A mechanics‐informed artificial neural network approach in data‐driven constitutive modeling

A mechanics‐informed artificial neural network approach for learning constitutive laws governing complex, nonlinear, elastic materials from strain–stress data is proposed. The approach features a robust and accurate method for training a regression‐based model capable of capturing highly nonlinear s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering Jg. 123; H. 12; S. 2738 - 2759
Hauptverfasser: As'ad, Faisal, Avery, Philip, Farhat, Charbel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 30.06.2022
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0029-5981, 1097-0207
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A mechanics‐informed artificial neural network approach for learning constitutive laws governing complex, nonlinear, elastic materials from strain–stress data is proposed. The approach features a robust and accurate method for training a regression‐based model capable of capturing highly nonlinear strain–stress mappings, while preserving some fundamental principles of solid mechanics. In this sense, it is a structure‐preserving approach for constructing a data‐driven model featuring both the form‐agnostic advantage of purely phenomenological data‐driven regressions and the physical soundness of mechanistic models. The proposed methodology enforces desirable mathematical properties on the network architecture to guarantee the satisfaction of physical constraints such as objectivity, consistency (preservation of rigid body modes), dynamic stability, and material stability, which are important for successfully exploiting the resulting model in numerical simulations. Indeed, embedding such notions in a learning approach reduces a model's sensitivity to noise and promotes its robustness to inputs outside the training domain. The merits of the proposed learning approach are highlighted using several finite element analysis examples. Its potential for ensuring the computational tractability of multi‐scale applications is demonstrated with the acceleration of the nonlinear, dynamic, multi‐scale, fluid‐structure simulation of the supersonic inflation dynamics of a parachute system with a canopy made of a woven fabric.
AbstractList A mechanics‐informed artificial neural network approach for learning constitutive laws governing complex, nonlinear, elastic materials from strain–stress data is proposed. The approach features a robust and accurate method for training a regression‐based model capable of capturing highly nonlinear strain–stress mappings, while preserving some fundamental principles of solid mechanics. In this sense, it is a structure‐preserving approach for constructing a data‐driven model featuring both the form‐agnostic advantage of purely phenomenological data‐driven regressions and the physical soundness of mechanistic models. The proposed methodology enforces desirable mathematical properties on the network architecture to guarantee the satisfaction of physical constraints such as objectivity, consistency (preservation of rigid body modes), dynamic stability, and material stability, which are important for successfully exploiting the resulting model in numerical simulations. Indeed, embedding such notions in a learning approach reduces a model's sensitivity to noise and promotes its robustness to inputs outside the training domain. The merits of the proposed learning approach are highlighted using several finite element analysis examples. Its potential for ensuring the computational tractability of multi‐scale applications is demonstrated with the acceleration of the nonlinear, dynamic, multi‐scale, fluid‐structure simulation of the supersonic inflation dynamics of a parachute system with a canopy made of a woven fabric.
Author Farhat, Charbel
Avery, Philip
As'ad, Faisal
Author_xml – sequence: 1
  givenname: Faisal
  orcidid: 0000-0002-8538-9283
  surname: As'ad
  fullname: As'ad, Faisal
  email: faisal3@stanford.edu
  organization: Stanford University
– sequence: 2
  givenname: Philip
  orcidid: 0000-0002-1310-6790
  surname: Avery
  fullname: Avery, Philip
  organization: Stanford University
– sequence: 3
  givenname: Charbel
  orcidid: 0000-0003-2563-8820
  surname: Farhat
  fullname: Farhat, Charbel
  organization: Stanford University
BookMark eNp1kM9OAyEQxompibWa-AgkXrxshWWXLcemqX-Sqhc9I8uCpe5CBWrTm4_gM_ok0taT0dNkMr_vm5nvGPSsswqAM4yGGKH80nZqSFlZHYA-RqzKUI6qHuinEctKNsJH4DiEBUIYl4j0wfMYdkrOhTUyfH18Gqud71QDhY9GG2lEC61a-V2Ja-dfoVguvRNyDo2FjYgiqRpv3pWF0tkQTVzF1MHONao19uUEHGrRBnX6Uwfg6Wr6OLnJZg_Xt5PxLJOkTGfKHDV0VEmiirqkIq9rycoSadwwLVBBKGZIU0JJRQqa_iskZlrVRAjFROLIAJzvfdN1bysVIl-4lbdpJc9pciI5ZlWiLvaU9C4ErzRfetMJv-EY8W1-POXHt_kldPgLlSaKaJyNXpj2L0G2F6xNqzb_GvP7u-mO_wbsKIX5
CitedBy_id crossref_primary_10_1007_s00466_024_02481_5
crossref_primary_10_1016_j_cma_2025_117743
crossref_primary_10_1016_j_cma_2023_116131
crossref_primary_10_1016_j_eml_2024_102274
crossref_primary_10_1016_j_cma_2023_116534
crossref_primary_10_1007_s00466_023_02316_9
crossref_primary_10_1016_j_compgeo_2024_106907
crossref_primary_10_1016_j_cma_2024_117063
crossref_primary_10_1145_3618310
crossref_primary_10_1007_s00366_023_01906_8
crossref_primary_10_1016_j_cma_2025_118273
crossref_primary_10_1016_j_compgeo_2023_105254
crossref_primary_10_1002_nme_7481
crossref_primary_10_1016_j_mechmat_2024_105141
crossref_primary_10_1016_j_cma_2023_116007
crossref_primary_10_1016_j_matdes_2023_111697
crossref_primary_10_1002_nme_7509
crossref_primary_10_1007_s00466_024_02477_1
crossref_primary_10_1016_j_probengmech_2025_103763
crossref_primary_10_1002_cav_2262
crossref_primary_10_1002_nme_7502
crossref_primary_10_1016_j_mechmat_2023_104726
crossref_primary_10_3390_app15073697
crossref_primary_10_1016_j_cma_2025_118289
crossref_primary_10_3390_polym16223222
crossref_primary_10_1016_j_ijmecsci_2023_108709
crossref_primary_10_1016_j_cma_2025_118040
crossref_primary_10_2514_1_J064350
crossref_primary_10_1016_j_mechmat_2023_104682
crossref_primary_10_1088_2632_2153_ad95da
crossref_primary_10_1098_rsos_231606
crossref_primary_10_5802_crmeca_303
crossref_primary_10_1002_nme_7473
crossref_primary_10_1016_j_cma_2024_116910
crossref_primary_10_1016_j_cma_2024_117725
crossref_primary_10_1073_pnas_2508732122
crossref_primary_10_1016_j_tafmec_2024_104717
crossref_primary_10_1016_j_cma_2025_118258
crossref_primary_10_1016_j_cma_2023_116432
crossref_primary_10_1016_j_cma_2024_117289
crossref_primary_10_1016_j_cma_2024_117286
crossref_primary_10_1137_24M1631092
crossref_primary_10_1007_s00466_023_02276_0
crossref_primary_10_1016_j_jmps_2023_105424
crossref_primary_10_1016_j_mechmat_2025_105443
crossref_primary_10_1002_msd2_70005
crossref_primary_10_1007_s11831_024_10196_2
crossref_primary_10_1007_s11340_024_01106_5
crossref_primary_10_3390_polym15214254
crossref_primary_10_1016_j_cma_2022_115731
crossref_primary_10_1186_s40323_024_00279_x
crossref_primary_10_1016_j_mechrescom_2022_103993
crossref_primary_10_1016_j_cma_2023_116046
crossref_primary_10_1016_j_eml_2024_102260
crossref_primary_10_1007_s40747_025_02071_9
crossref_primary_10_1016_j_euromechsol_2023_105195
crossref_primary_10_1016_j_cma_2025_118145
crossref_primary_10_1016_j_jmps_2025_106212
crossref_primary_10_1007_s00466_023_02435_3
crossref_primary_10_1016_j_jmps_2025_106337
crossref_primary_10_1137_23M1585015
crossref_primary_10_1016_j_jmps_2025_106209
crossref_primary_10_1007_s00466_023_02278_y
crossref_primary_10_1016_j_mechmat_2025_105316
crossref_primary_10_1016_j_compbiomed_2025_109691
crossref_primary_10_1002_nme_7319
crossref_primary_10_1016_j_ijnonlinmec_2024_104793
crossref_primary_10_1007_s11831_024_10063_0
crossref_primary_10_3390_ma15248878
crossref_primary_10_1002_nme_7439
crossref_primary_10_1002_nme_70083
crossref_primary_10_1016_j_cma_2023_116333
crossref_primary_10_1016_j_jmps_2024_105570
crossref_primary_10_1007_s44379_025_00022_2
crossref_primary_10_1016_j_cma_2025_117937
crossref_primary_10_1016_j_cma_2024_116967
crossref_primary_10_1038_s41467_024_45323_x
crossref_primary_10_1016_j_cma_2023_116463
crossref_primary_10_1016_j_cma_2024_117532
crossref_primary_10_1016_j_engstruct_2024_118038
crossref_primary_10_1080_10589759_2025_2522299
crossref_primary_10_1016_j_actbio_2023_01_055
crossref_primary_10_1016_j_cma_2025_118089
crossref_primary_10_1016_j_jmps_2024_106015
crossref_primary_10_1016_j_eml_2024_102243
crossref_primary_10_1016_j_eml_2023_102103
crossref_primary_10_2514_1_J064791
crossref_primary_10_1016_j_jmps_2024_105837
crossref_primary_10_1016_j_actbio_2024_09_005
crossref_primary_10_1016_j_cma_2022_115501
crossref_primary_10_1016_j_ijsolstr_2023_112261
crossref_primary_10_1016_j_brain_2023_100066
crossref_primary_10_1016_j_jmbbm_2025_106934
crossref_primary_10_1016_j_cma_2023_116739
crossref_primary_10_1007_s00466_023_02355_2
crossref_primary_10_3390_axioms14050385
crossref_primary_10_1002_nme_7616
crossref_primary_10_1016_j_cma_2024_117525
crossref_primary_10_1007_s00466_025_02670_w
crossref_primary_10_1016_j_cma_2023_116236
crossref_primary_10_1016_j_eml_2024_102170
crossref_primary_10_1016_j_jmps_2025_106122
crossref_primary_10_1016_j_jmbbm_2023_106021
crossref_primary_10_1016_j_ijsolstr_2025_113469
crossref_primary_10_1186_s42162_024_00322_6
crossref_primary_10_1016_j_jmps_2023_105231
crossref_primary_10_1016_j_jmps_2022_105076
crossref_primary_10_1007_s00466_024_02497_x
crossref_primary_10_1016_j_cma_2023_115930
crossref_primary_10_1002_gamm_70005
crossref_primary_10_1177_14644207251330497
crossref_primary_10_1016_j_cma_2024_117359
crossref_primary_10_1016_j_prostr_2025_08_134
crossref_primary_10_1016_j_eml_2024_102181
crossref_primary_10_1007_s00466_023_02324_9
crossref_primary_10_1016_j_cma_2025_118188
crossref_primary_10_1016_j_cma_2025_118186
crossref_primary_10_1016_j_eml_2024_102220
crossref_primary_10_1016_j_eml_2024_102188
crossref_primary_10_1016_j_finel_2025_104431
crossref_primary_10_1016_j_jmps_2023_105363
crossref_primary_10_3934_nhm_2025012
crossref_primary_10_1016_j_ijmecsci_2025_110757
crossref_primary_10_1002_nme_7178
Cites_doi 10.1109/AERO.2019.8741611
10.2514/6.2021-1963
10.1007/s00466-021-02064-8
10.1007/BF00126996
10.1016/S0045-7825(99)00224-8
10.1007/978-3-642-65817-4_1
10.1016/j.cma.2021.113852
10.1007/BF01212634
10.1177/1081286508099385
10.1016/S0045-7825(97)00139-4
10.1016/j.jcp.2014.01.018
10.1016/S0045-7825(98)00218-7
10.1108/02644400210423918
10.1088/1742-6596/1168/2/022022
10.1016/j.crme.2019.08.001
10.2514/1.J059945
10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V
10.1016/j.jmps.2021.104703
10.1002/nme.2883
10.1007/s004660000212
10.2514/6.2022-0100
10.1016/j.jtbi.2018.01.014
10.1007/s10659-016-9601-6
10.1016/j.jcp.2020.110072
10.1109/TRPMS.2021.3066428
10.1002/nme.4953
10.2514/2.1975
10.1002/(SICI)1097-0207(19980930)43:2<195::AID-NME418>3.0.CO;2-6
10.1002/fld.4728
10.1016/S0749-6419(02)00091-8
10.1002/nme.6634
10.5220/0005635804810486
10.2514/6.2020-1863
10.1016/j.cma.2020.113299
10.1007/BF00040848
10.1061/(ASCE)0733-9399(1991)117:1(132)
10.1002/nme.6455
10.1007/BF00281381
10.1016/j.jcp.2020.109491
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.6957
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 2759
ExternalDocumentID 10_1002_nme_6957
NME6957
Genre article
GrantInformation_xml – fundername: National Aeronautics and Space Administration
  funderid: 80NSSC21K0228
– fundername: National Science Foundation
  funderid: 1937129
– fundername: Air Force Office of Scientific Research
  funderid: FA9550‐20‐1‐0358
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3597-c20d687c3e4b56a2bbc9550f1d9fa0436190f636373466954c19feb3aae9a50f3
IEDL.DBID DRFUL
ISICitedReferencesCount 140
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000765500200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Fri Jul 25 12:20:15 EDT 2025
Sat Nov 29 06:44:01 EST 2025
Tue Nov 18 22:31:44 EST 2025
Wed Jan 22 16:25:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3597-c20d687c3e4b56a2bbc9550f1d9fa0436190f636373466954c19feb3aae9a50f3
Notes Funding information
Air Force Office of Scientific Research, FA9550‐20‐1‐0358; National Aeronautics and Space Administration, 80NSSC21K0228; National Science Foundation, 1937129
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2563-8820
0000-0002-1310-6790
0000-0002-8538-9283
PQID 2655032197
PQPubID 996376
PageCount 22
ParticipantIDs proquest_journals_2655032197
crossref_primary_10_1002_nme_6957
crossref_citationtrail_10_1002_nme_6957
wiley_primary_10_1002_nme_6957_NME6957
PublicationCentury 2000
PublicationDate 30 June 2022
PublicationDateYYYYMMDD 2022-06-30
PublicationDate_xml – month: 06
  year: 2022
  text: 30 June 2022
  day: 30
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 428
2021; 68
2019; 90
2021; 5
2002; 19
2015; 104
1999; 171
2018; 444
2019; 347
1974
2021; 381
1995; 113
1994
2001; 27
2003; 19
2021; 122
1959; 4
1998; 155
1991; 117
1998; 43
1998; 42
2022; 159
2019; 1168
2010; 84
2009; 14
2021; 59
2020; 371
2000; 183
1994; 36
2003; 41
2014; 263
2020; 416
2017; 127
1975; 5
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Marsden JE (e_1_2_7_26_1) 1994
References_xml – volume: 159
  year: 2022
  article-title: Polyconvex anisotropic hyperelasticity with neural networks
  publication-title: J Mech Phys Solids
– volume: 36
  start-page: 201
  issue: 3
  year: 1994
  end-page: 226
  article-title: Positive definiteness of the elasticity tensor of a residually stressed material
  publication-title: J Elast
– volume: 14
  start-page: 369
  issue: 4
  year: 2009
  end-page: 376
  article-title: Must elastic materials be hyperelastic?
  publication-title: Math Mec Solids
– volume: 90
  start-page: 389
  issue: 8
  year: 2019
  end-page: 424
  article-title: Mesh adaptation framework for embedded boundary methods for computational fluid dynamics and fluid‐structure interaction
  publication-title: Int J Numer Methods Fluids
– volume: 59
  start-page: 2045
  issue: 6
  year: 2021
  end-page: 2059
  article-title: Homogenized flux‐body force treatment of compressible viscous porous wall boundary conditions
  publication-title: AIAA J
– volume: 113
  start-page: 63
  issue: 1
  year: 1995
  end-page: 75
  article-title: Plasticity including the Bauschinger effect, studied by a neural network approach
  publication-title: Acta Mech
– volume: 381
  year: 2021
  article-title: Unsupervised discovery of interpretable hyperelastic constitutive laws
  publication-title: Comput Methods Appl Mech Eng
– volume: 27
  start-page: 37
  issue: 1
  year: 2001
  end-page: 48
  article-title: An approach to micro‐macro modeling of heterogeneous materials
  publication-title: Comput Mech
– volume: 84
  start-page: 73
  issue: 1
  year: 2010
  end-page: 107
  article-title: Robust and provably second‐order explicit–explicit and implicit–explicit staggered time‐integrators for highly non‐linear compressible fluid–structure interaction problems
  publication-title: Int J Numer Methods Eng
– volume: 444
  start-page: 108
  year: 2018
  end-page: 123
  article-title: Microstructurally‐based constitutive modelling of the skin–linking intrinsic ageing to microstructural parameters
  publication-title: J Theor Biol
– volume: 5
  start-page: 341
  issue: 3
  year: 1975
  end-page: 361
  article-title: On the ellipticity of the equations of nonlinear elastostatics for a special material
  publication-title: J Elast
– volume: 155
  start-page: 181
  issue: 192
  year: 1998
  article-title: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi‐level finite element modeling
  publication-title: Comput Methods Appl Mech Eng
– volume: 19
  start-page: 254
  issue: 3
  year: 2002
  end-page: 271
  article-title: Using finite strain 3D‐material models in beam and shell elements
  publication-title: Eng Comput
– volume: 171
  start-page: 387
  issue: 3‐4
  year: 1999
  end-page: 418
  article-title: Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials
  publication-title: Comput Methods Appl Mech Eng
– volume: 117
  start-page: 132
  issue: 1
  year: 1991
  end-page: 153
  article-title: Knowledge‐based modeling of material behavior with neural networks
  publication-title: J Eng Mech
– volume: 122
  start-page: 5353
  issue: 19
  year: 2021
  end-page: 5383
  article-title: Discrete embedded boundary method with smooth dependence on the evolution of a fluid‐structure interface
  publication-title: Int J Numer Methods Eng
– start-page: 1
  year: 1974
  end-page: 30
– year: 1994
– volume: 347
  start-page: 561
  issue: 8
  year: 2019
  end-page: 575
  article-title: An empirical statistical constitutive relationship for rock joint shearing considering scale effect
  publication-title: C R Méc
– volume: 42
  start-page: 105
  issue: 1
  year: 1998
  end-page: 126
  article-title: Autoprogressive training of neural network constitutive models
  publication-title: Int J Numer Methods Eng
– volume: 428
  year: 2021
  article-title: Learning constitutive relations using symmetric positive definite neural networks
  publication-title: J Comput Phys
– volume: 371
  year: 2020
  article-title: Geometric deep learning for computational mechanics Part I: anisotropic hyperelasticity
  publication-title: Comput Methods Appl Mech Eng
– volume: 263
  start-page: 53
  year: 2014
  end-page: 70
  article-title: An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent fluid–structure interaction problems
  publication-title: J Comput Phys
– volume: 43
  start-page: 195
  issue: 2
  year: 1998
  end-page: 219
  article-title: Implicit constitutive modelling for viscoplasticity using neural networks
  publication-title: Int J Numer Methods Eng
– volume: 4
  start-page: 97
  issue: 1
  year: 1959
  end-page: 128
  article-title: On the thermostatics of continuous media
  publication-title: Arch Ration Mech Anal
– volume: 104
  start-page: 1061
  issue: 12
  year: 2015
  end-page: 1084
  article-title: Computational homogenization of nonlinear elastic materials using neural networks
  publication-title: Int J Numer Methods Eng
– volume: 19
  start-page: 1019
  issue: 7
  year: 2003
  end-page: 1036
  article-title: A phenomenological constitutive model for rubberlike materials and its numerical applications
  publication-title: Int J Plast
– volume: 183
  start-page: 309
  issue: 3‐4
  year: 2000
  end-page: 330
  article-title: FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials
  publication-title: Comput Methods Appl Mech Eng
– volume: 68
  start-page: 1179
  issue: 5
  year: 2021
  end-page: 1204
  article-title: Constrained neural network training and its application to hyperelastic material modeling
  publication-title: Comput Mech
– volume: 416
  year: 2020
  article-title: Learning constitutive relations from indirect observations using deep neural networks
  publication-title: J Comput Phys
– volume: 122
  start-page: 2598
  issue: 10
  year: 2021
  end-page: 2625
  article-title: A computationally tractable framework for nonlinear dynamic multiscale modeling of membrane woven fabrics
  publication-title: Int J Numer Methods Eng
– volume: 41
  start-page: 363
  issue: 3
  year: 2003
  end-page: 371
  article-title: Aeroelastic dynamic analysis of a full F‐16 configuration for various flight conditions
  publication-title: AIAA J
– volume: 1168
  year: 2019
  article-title: An overview of overfitting and its solutions
  publication-title: J Phys Conf Ser
– volume: 127
  start-page: 303
  issue: 2
  year: 2017
  end-page: 308
  article-title: On the convexity of nonlinear elastic energies in the right Cauchy‐Green tensor
  publication-title: J Elast
– volume: 5
  start-page: 741
  issue: 6
  year: 2021
  end-page: 760
  article-title: On interpretability of artificial neural networks: a survey
  publication-title: IEEE Trans Radiat Plasma Med Sci
– ident: e_1_2_7_39_1
  doi: 10.1109/AERO.2019.8741611
– ident: e_1_2_7_13_1
  doi: 10.2514/6.2021-1963
– ident: e_1_2_7_23_1
  doi: 10.1007/s00466-021-02064-8
– ident: e_1_2_7_25_1
  doi: 10.1007/BF00126996
– ident: e_1_2_7_34_1
  doi: 10.1016/S0045-7825(99)00224-8
– volume-title: Mathematical Foundations of Elasticity
  year: 1994
  ident: e_1_2_7_26_1
– ident: e_1_2_7_24_1
  doi: 10.1007/978-3-642-65817-4_1
– ident: e_1_2_7_16_1
  doi: 10.1016/j.cma.2021.113852
– ident: e_1_2_7_8_1
  doi: 10.1007/BF01212634
– ident: e_1_2_7_20_1
  doi: 10.1177/1081286508099385
– ident: e_1_2_7_32_1
  doi: 10.1016/S0045-7825(97)00139-4
– ident: e_1_2_7_41_1
  doi: 10.1016/j.jcp.2014.01.018
– ident: e_1_2_7_33_1
  doi: 10.1016/S0045-7825(98)00218-7
– ident: e_1_2_7_37_1
  doi: 10.1108/02644400210423918
– ident: e_1_2_7_38_1
  doi: 10.1088/1742-6596/1168/2/022022
– ident: e_1_2_7_2_1
  doi: 10.1016/j.crme.2019.08.001
– ident: e_1_2_7_43_1
  doi: 10.2514/1.J059945
– ident: e_1_2_7_7_1
  doi: 10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jmps.2021.104703
– ident: e_1_2_7_44_1
  doi: 10.1002/nme.2883
– ident: e_1_2_7_35_1
  doi: 10.1007/s004660000212
– ident: e_1_2_7_5_1
  doi: 10.2514/6.2022-0100
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jtbi.2018.01.014
– ident: e_1_2_7_29_1
  doi: 10.1007/s10659-016-9601-6
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jcp.2020.110072
– ident: e_1_2_7_19_1
  doi: 10.1109/TRPMS.2021.3066428
– ident: e_1_2_7_11_1
  doi: 10.1002/nme.4953
– ident: e_1_2_7_36_1
  doi: 10.2514/2.1975
– ident: e_1_2_7_9_1
  doi: 10.1002/(SICI)1097-0207(19980930)43:2<195::AID-NME418>3.0.CO;2-6
– ident: e_1_2_7_21_1
– ident: e_1_2_7_42_1
  doi: 10.1002/fld.4728
– ident: e_1_2_7_30_1
– ident: e_1_2_7_3_1
  doi: 10.1016/S0749-6419(02)00091-8
– ident: e_1_2_7_14_1
  doi: 10.1002/nme.6634
– ident: e_1_2_7_31_1
  doi: 10.5220/0005635804810486
– ident: e_1_2_7_12_1
  doi: 10.2514/6.2020-1863
– ident: e_1_2_7_22_1
  doi: 10.1016/j.cma.2020.113299
– ident: e_1_2_7_28_1
  doi: 10.1007/BF00040848
– ident: e_1_2_7_6_1
  doi: 10.1061/(ASCE)0733-9399(1991)117:1(132)
– ident: e_1_2_7_40_1
  doi: 10.1002/nme.6455
– ident: e_1_2_7_27_1
  doi: 10.1007/BF00281381
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jcp.2020.109491
– ident: e_1_2_7_15_1
SSID ssj0011503
Score 2.6912992
Snippet A mechanics‐informed artificial neural network approach for learning constitutive laws governing complex, nonlinear, elastic materials from strain–stress data...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2738
SubjectTerms artificial neural network
Artificial neural networks
Computer architecture
Computer simulation
constitutive modeling
convexity
Dynamic stability
Finite element method
hyperelasticity
Learning
machine learning
Mechanics
Neural networks
Noise sensitivity
Parachute canopies
Regression models
Rigid structures
Robustness (mathematics)
Solid mechanics
stability
Strain
supersonic parachute inflation dynamics
Training
Woven fabrics
Title A mechanics‐informed artificial neural network approach in data‐driven constitutive modeling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6957
https://www.proquest.com/docview/2655032197
Volume 123
WOSCitedRecordID wos000765500200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BS8MwFH7o5kEPTqfidEoE0VN1bdq0OQ7d8LANESe71STNYOA2Wadnf4K_0V_iS5vOCQqCpxD6XpvmvZd8aV--AJwGOKn4ipssca4dP9C-EwlNHV8KV0nBeJDRLj50wl4vGgz4rc2qNHthcn6IxQc3ExnZeG0CXMj0cok0dKwv8FbhKpQ9dNugBOXru3a_s_iHgFCHFgkeAY_cgnq24V0Wut8noy-EuYxTs4mmXflPE7dg08JL0sz9YRtW9KQKFQs1iQ3ktAobSzyEWOsuyFvTHXhskrE2G4Kx9vH2nlOrorZxspxvghgWzKzIcshJQUxORhNiUk5RK5mZYZSoqU1GwBrJTt3BB-5Cv926v7px7EEMjkITho7yGgmLQkW1LwMmPCkVx5XN0E34UBgOe0QVQ0YZDanP8IV95fIhrtKF0FygHN2D0mQ60ftAlI9TJmMyUIIiUktk4kpFDc5UkZCNoAbnhUViZVnKzWEZT3HOr-zF2Kmx6dQanCwkn3Nmjh9k6oVRYxubaewxbDvFkRovn2Xm-1U_7nVbpjz4q-AhrHtmf0SWUFiH0nz2oo9gTb3OR-ns2HroJ1Uv7MA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwED_mFNQH_4vTqRFEn-rWJk0bfBrqmLgNERXfapJmMHCbbNNnP4Kf0U_ipX_mBAXBpxJ616a5u-SX9PILwKGPgwrTwmaJC-Mw3zAnlIY6TElXK8mFn9Au3jeDdjt8eBDXBTjN98Kk_BCTBTcbGUl_bQPcLkhXplhDe-YEnxXMwCxDL0L3nj2_qd81Jz8REOvQPMPDF6Gbc89WvUqu-300-oKY00A1GWnqy_-q4wosZQCT1FKPWIWC6a_BcgY2SRbKozVYnGIixFJrQt86WofHGukZuyUYSx9v7ym5KmpbN0sZJ4jlwUwuSRY5yanJSbdPbNIpasVD25ESPcjSEbBEknN38IUbcFe_uD1rONlRDI5GIwaO9qoxDwNNDVM-l55SWuDcpuPGoiMtiz3iig6nnAaUcfxgpl3RwXm6lEZIlKObUOwP-mYLiGY4aHKufC0pYrVYxa7S1CJNHUpV9UtwnJsk0hlPuT0u4ylKGZa9CBs1so1agoOJ5HPKzfGDTDm3apRF5yjyONadYl-Nt48S-_2qH7VbF_a6_VfBfZhv3LaaUfOyfbUDC57dLZGkF5ahOB6-mF2Y06_j7mi4l7nrJ3j_8LA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-JlagTRp7q1SdMGn4Y6FLcxRMW3mqQpCLqNVX32J_gb_SWe9DInKAg-hdBz2jQnJ_nSnnwHYN_HRYVpYaPEhXGYb5gTSkMdpqSrleTCz2gXb1tBpxPe3YnuBByXZ2FyfojRBzfrGdl8bR3cDOKkNsYa-mSO8F7BJEwxm0OmAlOnV82b1ugnAmIdWkZ4-CJ0S-7Zulcrdb-vRl8QcxyoZitNc-FfbVyE-QJgkkY-IpZgwvSWYaEAm6Rw5XQZ5saYCLHWHtG3pitw3yBPxh4JxtrH23tOroradpjljBPE8mBmRRZFTkpqcvLQIzboFLXioZ1Iie4X4QhYI1neHXzgKtw0z65Pzp0iFYOj0YiBo716zMNAU8OUz6WnlBa4t0ncWCTSstgjrkg45TSgjOMLM-2KBPfpUhohUY6uQaXX75l1IJrhosm58rWkiNViFbtKU4s0dShV3d-Aw9IkkS54ym26jMcoZ1j2IuzUyHbqBuyNJAc5N8cPMtXSqlHhnWnkcWw7xbkaLx9k9vtVP-q0z2y5-VfBXZjpnjaj1kXncgtmPXtYIosurELlefhitmFavz4_pMOdYrR-AhwU8Cs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mechanics%E2%80%90informed+artificial+neural+network+approach+in+data%E2%80%90driven+constitutive+modeling&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=As%27ad%2C+Faisal&rft.au=Avery%2C+Philip&rft.au=Farhat%2C+Charbel&rft.date=2022-06-30&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=123&rft.issue=12&rft.spage=2738&rft.epage=2759&rft_id=info:doi/10.1002%2Fnme.6957&rft.externalDBID=10.1002%252Fnme.6957&rft.externalDocID=NME6957
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon