
52N
52O
52P
ADEOM
LATKE
ZZTAW
52S
930
BAFTC
52T
MK4
QRW
SUPJJ
52U
HHY
52W
DRSTM
1L6
52X
AFPWT
4ZD
ALAGY
WWC
DR2
G.N
ACPOU
AFZJQ
ADAWD
702
7PT
66C
NNB
ADIZJ
.GA
AAONW
LYRES
GODZA
HBH
LUTES
ALUQN
CKXBT
AAZKR
MSFUL
WLBEL
LC2
AIURR
LC3
AZVAB
RWI
PALCI
ABHUG
KQQ
RX1
ACXQS
BMXJE
R.K
WIB
WQJ
MXFUL
P2W
W8V
W99
WYISQ
P2X
WIH
WIK
JPC
BDRZF
BY8
MSSTM
DPXWK
1OB
AUFTA
1OC
3SF
F01
F00
NF~
BRXPI
WRC
AFVGU
F04
ADZMN
8UM
ABCUV
N05
N04
ADDAD
BNHUX
~WT
8-0
8-1
P4A
8-3
AGJLS
8-4
8-5
P4D
IX1
BHBCM
BMNLL
LITHE
SAMSI
J0M
MXSTM
DRFUL
33P
Q.N
05W
XV2
AAESR
LOXES
MRFUL
D-F
D-E
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earthquake engineering & structural dynamics
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 32
2000; 29
2013; 4
2002; 31
2010; 19
2010
2000; 22
2013; 42
2008; 17
2008
2008; 37
1997
2008; 30
2007; 11
2014; 23
2003; 32
2007; 36
2001; 127
2007; 16
2007; 29
2001
2016; 119
2004; 130
2007; 133
2006; 28
2002; 128
2011; 22
2014; 140
2014; 17
2007; 63
2008; 134
2014; 72
2014; 141
2009; 16
2005; 34
2012; 41
2009; 18
2005; 14
2012; 40
Padgett JE (e_1_2_11_23_1) 2010; 32
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_48_1
e_1_2_11_2_1
American Society of Civil Engineers (ASCE) (e_1_2_11_3_1) 2010
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_46_1
e_1_2_11_47_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
DesRoches R (e_1_2_11_9_1) 2004; 130
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – volume: 119
  start-page: 133
  year: 2016
  end-page: 143
  article-title: High‐mode effects on seismic performance of a multi‐story self‐centering‐braced steel frame
  publication-title: Journal of Constructional Steel Research
– volume: 30
  start-page: 3399
  year: 2008
  end-page: 3411
  article-title: Analytical prediction of the seismic behavior of superelastic shape memory alloy reinforced concrete elements
  publication-title: Engineering Structures
– volume: 32
  start-page: 165
  issue: 3
  year: 2010
  end-page: 173
  article-title: Experimental response modification of a four‐span bridge retrofit with shape memory alloys
  publication-title: Structural Control and Health Monitoring
– volume: 141
  issue: 6
  year: 2014
  article-title: Design and testing of an enhanced‐elongation telescoping self‐centering energy‐dissipative brace
  publication-title: ASCE Journal of Structural Engineering
– volume: 128
  start-page: 1111
  issue: 9
  year: 2002
  end-page: 1120
  article-title: Post‐tensioned energy dissipating connections for moment resisting steel frames
  publication-title: ASCE Journal of Structural Engineering
– volume: 16
  start-page: 751
  issue: 7–8
  year: 2009
  end-page: 765
  article-title: A passive control device with SMA components: from the prototype to the model
  publication-title: Structural Control and Health Monitoring
– volume: 41
  start-page: 1831
  issue: 13
  year: 2012
  end-page: 1843
  article-title: Application of an SMA‐based hybrid control device to 20‐story nonlinear benchmark building
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 14
  start-page: 60
  issue: 3
  year: 2005
  end-page: 67
  article-title: Unseating prevention for multiple frame bridges using superelastic devices
  publication-title: Smart Materials and Structures
– volume: 32
  start-page: 3394
  issue: 10
  year: 2010
  end-page: 3403
  article-title: Hysteretic behavior of precast segmental bridge piers with superelastic shape memory alloy bars
  publication-title: Engineering Structures
– volume: 37
  start-page: 407
  year: 2008
  end-page: 426
  article-title: Experimental and theoretical study on two types of shape memory alloy devices
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 72
  start-page: 219
  issue: 15
  year: 2014
  end-page: 230
  article-title: Characterization of cyclic properties of superelastic monocrystalline Cu–Al–Be SMA wires for seismic applications
  publication-title: Construction and Building Material
– volume: 134
  start-page: 121
  issue: 1
  year: 2008
  end-page: 131
  article-title: Seismic analysis of concentrically braced frame systems with self‐centering friction damping braces
  publication-title: ASCE Journal of Structural Engineering
– year: 2001
– volume: 42
  start-page: 1617
  issue: 11
  year: 2013
  end-page: 1635
  article-title: Shake table testing and numerical simulation of a self‐centering energy dissipative braced frame
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 28
  start-page: 1266
  issue: 9
  year: 2006
  end-page: 1274
  article-title: Applications of shape memory alloys in civil structures
  publication-title: Engineering Structures
– volume: 141
  issue: 8
  year: 2014
  article-title: Design, testing and detailed component modeling of a high‐capacity self‐centering energy‐dissipative brace
  publication-title: ASCE Journal of Structural Engineering
– volume: 29
  start-page: 2294
  year: 2007
  end-page: 2301
  article-title: Effect of ambient temperature on the hinge opening in bridges with shape memory alloy seismic restrainers
  publication-title: Engineering Structures
– volume: 63
  start-page: 1570
  issue: 12
  year: 2007
  end-page: 1579
  article-title: Implementation of shape memory alloy dampers for passive control of structures subjected to seismic excitations
  publication-title: Journal of Constructional Steel Research
– volume: 22
  start-page: 222
  issue: 3
  year: 2000
  end-page: 229
  article-title: Base isolation system with shape memory alloy device for elevated highway bridges
  publication-title: Engineering Structures
– volume: 130
  start-page: 38
  issue: 1
  year: 2004
  end-page: 46
  article-title: Cyclic properties of superelastic shape memory alloy wires and bars
  publication-title: ASCE Journal of Structural Engineering
– volume: 36
  start-page: 1329
  issue: 10
  year: 2007
  end-page: 1346
  article-title: Seismic behavior of self‐centering braced frame buildings with reusable hysteretic damping brace
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 19
  issue: 6
  year: 2010
  article-title: GA‐based optimum design of a shape memory alloy device for seismic response mitigation
  publication-title: Smart Materials and Structures
– volume: 127
  start-page: 113
  issue: 2
  year: 2001
  end-page: 121
  article-title: Post‐tensioned seismic resistant connections for steel frames
  publication-title: ASCE Journal of Structural Engineering
– volume: 133
  start-page: 862
  issue: 6
  year: 2007
  end-page: 870
  article-title: Seismic assessment of concentrically braced frames with shape memory alloy braces
  publication-title: ASCE Journal of Structural Engineering
– volume: 23
  start-page: 1406
  issue: 18
  year: 2014
  end-page: 1425
  article-title: Incremental dynamic analysis of steel frames equipped with NiTi shape memory alloy braces
  publication-title: The Structural Design of Tall and Special Buildings
– volume: 11
  start-page: 326
  issue: 3
  year: 2007
  end-page: 342
  article-title: Effect of SMA braces in a steel frame building
  publication-title: Journal of Earthquake Engineering
– volume: 40
  start-page: 288
  year: 2012
  end-page: 298
  article-title: Development and experimental validation of a nickel–titanium shape memory alloy self‐centering buckling‐restrained brace
  publication-title: Engineering Structures
– year: 2010
– volume: 4
  start-page: 607
  issue: 6
  year: 2013
  end-page: 627
  article-title: Loading rate effect on superelastic SMA‐based seismic response modification devices
  publication-title: Earthquakes and Structures
– volume: 16
  start-page: 1603
  issue: 5
  year: 2007
  article-title: A shape memory alloy‐based reusable hysteretic damper for seismic hazard mitigation
  publication-title: Smart Materials and Structures
– volume: 17
  start-page: 1
  issue: 3
  year: 2008
  end-page: 10
  article-title: Large scale testing of nitinol shape memory alloy devices for retrofitting of bridges
  publication-title: Smart Materials and Structures
– volume: 17
  issue: 2
  year: 2008
  article-title: Experimental characterization of mechanical properties of copper‐based superelastic alloy at cold temperatures for the seismic protection of bridges
  publication-title: Smart Materials and Structures
– volume: 22
  start-page: 1531
  issue: 14
  year: 2011
  end-page: 1549
  article-title: Seismic response control using shape memory alloys, a review
  publication-title: Journal of Intelligent Material Systems and Structures
– volume: 31
  start-page: 1131
  year: 2002
  end-page: 1150
  article-title: Seismic response of self‐centering hysteretic SDOF systems
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 134
  start-page: 240
  issue: 3
  year: 2008
  end-page: 251
  article-title: Seismic response control of building structures with superelastic shape memory alloy wire dampers
  publication-title: ASCE Journal of Engineering Mechanics
– year: 2008
– volume: 32
  start-page: 498
  year: 2010
  end-page: 507
  article-title: Design and analysis of braced frames with shape memory alloy and energy‐absorbing hybrid devices
  publication-title: Engineering Structures
– year: 1997
– volume: 140
  issue: 11
  year: 2014
  article-title: Quasi‐static cyclic behavior of controlled rocking steel frames
  publication-title: ASCE Journal of Structural Engineering
– volume: 42
  start-page: 725
  year: 2013
  end-page: 741
  article-title: Effectiveness of superelastic bars for seismic rehabilitation of clay‐unit masonry walls
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 29
  start-page: 945
  year: 2000
  end-page: 968
  article-title: Implementation and testing of passive control devices based on shape memory alloys
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 17
  start-page: 429
  issue: 3
  year: 2014
  end-page: 438
  article-title: Incremental dynamic analysis of highway bridges with novel shape memory alloy isolators
  publication-title: Advances in Structural Engineering
– volume: 34
  start-page: 1687
  issue: 14
  year: 2005
  end-page: 1717
  article-title: Shaking table tests on reinforced concrete frames without and with passive control systems
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 18
  start-page: 746
  year: 2009
  end-page: 753
  article-title: Shape memory alloy compression/tension devices for seismic retrofit of buildings
  publication-title: Journal of Materials Engineering and Performance
– volume: 32
  start-page: 483
  year: 2003
  end-page: 494
  article-title: Structural vibration control by shape memory alloy damper
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 133
  start-page: 1205
  issue: 9
  year: 2007
  end-page: 1214
  article-title: Experimental evaluation of a large‐scale buckling‐restrained braced frame
  publication-title: ASCE Journal of Structural Engineering
– ident: e_1_2_11_34_1
  doi: 10.1016/j.jcsr.2015.12.008
– ident: e_1_2_11_11_1
  doi: 10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
– volume-title: Minimum Design Loads for Buildings and Other Structures, ANSI/SEI7‐10
  year: 2010
  ident: e_1_2_11_3_1
– ident: e_1_2_11_42_1
  doi: 10.1061/(ASCE)0733-9445(2007)133:9(1205)
– volume: 32
  start-page: 165
  issue: 3
  year: 2010
  ident: e_1_2_11_23_1
  article-title: Experimental response modification of a four‐span bridge retrofit with shape memory alloys
  publication-title: Structural Control and Health Monitoring
– ident: e_1_2_11_44_1
– ident: e_1_2_11_2_1
– ident: e_1_2_11_22_1
  doi: 10.1002/stc.328
– ident: e_1_2_11_24_1
  doi: 10.1016/j.engstruct.2010.07.013
– ident: e_1_2_11_40_1
  doi: 10.1177/1045389X11411220
– ident: e_1_2_11_41_1
  doi: 10.12989/eas.2013.4.6.607
– ident: e_1_2_11_12_1
  doi: 10.1016/S0141-0296(98)00097-2
– ident: e_1_2_11_16_1
  doi: 10.1088/0964-1726/16/5/014
– ident: e_1_2_11_10_1
  doi: 10.1016/j.conbuildmat.2014.08.065
– ident: e_1_2_11_35_1
  doi: 10.1007/s11665-009-9433-7
– ident: e_1_2_11_43_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001109,04014163
– ident: e_1_2_11_28_1
  doi: 10.1002/eqe.501
– ident: e_1_2_11_47_1
– ident: e_1_2_11_13_1
  doi: 10.1002/eqe.243
– ident: e_1_2_11_25_1
  doi: 10.1002/eqe.2241
– ident: e_1_2_11_27_1
  doi: 10.1002/eqe.2160
– ident: e_1_2_11_39_1
  doi: 10.1016/j.engstruct.2005.12.010
– ident: e_1_2_11_15_1
  doi: 10.1016/j.engstruct.2006.11.028
– ident: e_1_2_11_31_1
  doi: 10.1016/j.jcsr.2007.02.001
– ident: e_1_2_11_33_1
  doi: 10.1002/tal.1149
– ident: e_1_2_11_29_1
  doi: 10.1061/(ASCE)0733-9445(2008)134:1(121)
– volume: 130
  start-page: 38
  issue: 1
  year: 2004
  ident: e_1_2_11_9_1
  article-title: Cyclic properties of superelastic shape memory alloy wires and bars
  publication-title: ASCE Journal of Structural Engineering
  doi: 10.1061/(ASCE)0733-9445(2004)130:1(38)
– ident: e_1_2_11_38_1
  doi: 10.1088/0964-1726/19/6/065004
– ident: e_1_2_11_37_1
  doi: 10.1080/13632460601125763
– ident: e_1_2_11_21_1
  doi: 10.1016/j.engstruct.2008.05.025
– ident: e_1_2_11_18_1
  doi: 10.1061/(ASCE)0733-9399(2008)134:3(240)
– ident: e_1_2_11_19_1
  doi: 10.1088/0964-1726/17/3/035018
– ident: e_1_2_11_45_1
– ident: e_1_2_11_26_1
  doi: 10.1260/1369-4332.17.3.429
– ident: e_1_2_11_30_1
  doi: 10.1061/(ASCE)0733-9445(2007)133:6(862)
– ident: e_1_2_11_7_1
  doi: 10.1002/eqe.2290
– ident: e_1_2_11_8_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001005,04014083
– ident: e_1_2_11_20_1
  doi: 10.1002/eqe.761
– ident: e_1_2_11_36_1
  doi: 10.1016/j.engstruct.2012.02.037
– ident: e_1_2_11_4_1
  doi: 10.1061/(ASCE)0733-9445(2001)127:2(113)
– ident: e_1_2_11_6_1
  doi: 10.1002/eqe.152
– ident: e_1_2_11_14_1
  doi: 10.1088/0964-1726/14/3/008
– ident: e_1_2_11_17_1
  doi: 10.1002/eqe.683
– ident: e_1_2_11_46_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001166,04014193
– ident: e_1_2_11_5_1
  doi: 10.1061/(ASCE)0733-9445(2002)128:9(1111)
– ident: e_1_2_11_32_1
  doi: 10.1016/j.engstruct.2009.10.011
– ident: e_1_2_11_48_1
  doi: 10.1088/0964-1726/17/2/025008
SSID ssj0003607
Score 2.609526
Snippet Summary Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural...
Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the...
Summary Given their excellent self-centering and energy-dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural...
Given their excellent self-centering and energy-dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117
SubjectTerms Earthquake damage
Earthquake engineering
earthquake resilience
Earthquake resistance
Intermetallic compounds
numerical simulation
Reinforcement (structures)
Seismic phenomena
self‐centering
shake table test
shape memory alloy brace
Shape memory alloys
steel braced frame
Steel frames
Superelasticity
Title Shake table test and numerical study of self‐centering steel frame with SMA braces
URI https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.2777
https://www.proquest.com/docview/1848483248
https://www.proquest.com/docview/1855072567
https://www.proquest.com/docview/1864562878
Volume 46
WOSCitedRecordID wos000390260700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1096-9845
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003607
  issn: 0098-8847
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxEB6lSQ_0UGgLIjQgV0LtaWGzf_YeI0jEASIgiZTbyvaO1YpoQ5uEM4_AM_ZJOrO7WYJUEKr2sAePLcv2jL-ZsT8DvNYEA6xOcw-TJPIi7WKPYIjvxQYRHQHUPDblYxNyPFbzefq5BWp7F6bih2gCbqwZpb1mBddmVef1g7d4jW8CKeUedAJatFEbOu-_jmYfGyscJn7Dl6nIBG-JZ3fq_rkV_caXuyi13GZGjx_ewSdwWENLMajWwhG0sDiGgx3CwROYTi71NxRrvi8lCGSuhS5yUWyqtM1ClGSzYunEChfu9ucvPrpZVqUSxIVwfJRLcOxWTD4NBPWOzMxTmI2G03cfvPpdBc-G5D94ed84i0msnQkMOaicmkSXxmlqCH_Y1IXOT2nvjDAMrUGFuUojHUsT97WVkQ2fQbtYFvgcROIiZ1TOLO5xJK2vpPODXDMrHbm5rt-Fi-0QZ7YmHee3LxZZRZccZDROGY9TF84aye8V0cY9Mr3tLGW1qq0yclHpI1yoqImmmJSEMx-6wOWGZZi2jdCd_JdMwt6gktTOeTmvf-1HNvwy5P-L_xU8hUcBw4EydNOD9vpmgy9h3_5YX61uXtVL9w6_x_On
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shake+table+test+and+numerical+study+of+self-centering+steel+frame+with+SMA+braces&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Qiu%2C+Canxing&rft.au=Zhu%2C+Songye&rft.date=2017-01-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=46&rft.issue=1&rft.spage=117&rft.epage=137&rft_id=info:doi/10.1002%2Feqe.2777&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon